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INVERSE PROBLEM OF LINEAR OPTIMAL CONTROL*

ANTONY JAMESON AND ELIEZER KREINDLER]-

Abstract. Necessary and sufficient conditions are derived such that a multi-input, time-varying,
linear state-feedback system minimizes a quadratic performance index (the inverse linear optimal
control problem). A procedure for determining all such equivalent performance indices that yield the
same feedback matrix is indicated.

1. Introduction. Consider a linear system given by

(1.1) Ax + Bu, X(to) Xo,

(1.2) u Dx,

and a performance index

t(1.3) I -xr(tl)FX(tl) + - (xrQx + urRu)dt,

where x is the n-dimensional state, u the m-dimensional control, is a fixed
terminal time, and the superscript T denotes matrix transpose. The matrices A, B,
D, Q and R may be time-varying, and are assumed to be uniformly bounded and
continuous on [to,

The inverse problem of linear optimal control is to find necessary and suffi-
cient conditions on the system matrices A, B and D so that some performance
index of the type (1.3) is minimized, and to determine all such R, Q and F.

The direct problem and its solution are of course well known. The feedback
matrix D such that the system (1.1), (1.2) minimizes (1.3) is given by

(1.4) D -R-IBrP,
where P is the solution of the matrix Riccati equation

(1.5) _/5 PA + ATp- PBR-BTp + Q, P(t) F.

For the existence of a unique minimizing u it is assumed that R is positive definite
(denoted by R > 0), and as a sufficient condition for the existence of a solution
P(t) of (1.5) it is usually assumed that Q and F are nonnegative definite
(Q >= 0, F >= 0). The minimal value 1, of I is then nonnegative for all Xo and to,
and since

(1.6) I, 1/2xP(to)Xo,
P is nonnegative definite. The case where t oe is of particular interest when A
and B are constant, because the performance index

(1.7) I--- (xrQx + urRu)dt,
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with Q and R constant, results in a constant feedback matrix D. If (1.1) is com-
pletely controllable and Q CrC is such that [A, C] is completely observable,
then the matrix P in (1.4) is the asymptotically stable equilibrium point of the
Riccati equation

(1.8) /5 PA + ArP- PBR-*BrP + Q, P(O) Po P >- O,

i.e., it is the positive definite solution of the matrix equation

(1.9) 0 PA + ATp- PBR-1BTp + Q.

The present paper solves the general time-varying case with the performance
index given by (1.3), as well as the time-invariant case with the performance index
(1.7). The plan of attack is as follows.

In 2 we determine necessary conditions for the existence of real symmetric
matrices R > 0 and P (also for P => 0 and P > 0), such that (1.4) is satisfied; the
most restrictive of these is that DB have real eigenvalues. The sufficiency of these
conditions is demonstrated in 3 by producing general formulas for such R and
P. In 4 we give complete sets of necessary and sufficient conditions for solutions
P >= 0 and P > 0; in view of (1.6), these conditions are necessary and sufficient
for I, to be nonnegative and positive for all x0 and all to < l, and they are neces-
sary for construction of Q >= 0mhence their importance.

The solutions of (1.4) for R and P are pointwise in time, but P can be con-
structed to be differentiable, so that we have P. Then F P(tl), and Q is given by

(1.10) Q -P- PA- ATp + DTRD.

We remark that Q so determined may not be nonnegative definite even if P is
positive definite; this is true also in the time-invariant case. We now have the
entire class of matrices {R, Q, F, P} that satisfy (1.4) and (1.5), and we show in 5
that each member of this class of performance indices is actually minimized by
the given control law (1.2), thus solving the inverse problem (Theorem 5.1).

The inverse problem was first posed and partly solved by Kalman [1] who
considered the time-invariant single-input case where R reduces to a scalar. He
showed that the satisfaction of a particular inequality, the sensitivity inequality,
implies that there exists a performance index (1.7) with a nonnegative definite Q
and R which is minimized. This result was generalized by Anderson [2] to the
multi-input, time-invariant case. Our approach and results, which do not neces-
sarily produce a nonnegative definite Q, are different. Results for the case where
Q is nonnegative definite, and relations with the Kalman-Anderson results, will
be presented in a sequel to this paper.

The generality of the characterization of R and P (Theorems 3.1-3.4) gives
them independent value;they provide new insight into the already extensively
researched linear optimal control problem and are bound to find many applica-
tions, particularly in the area of equivalent loss functions [3]. We note that the
results of this paper are important for the local treatment of the general nonlinear
inverse problem. The fact that our results do not require Q >= 0 is then significant;
this requirement, usually natural for the direct linear optimal problem, is unduly
restrictive for the nonlinear case (where Q is replaced by Hxx, the second partial
of the Hamiltonian).
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We remark in conclusion that the conditions for optimality of (1.1),(1.2)
derived here are in general no longer necessary when a cross-product term urSx
is added in the integrand of (1.3) or (1.7). In fact, it is shown in [4] that every system
(1.1), (1.2) minimizes a performance index (1.3) with a cross-product term, and that
there are many ways such a performance index can be constructed. If the per-
formance index is further generalized to include derivatives of the control, dynamic
feedback and feedforward controllers can be included, and thus every linear,
finite-dimensional dynamic feedback system minimizes some sufficiently general
quadratic performance index [4].

2. Compatibility conditions. First we note that only the symmetric parts of
R, Q and F appear in (1.4) and in the Riccati equation (1.5). Thus, the existence of
symmetric P, R, Q and F satisfying (1.4) and (1.5) is a necessary condition for a
closed-loop system (1.1), (1.2) to be optimal with respect to (1.3).

From (1.4),

(2.1) BrP -RO,

and our objective is to solve this equation for all real, symmetric and positive
definite R, R R > 0, and all real and symmetric P. In this section we derive
several necessary conditions for the existence of such solutions;in the next section
we show constructively that these are also sufficient. We recall that B is n m,
D is m n, and they do not necessarily have full rank. We have the following
lemma.

LEMMA 2.1. Necessary conditions for (2.1) to have real symmetric solutions P,
and real, symmetric and positive definite solutions R, are:

(i) for any P, R must be such that the compatibility condition holds:

(2.2) BrB*RD RD,

where B* is any matrix (e.g., the Penrose generalized inverse B*) such that BB*B B;
(ii) for P to be symmetric, the symmetry condition must hold:

(2.3) RDB BrDrR;

(iii) for R to be positive definite, a rank condition on BD must hold:

(2.4) rank BD rank D.

Proof (i) Premultiplying (2.1) by BrB*and using the identity BrB*Br Br,
we have

BTB*TBTp BTp -RD -BTB*rRD.

(ii) Postmultiplying (2.1) by B we have

(2.5) BrPB -RDB,

whence the symmetry of RDB is necessary for the symmetry of P.
(iii) From (2.1),

PBD -DrRD.
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We first observe that since R is positive definite,

(2.6) rank DrRD rank D

because for every p such that DRDp 0 we have

pD’RDp (Dp)’R(Dp) O,

whence Dp must be zero. Thus, by (2.6),

rank BD > rank PBD rank DRD rank D.

But since rank BD > rank D is impossible, (2.4) follows. Q.E.D.
That RDB must be symmetric with a real, symmetric and positive definite R,

leads to the next lemma.
LEMMA 2.2. A real R R > 0 such that RDB is symmetric exists only if the

m m matrix DB satisfies the eigenvector condition"

(2.7) DB has m linearly independent real eigenvectors.

Proof Let LL R > 0 be such that RDB is symmetric. Then (L- 1)RDBL-
LDBL-1 is symmetric, and it therefore has m linearly independent real eigen-

vectors. But since DB is similar to LDBL-1, (2.7) follows. Q.E.D.
The conditions (2.4) and (2.7) are necessary for the desired solution of (2.1),

and it is shown constructively by Theorems 3.1, 3.2 and 3.3 in the next section that
they are also sufficient. We can therefore state the following theorem.

THEOREM 2.1. Equation (2.1) has solutions R R > 0 and P P ifand only
if the rank condition (2.4) on BD and the eigenvector condition (2.7) on DB hold.

We now proceed to derive conditions for symmetric /’ to be nonnegative
definite and positive definite. We have the following lemma.

LEMMA 2.3. For (2.1) with R Rr> 0 to have solutions P pr >_ 0 it is
necessary that

(2.8) rank DB rank D,

and that all eigenvalues 2 ofDB be nonpositive"

(2.9) 2i=<0, i= 1,2,...,m;

for solutions P P > O, it is necessary that

(2.10) rank DB rank D rank B.

Proof From (2.1), since R is nonsingular,

rank D rank RD rank B’P rank PB,

and from (2.5),

rank DB rank RDB rank BPB.

Thus (2.8) is equivalent to

(2.11) rank BPB rank PB.

Since P 0, we may write P ZrZ, Z real. We observe, as in the proof of (2.6),
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that

Thus

rank (ZB)rZB rank ZB.

rank BrPB rank (ZB)rZB rank ZB >= rank ZrZB rank PB.

But since rank BrPB > rank PB is impossible, (2.8) follows. If P __> 0 or P > 0,
then from (2.5),

(2.12) RDB <= O.

Writing R LrL, (L-1)rRDBL LDBL-1 is also nonpositive definite, real,
and symmetric, and therefore has nonpositive real eigenvalues. Since DB is similar
to LDBL-1, (2.9) is established. If P > 0, then since R is nonsingular, (2.1) shows
that

(2.13) rank D rank B,

whence (2.10) must hold. Q.E.D.
LEMMA 2.4. The rank condition (2.8) on DB together with the symmetry condi-

tion (2.3) on RDB imply that the compatibility condition (2.2) and the rank condition
(2.4) on BD are satisfied.

Proof From (2.2), using the symmetry of RDB and the identity BB*B B, we
have

BTB*TRDB BTB*’BTDTR BTDTR RDB,

or

(2.14) (BTB* R R)DB O.

But since rank DB rank D, if M is a nonzero matrix such that MDB 0, then
also MD 0. Thus, (2.14) implies (2.2). From (2.3),

(2.15) RDBD BrDrRD.
Let p be any vector such that Dp 4: 0. Then in view of (2.6), DrRDp 4: 0, and by
(2.8), BrDrRDp 4: 0, whence by (2.15), RDBDp :/: O. Thus BDp 4:0 if Dp =# 0,
implying (2.4). Q.E.D.

From Lemmas 2.2, 2.3 and 2.4 we see that conditions (2.7), (2.8) and (2.9)
emerge as the major ones necessary for P >__ 0, and in 4 we show that they are
indeed sufficient. We can therefore state the following theorem.

THEOREM 2.2. Equation (2.1) has solutions R RT > 0 and P pT >= 0 !land
only if DB has m linearly independent real eigenvectors,-its rank equals that of D,
and its eigenvalues are all nonpositive (conditions (2.7), (2.8) and (2.9), respectively);
for P pT > O, the rank of DB must also be equal to that of B (condition (2.10)).

We close this section with the remark that the rank condition rank BD
rank D can be seen as a direct consequence of optimality. There is no loss of

generality (see Appendix) in assuming that B is in canonical form and u is parti-
tioned accordingly"

(2.16) B u
0 u2
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Since ul does not affect x(t), it must minimize at all times the quadratic form urRu:

[_Rlr2 R22 u2

whence the minimizing u is given by

U --R11R12u2,

i.e., U is proportional to u2. Thus, if we partition D as Dr

must satisfy
[Dr D], then D1

(2.17) D KD2,

or, rank D rank 02 But

whence rank BD rank D2 rank D.

3. General representations of R and P. We first construct R Rr > 0 so that
RDB is symmetric. By Lemma 2.2 we must assume that the eigenvectors of DB,
and hence of BrDr, are real and linearly independent. Thus the matrix V whose
columns are the eigenvectors v of BrDr is real and nonsingular. We may write the
set of equations BrDrvi ,ivi, 1, 2,..., m, as

(3.1) BrDrv= VA,

where A is the diagonal matrix of eigenvalues 2 of BrDr. Then for any real, non-
singular matrix H that commutes with A we have

(3.2) BrDrVH VAH= VHA,

whence the columns of VH are seen as a new, linearly independent set of real
eigenvectors; in fact, all such sets of eigenvectors are generated by all such H.
(If all eigenvalues 2 are distinct, then H must be diagonal and it simply scales the
eigenvectors v; if 2i 2j, then any linear combination of vi and vj is also an eigen-
vector and all such combinations are generated by the now permissible off-diagonal
elements rcij and 7cji of H.) We have the following theorem.

THFOREM 3.1. Let the necessary eigenvector condition (2.7) hold. Then every
given real R Rr > 0 such that RDB is symmetric, is necessarily given by

(3.3) R VVr,
where the columns v of V are suitably chosen eigenvectors of BrDT. Let V be any
such given matrix, and let F be a real matrix such that

(3.4) F= Fr>0 and FA=AF,

where A is d@ned by (3.1). Then all real R Rr > 0 such that RDB is symmetric
are generated by all real F in

(3.5) R VFVr,
where F satisfies (3.4).
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Proof Let R MMr. Then, since BrDrR is symmetric,

M-(BTDTR)(M )r M-1BTDTM

is a symmetric matrix whose eigenvalues are those of BTDr. There exists therefore
an orthogonal matrix H such that

HTM-BTDTMH A HHT I
whence the columns of MH are seen to be eigenvectors of BTDT. If we define
V MH, then

VVr= MHHrMr= MMr= R,

as claimed in (3.3). Conversely, for any V in (3.3), RDB is symmetric:

VVrDB VAVr= BrDrVVr.
Recalling the comment that follows (3.2), we let 1-IFI r F, whence (3.5) follows
from (3.3). Q.E.D.

Not every R--Rr> 0 that satisfies the symmetry condition (2.3) auto-
matically satisfies also the compatibility condition (2.2). For example, let

Then

B= D= R=
r12 r22_]

whence rank BD rank D and RDB is symmetric for any R. But since

001 0 00jRD 11 + r e
and BrB* RD

12 q- r22 r12 q- r22

the compatibility condition holds only if r 11 + r 12 0. Nevertheless, the following
theorem holds.

THeOReM 3.2. If the rank condition (2.4) on BD and the eigenvector condition
(2.7) hold, there exist R Rr > 0 such that both the compatibility condition (2.2)
and the symmetry condition (2.3) on RDB are satisfied, and all such R can be con-
structed by suitably choosing F in (3.5).

Proof This is shown in the Appendix, where B is first transformed to canonical
form (2.16). For a set of eigenvectors of BrDr, all F in (3.5) are found such that the
compatibility condition is satisfied.

Remark 3.1. The rule for structuring R in (3.3), or (3.5), so as to satisfy the
compatibility condition (see (A.12)-(A.15) in the Appendix) rarely need be invoked
because the compatibility condition always holds in the most common case when
rank B m (see 6). The compatibility condition also always holds if rank DB

rank D, as needed for the usual case P > 0 (see Lemmas 2.3 and 2.4). Thus,
in most cases of interest, the formula (3.5) for R provides all the requisite matrices
R of the inverse problem.
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Given a real R Rr > 0 satisfying the compatibility condition (2.2) and the
symmetry condition (2.3) on RDB, we next solve (2.1) for a real symmetric P. Let
U be any real n m matrix such that

(3.6) BrUrRD RD;

in view of (2.2), one such matrix is U B. By inspection of (3.6), -UrRD is a
solution of (2.1) for P, which, however, is not necessarily symmetric. To obtain a
symmetric solution set

(3.7) Po UrRD DrRU + UrRDBU.
Now by (3.6) and the symmetry of RDB,

BrPo -RD BrDrRU + RDBU -RD.

Further, if P is any real symmetric solution of (2.1), then

BT(P- Po) O,

whence the general solution of (2.1) for a real symmetric P is

(3.8) P -UTRD- DTRU + UTRDBU -t- Y,

where Y is any real matrix such that

(3.9) BrY 0, y yr.

In summary, we have the following theorem.
THEOREM 3.3. Let R be a real, symmetric and positive definite matrix satisfying

the compatibility condition (2.2) and the symmetry condition (2.3). Then a real
symmetric P satisfying (2.1) exists, and all such P are represented by (3.8), where U
is any real matrix satisfying (3.6) and Y is any real matrix satisfying (3.9).

Theorems 3.1, 3.2 and 3.3 provide the sufficiency part of Theorem 2.1.
Under the rank condition (2.8) on DB, additional representations of P are

available. Furthermore, by Lemma 2.4, the compatibility condition (2.2) is then
redundant. We then have the following.

THEOREM 3.4. Let R be a real, symmetric and positive definite matrix such that
RDB is symmetric. If
(3.10) rank DB rank D,

then all real symmetric P satisfying (2.1) are represented in terms of the given R by

(3.11) P DTR(RDB)tRD + Y,

where denotes the Penrose generalized inverse; in terms of the eigenvectors of
BTDT, P is given by

(3.12) P -DTVFAtVTD -t- Y,

where Y are all real matrices that satisfy (3.9), V and A are defined by (3.1), and F
is defined by (3.4).

Proof Consider (3.6) and (3.7), and let

(3.13) U (RDB)tRD.
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If DB is nonsingular, this U satisfies (3.6). Consider the case where DB is singular.
By the identity XXtX X,

(3.14) [BrDR(RDB)tR R]DB O.

We note that (3.10) implies that MDB 0 only if MD 0. Hence (3.14) gives

BVDVR(RDB)tRD RD.

Thus U given by (3.13) is seen to satisfy (3.6). Substituting U into the last term of
(3.7), we have

UTRDBU DTR(RDB)tRDB(RDB)tRD
DTR(RDB)tRD DTRU,

so. that (3.8) yields (3.11). To prove (3.12), we note that A is a diagonal matrix
with elements 1/2 if 2 -# 0, and 0 if 2 0. Thus FA AtF, and (3.12) is seen to
be symmetric. Also, (3.10) implies that all eigenvectors v of BTDT that correspond
to zero eigenvalues are such that DTv 0. Considering all such eigenvectors we
have that

DTV DTVAtA,
whence P given by (3.12) is seen to satisfy (2.1)"

BrP -BrDrVFAtVrD VAFAtVrD VFVrD RD.
Q.E.D.

The rank condition (3.10) is, by Lemma 2.3, necessary for P >__ 0 and P > 0.
Formulas (3.11) and (3.12) are therefore useful for, but by no means restricted to,
these cases. A general representation of P, equivalent to (3.8), or under the rank
condition (3.10) equivalent to (3.12), and based on transformation ofB to canonical
form (2.16), is given in the Appendix (see (A.17)-(A.19)).

Remark 3.2. We used the generalized inverse in the sense of Moore-Penrose
because it is unique and perhaps best known of the various pseudoinverses.
However, of the identities

XX*X X, XtXX* X*, (XXt)r= XX*, (XtX)r= XtX,
defining the Penrose inverse, we need only the first two. We may define X # by
XX#X X and X#XX#= X#, a pseudoinverse that is no longer unique.
Let (RDB)# be

(3.15) (RDB)# (VFAVV)# a--4 Vv-’A#F 1V-1;
this is a symmetric matrix that satisfies the two identities for #. Then, replacing
in (3.11) by #, using (3.15), and A # A and AtF FAt, (3.11) reduces to (3.12).
We remark that in passing from one general representation for P to another, the
matrix Y in the second representation, while still satisfying BVY 0, may not be
the same as in the first representation.

Since the symmetry ofRDB and the compatibility condition (2.2) are necessary,
R given by Theorems 3.1 and 3.2 is the general, real, symmetric, positive definite
solution of (2.1). Given R, Theorem 3.3 provides the general, real, symmetric
solution P. We thus have all solutions R RV> 0 and P pv of (2.1); in
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the next section we obtain all such solutions where in addition P is nonnegative
definite and positive definite.

4. Conditions for P > 0 and for P > 0. In view of (1.6), conditions for
P >= 0 (for P > 0) are necessary and sufficient for I, to be nonnegative (positive)
for all Xo and all to < l. They are important also for the solution of the inverse
problem with positiveness conditions on Q in (1.3), as will be discussed in the
sequel to this paper.

Recalling Lemma 2.3, we use the representations (3.11) and (3.12) for P, and
seek conditions on Yfor P to be nonnegative definite and positive definite. We have
the following theorem.

THEOREM 4.1. A real symmetric P given by (3.11) or (3.12) satisfies (2.1) with
R RT > 0 and is nonnegative definite if and only if the following conditions hold"

(4.1) rank DB rank D,

the eigenvalues 2 ofDB (which by (2.7) must be real) are nonpositive"

(4.2) 2i=<0, i= 1,2,...,m,

and in (3.11) and (3.12),

(4.3) y yT 0;

P is positive definite if and only if
(4.4) rank DB rank D rank B,

(4.2) holds, and Y is of the form
(4.5) Y WWT,
where W has n rl linearly independent columns (r/ rank B) and

(4.6) BTW 0.

Proof The necessity of (4.1), (4.2) and (4.4) is established in Lemma 2.3 and
we now show the necessity of the conditions on Y. Consider formula (3.11) for
P. Let

(4.7) x (I B(RDB)*RD)rl,
where r/is any nonzero vector. Then

xTpx --rlT(I DTR(RDB)*BT)DTR(RDB)*RD(I B(RDB)*RD),?
(4.8)

+r/TYr/ r/TYr/,
whence (4.3) is seen to be necessary. To prove the necessity of (4.5), assume that
the columns of Wdo not span B+/-, the (n rn)-dimensional orthogonal complement
of the range space of B. There is then a nonzero r/in B- such that ry/= 0, and x
given by (4.7) is nonzero (being the sum of a vector in B- and a vector in the range
space of B). Then (4.8) shows that xTPx O, X O, proving the necessity of (4.5).
To establish sufficiency, we first note that as in the proof of Lemma 2.3, (4.2)
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implies that RDB <= 0; whence (RDB)t<= 0 (since RDB is symmetric, RDB
HfHr, HHr I, and (RDB) Hf*Hr, where f diag (coi) and o9i are eigen-

values of RDB). Thus the first term in (3.11) is nonnegative and P _>_ 0 under (4.3).
For the case P > 0, let x q + Bp, where r/is in the orthogonal complement B1

of the range space of B. Then
xTpx xTDTR(RDB)tRDx 4- TwwTq,

where the first term is nonnegative and the second is, under (4.5), positive for all
nonzero r/. Thus xTpx > 0 for t? 0. If r/ 0, then x Bp, and for x Bp :/: 0
we have

XTPX 0TBTDTR(RDB)*RDBp pTRDBp.
Since -RDB is nonnegative, -RDB zTz for some real Z and then DBp

-R-ZTZD. But since Bp =/: O, then under (4.4), DBp : 0 and zTzp =/= O.
Thus xTpx -pTRDBp pTzTzp > O. Hence P > 0. For the representation
(3.12) of P we can proceed in a similar manner, or simply note that (3.12) follows
from (3.11) if we replace the Penrose inverse by the pseudoinverse # defined in
Remark 3.2. Q.E.D.

Theorem 4.1 together with the theorems of 3 establish the sufficiency part
of Theorem 2.2. The equivalent of Theorem 4.1, for a partitioned P that results
when B is in canonical form (2.16), is given in the Appendix (see (A.21)-(A.25)).

Since (3.10) is necessary for P >_ 0, it is clear that (3.11) or (3.12), together with
the conditions (4.3) and (4.5) on Y, are the general, real, symmetric solutions P _>_ 0
and P > 0 of (2.1). We thus have all the desired solutions R and P of (2.1), needed
for solving the inverse problem.

5. The inverse problem. If matrices B and D of (1. l), (1.2) satisfy the condi-
tions of Theorem 2.1, we can construct an R RT > 0 as in Theorems 3.1 and
3.2, and a P pT as in Theorem 3.3, so that (1.4)is satisfied. To construct a bounded
Q from (1.10) we require that P be differentiable. We therefore make the following
assumption.

ASSUMPTION 5.1. In (1.1), (1.2), B(t) and D(t) are differentiable on [to, t] and
are of constant rank.

The latter part prevents an apparent discontinuity in P due to a change in the
rank of Y WWT, mandated by Theorem 4.1 for P > 0, at the instant B changes
rank. However, since the direct problem does not require Assumption 5.1, and
our representations for P are general, it is clear that the assumption is for con-
venience only.

We now show that a performance index (1.3) with the weighting matrices
R, Q and F P(tl) constructed in 3 and 4 is minimized by the control (1.2).

LEMMA 5.1. Consider a closed-loop linear system (1.1), (1.2). Let R > O, Q, P,
and F P(tl) be arbitrary uniformly bounded symmetric matrices satisfying (1.4)
and the Riccati equation (1.5). Then the performance index (1.3) attains its absolute
minimum I, given by (1.6), over all square-integrable controls, for all Xo and all

to < <__ c. The optimal control is uniquely given by (1.2).
Proof Substituting (1.4) into (1.5) we have

(5.1) --P PA + ATp- DTRD + Q.
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Multiplying both sides by x and using Ax 2 Bu, we have

(5.2)
dt

---(xrPx) -(u- Dx)rR(u- Dx) + xrQx + urRu.

By integrating (5.2), setting P(tl) F, and multiplying by 1/2, we have

w lttl-xoP(to)Xo +- (u- Ox)rR(u- Ox)dt

lx(tl)TFX(tl + (xTQx + urRu)dt

The right side of (5.3) is the performance index I of (1.3). Since R > 0, the integral
on the left side is nonnegative. Thus I attains its absolute minimum if and only if
u Dx, as stated. Q.E.D.

When oo in (1.3), the lemma is valid even if the closed-loop system
(1.1), (1.2) is not asymptotically stable, since the integral on the left side of (5.3)
must approach + oo if it is not finite. The time-invariant case, however, must be
treated distinctly. We then arrive at (5.3) by starting with the constant quadratic
matrix equation (1.9) rather than with the matrix Riccati equation (1.5), and since
the performance index (1.7) does not have the terminal term 1/2xr(tl)FX(t), (5.3) is,
for u Dx, replaced by

1/2xT(O)P(O)x(O) 1/2xT()P()X() I.

The term 1/2xT()P()x() can be positive and finite, raising the possibility,
pointed out to us by B. P. Molinari, of an optimal control law that is unstable.
Thus, to draw conclusions from (5.3), we restrict consideration to stabilizing
controls, i.e., such that x(tx) 0 as t - . We have the following lemma.

LEMMA 5.2. Consider a time-invariant asymptotically stable system (1.1), (1.2),
and symmetric constant matrices R > O, P, and Q satisfying (1.4) and the quadratic
matrix equation (1.9). Then the performance index (1.7) attains its absolute minimum
over all square-integrable stabilizing controlsfor all Xo, (1.2) is the unique minimizing
control, and P is the unique asymptotically stable equilibrium point of the Riccati
equation (1.8).

Proof Only the last assertion remains to be proved. To prove it, we shift
the origin of the Riccati equation (1.8) to P by considering

(5.4) P(t) P(t)- P.
We find that

(5.5)

where

(5.6) A A + BD.

Since Re {2} < 0 for any eigenvalue 2 of A, we have

(5.7) Re {2 + 2j} < 0, all i,j.

PAc + Arcp PBR-1Brp,
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By (5.7), the linear part of (5.5) is asymptotically stable and hence, by Lyapunov’s
first method, P 0 is a locally asymptotically stable equilibrium point of (5.5);
the same holds for P(R) with respect to the Riccati equation (1.8). It remains to show
that P is the only asymptotically stable equilibrium point of (1.8). First we
rewrite (1.9) as

(5.8) PA + Ae -OO- 2.
For given A, B, D, R and Q, this is a linear matrix equation in P, and it has a unique
solution P because by (5.7), 2i + 2j :- 0 for all i, j. Thus any other solution of
(1.9), say P, must yield D"

D’ R-1 TB Poo # D -R-IBTp.
Now suppose P is an asymptotically stable equilibrium point of (1.8). Then, by
reversing the previous arguments,

A’ A + BD’

is asymptotically stable, and u D’x provides the minimizing control for. 1.
Hence

T 1. TntI, -xoPxo -orXo, all Xo,

whence P P and D’ D.
Remark 5.1. Lemma 5.2 extends, to the case where Q is not necessarily non-

negative definite, the well-known facts (for Q >= 0) (i) that there is a one-to-one
relation between the stability of the Riccati equation and that of the corresponding
closed-loop optimal system, and (ii) that the Riccati equation (1.8) has at most one
asymptotically stable equilibrium point. In contrast with the case Q _>_ 0, however,
the equilibrium point P may not be positive definite and its domain of attraction
is not generally known. See also recent results in [6] and [7].

We now have all the elements needed for solution of the inverse problem.
Theorems 2.1, 2.2, 3.1, 3.2, 3.4, 3.5 and 4.1, and Lemmas 5.1 and 5.2, together imply
the next theorem.

THEOREM 5.1. Consider a closed-loop linear system (1.1), (1.2) satisfying
Assumption 5.1. It is possible to construct a performance index (1.3) with

(5.9) F FT, Q QT, R RT > O,

that attains its absolute minimum I, over all square-integrable controls, for all Xo
and all to < <_ , if and only iffor all t, to <= <= the following conditions hold:

(5.10) DB has m linearly independent real eigenvectors

and

(5.11) rank BD rank D.

The minimal value I, can be negative. An index (1.3) such that I, >= O for all Xo and
all to < tx <_ can be constructed if and only if in addition to (5.10), for all t,

to<=t<tl:
(5.12) all eigenvalues ofDB are nonpositive,
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and (5.11) is strengthened to

(5.13) rank DB rank D.

An index (1.3), such that I, > 0 for all xo and all o < <= oo, can be constructed
ifand only if, in addition to (5.10)and (5.12), the rank condition (5.13)is strengthened to

(5.14) rank DB rank D rank B.

If the system (1.1), (1.2) is constant and asymptotically stable, then it is possible to
construct a performance index (1.7) with constant symmetric Q and R > O, that
attains its absolute minimum I, over all square-integrable stabilizing controls, for
all Xo, ifand only if the above conditions hold. All performance indices corresponding
to these conditions can be constructed by the generalformulas of 3.

We observe that all conditions for the inverse problem are on the system
matrices B and D, while A is arbitrary (aside from stability in the constant case).
This is so because the inverse problem obviates the stability and existence problems
of the direct problem. Conditions on A, as well as on B and D emerge when
Q __> 0 is desired (see [1, [2], and the sequel to this paper); the conditions on B,
D, BD, and DB discovered here remain of course necessary properties of a linear
optimal system.

6. Consequences of B having full rank. Normally the n x m system matrix B
has full rank and m < n; in particular, this is so in a single-input system. It is
therefore of interest to record the resulting simplifications in our previous results.

Case 1. rank B m, m < n. We observe that the rank condition (5.11) always
holds, because by Sylvester’s inequality,

rank BD >_ rank B + rank D m rank D,
which implies (5.11). Further, the compatibility condition (2.2), which somewhat
complicates the construction of R (see Theorem 3.2 and Remark 3.1), is always
satisfied because now a B such that BrB*= I always exists (e.g., B*= B

(BTB) 1BT).
If DB is nonsingular, then formula (3.11) for P reduces to

(6.1) P --DT(BTDT)-IRD + Y,

the rank conditions (5.13) and (5.14) always hold, and the eigenvalue condition
(5.12) becomes simply

(6.2) DB < O.

Case 2. rank B m 1. Here R reduces to a scalar r > 0, B to a column
vector b, and D to a row vector dr. All the conditions of Lemma 2.1 are now
satisfied and P can always be represented by (3.8), where now U is a row vector, say,
U b br/brb. In particular, if b is in canonical form, then since

d2 0 0

we find that (3.8) becomes

p= Vll -rdl(6.3) -rd -rd2J
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For any b, rank DB rank D reduces to

(6.4) dTb 4= 0;

then (6.1) becomes

(6.5)

and (6.2) reduces to

P -(r/drb)ddr + Y,

(6.6) drb < O.

Since r can be any positive scalar and P can always be constructed as in (3.8)
or (6.3), we have a corollary.

COROLLARY 6.1. Every single-input linear feedback system (1.1), (1.2), such
that Assumption 5.1 holds, minimizes a performance index of the type (1.3). A
performance index (1.3) such that I, > 0 for all Xo and all to < exists ifand only
iffor all t, to <= <= l, drb < 0 holds.

Case 3. rank B m n. The case where B is nonsingular is rather trivial:
P is simply -Br-’RD and rank conditions (2.4) and (2.8) are automatically
satisfied.

The case of m > n is unusual, but will be discussed for completeness.
Case 4. rank B n < m. In contrast with the case of m < n, the compatibility

condition is not automatically satisfied, nor is the rank condition (5.11). However,
(5.11) is implied by the symmetry condition

RDB BrDrR

because, since BBT is now nonsingular, it yields

(BBr) 1BRDBD DrRD

whence, by (2.6),

rank BD >= rank (BBT) 1BRDBD rank DTRD rank D,

which implies (5.11). Also in contrast with the case m < n, the rank condition
(5.13) is now automatically satisfied as can be verified by Sylvester’s inequality.
Finally, (2.1) is now readily solvable for P, yielding

(6.7) P -(BBT)-1BRD,

which by postmultiplying by BBT(BBr) is seen to be symmetric under the sym-
metry of RDB,

P -(BBT)-BRD (BBT) ’B(RDB)BT(BBT) 1.

Appendix" Proof of Theorem 3.2. We first reduce B to canonical form by
means of an equivalence transformation

(A.1) B NBM
It,

where N and M are suitable nonsingular matrices and r is the rank of B. If we
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define

(A.2) / MWRM, P (N- 1)wpN- M-IDN-

we find that (2.1)-(2.7) remain valid in terms of the new matrices. We may therefore
assume with no loss of generality that B is initially in canonical form.

According to the hypotheses of Theorem 3.2, the rank condition (2.4) and
the eigenvector condition (2.7) hold. We have

D21 D2 D21 D22
whence rank BD rank D requires

(A.3) D-- [KD21 KD22-]
D21 D22 _]

for some matrix K. Now

I,, zKw D2A D2KT D’I2
Thus the eigenvector equation BWDWv 2v has m rB solutions

v= 2=0KTv

where the rn- rn vectors v are any set of linearly independent real (m
vectors. The remaining rn solutions are

U2

where the v are eigenvectors of D, and by the eigenvector condition (2.7) they
are real and linearly independent. Thus in (3.1),

(A.4) V _KrV V A
where V is any nonsingular real matrix, and Va, which is given by

(A.5) D2 V22 V2212,

is nonsingular and real. By Theorem 3.1, all R given by

(A.6) R=
_KTV11 V22 LFI 1-’22_] V2

satisfy the symmetry condition on RDB and we only have to satisfy the com-
patibility condition (2.2) by choice of F. Expanding (A.6) gives

Rll-- V11r11viTl, R12-- -RllK-+- Vlll12V"2,
(A.V)

R22 KTRllK + V22r22V2 V22Ff2V11K- KTV11F12V2
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Letting B be the m x n matrix:

B I 00
and using (A.3), (2.2) yields the conditions

(A.8) (RllK -t- R12)D21 0, (RllK nt- R12)D22 0.

From the expression for R12 in (A.7), RIK + R12 VllF12V2, and (A.8)
becomes

(a.9) V11FzV2D21 O, VF12VzDz2 O.

In view of (A.5) and the nonsingularity of V11 and V22, these conditions reduce to

F12V2D21 0

and (3.9) yields

A.O)

and

(A.11) F12A2 0,

both of which are satisfied by the choice F12 0.
Thus, all R Rr > 0 such that both the symmetry and compatibility conditions

hold, are given by all F in (A.6) such that F Fr > 0, FA AF and F2 satisfies
(A.10) and (A.11). One such F12 is 1-’12 0 which is also necessary when D22 (or
equivalently A2) is nonsingular.

This proves Theorem 3.2. The rule for F can be broken down further:
F22 is any real rB x rB matrix such that

(A.12) F22 F2 > 0, FzzA2 AzFz2;

F2 FZrl is any real (m rn) x rn matrix such that

(A.13) FlzV’zD21 0, FlzA2 0;

FI is any real (m r) x (m rn)matrix such that

(A.14) Vii-- F1T1 > F12F-)F?2
Analysis of (A.13) shows that

(A.15) rank F12 rank B rank D.

We conclude this Appendix by deriving a general formula for P when B is in
canonical form (A.1). Using B given by (A.1), D given by (A.3), and U B*,
(3.7) yields

0 DI(KTR12 + R22)-
(A.16) Po (R2K + R22)D21 (RT2K + R22)D22 _]’
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where Ylx is any real symmetric matrix. From the expression for R12 in (A.7),

K -R-(Rx2 + R-( VxlFlzV[z.

Postmultiplying K by D21 and D22, and using (A.9) gives

KD21 R-(R 2D2
Thus (A.16) becomes

[ o

By defining Ro as

(A.a

KD22 R-(11R12D22"

Dx(R22- R2R-Rx2)-]
(R22 R2R-11Rx2)D22_J

T -1Ro R22 R12R11 R12,

the general solution P Po + Y, with Y given by (A.17), is

(A.19) p=[ Pll -DIRo
-ROD21 -RoD22J

where Pll is any real symmetric matrix. The term -ROD22 in (A.19) is symmetric
(as expected), because we find that

(1.20) Ro Vzz(rz2- Fr2Fi-11Fl)V,

whence, using (A.13), we have

The conditions for P >= 0 and P > 0 can be obtained in terms of the par-
titioned blocks of P, from Theorem 4.1 or directly from (A.19) by the results in [5].
Corresponding to conditions (4.1), (4.2) and (4.3), we find that P given by (A.19)
is nonnegative definite if and only if

(A.21)

(A.22)

and

rank [D2x 0221 rank D22

all eigenvalues of 022 are nonpositive,

21RoD22021,(A.23) P11 > DT

where Dz is any matrix such that DzzDD2z D22 and DzD2zD2 D2.
For P > 0 it is necessary and sufficient that:

(A.24) all eigenvalues of D22 are negative,

and

(A.25) Pxx > DflRoD;Dzl.
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OPEN-LOOP APPROXIMATION OF DIFFERENTIAL GAMES*

RONALD J. STERN’f

Abstract. A linear differential game of fixed duration where the players are restricted to compact
control sets is approximated in value by a game in which the players may choose any square-integrable
functions as admissible controls. This is done by appending penalty terms to the payoff. The general
approximation result leads to a computational method of estimating the value of a certain class of
games in which the approximating games have open-loop solutions.

1. Introduction. The approach to differential game theory employed in this
paper is that of A. Friedman [2]. The purpose is to give a procedure for computing
the value of a certain class of linear differential games of fixed duration.

Consider the following system of differential equations:

(1.1) 2 A(t)x(t) + B(t)y(t) + C(t)z(t), to <= <= To,
with initial condition

(1.2) X(to) Xo

Here y(t), which is the control of the player y, is a measurable function valued
almost everywhere in Y, a given compact subset of the Euclidean space RS. Similarly,
z(t), the control of the player z, is a measurable function valued almost everywhere
in Z, a given compact subset of the Euclidean space Rq.

We shall require the following assumptions on the dynamics (1.1), (1.2):
(D) A(t), B(t) and C(t) are continuous rn x m, rn x s and rn x q matrices,

respectively, on the real line.
Condition (D) implies that the system (1.1), (1.2) has a unique solution for

each pair of controls (y(t), z(t)).
The following payoff is now introduced:

T
P(y, z) lx(Y0)2 + p(t)lx(t) (t)l 2 c/t

T tTly(t)l 2 dt / Iz(t)l 2 dr.

The goal of y is to maximize P(y, z), whereas z tries to minimize it. The following
assumptions are made regarding the payoff:

(P) p(t) e C’I(R1) and (t) e c’m(R1).
Conditions (D) and (P) imply P(y, z) is well-defined for each pair (y y(t),

z (t)).
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The differential game associated with (1.1), (1.2) and (1.3) is denoted by
G(0, 0). If (D) and (P) hold, then it is known [2] that G(0, 0) has value, which is
denoted by V(0, 0).

Let p(m, M) denote the Euclidean distance of a point m Rp to a subset M
of Rp. Let e and be positive real numbers, and introduce the following payoff
functional:

(1.4) P,(y z) P(y z) 1"r 17"p2p2(y(t), Y) dt + (z(t),Z)dt.
E

Consider the differential game associated with (1.1), (1.2) and (1.4), where the
players are no longer restricted to compact control sets but may choose any square-
integrable functions as admissible controls. This game is denoted G(, ). Let
V6(e, ) denote the upper 6-value of G(, ) as defined in [2]. In 2 it is proven that
V6(e,) V6(0, 0) as e---, 0, ---, 0, at a rate uniform in 6, where V6(0, 0) is the
upper 6-value of G(0, 0). Thus V6(, ) provides an estimate of V(0, 0) for small, and 6. This approximation result extends to differential games with more
general payoffs than (1.3), as is indicated.

In 3 we take Y and Z to be unit balls. Instead of (1.4) we use the following
payoff in the approximating game:

T

ft
To

P(y, z) P(y, z) [y(t)[ 2t dt + [z(t)[ 2k dr,

where k is a positive integer. The differential game associated with (1.1), (1.2) and
(1.5), where the players are free to choose any square-integrable control functions,
is denoted by Gk. The upper 6-value of Gk is denoted by V. We prove that
V ---, V6(0, 0) as k - v at a rate uniform in 6, by extending the result of 2.

In 4 we prove that G has a unique open-loop solution for each k. In 5 a
computational procedure is given for estimating the value of G, which in turn is
an estimate of V(0, 0), for large k.

2. The general approximation theorem. We shall require the following lemma.
LEMMA 2.1. Let (D) and (P) hold. Then there is a positive constant rl such that

To to <= rl implies all of the following:
(i) supyL2,.,tto,ro) P(Y, z) exists for each z L2’q(to, To);
(ii) infz2,to, yo P(y, z) exists.for each y L2’(to, To);
(iii) there exists an N > 0 such that P(y, z) < N for every y L2’(to, To) and

measurable z valued almost everywhere in Z;
(iv) P(y, z) > -N for every z L2’q(to, To) and measurable y valued almost

everywhere in Y.
The proof of Lemma 2.1 is a computation which makes use of the form of

the solutions to (1.1), (1.2) (see 11 and 21), and repeated applications of H61der’s
inequality.

In I2] Friedman defines the concept of a i-game both for the case of compact
control sets, and also for square-integrable function space control sets. Here
6 (TO to)/n, where n is a positive integer. Due to Lemma 2.1, an important
property of 6-games of the former type generalizes to the latter; namely,

(2.1) V%, ) inf su P (Aa, Fa) su
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Here Aa denotes a lower f-strategy for the player z, and F denotes an upper
f-strategy for y, as defined in [2]. The outcome of a pair (Ab, F6) is denoted (yb, zb),
and the resultant path is denoted xa.

Consider the following payoff:

(2.2) P,o(Y, z) P(y, z) t’|r p(y(t), )at.
" Jto

G(e, 0) denotes the differential game associated with (1.1), (1.2) and (2.2). An
admissible control for y is as in G(e, ), but z remains restricted to Z as in G(0, 0).
A result similar to (2.1) also holds for G(e, 0).

Lemma 2.1 and (2.1) yield the following fact.
LEMMA 2.2. Let TO -to < rl and assume (D) and (P) hold. Then for every

> 0, > O and each f we have

(2.3) -N < Va(e, ) =< Va(e, 0) < N,

where Va(e, O) denotes the upper b-value of G(e, O) and N is as in Lemma 2.1.
We now shall define certain classes of b-strategies. Let R be a nonnegative

real number.
Cy(R) is the class of upper b-strategies F for y such that if A is any lower

b-strategy for z then the y-outcome of the pair (A, F) satisfies

Y) dt <=p2(ya(t) R.

Note that the y-outcomes of members of Cy(0) are measurable functions valued
almost everywhere in Y

Analogously to Cay(R), we define Ca(R) as the class of lower 6-strategies Aa for
z such that if F is any upper b-strategy for y then the z-outcome of (A, Fa) satisfies

Wo
P2(za(t), dt R.Z)

We shall require the following two lemmas.
LEMMA 2.3. Let To to < rl and assume (D) and (P) hold. Then for each e > 0

and each the following holds:

(2.4) V(e, 0) sup inf P,o(Ao, F).
FbC(2N) AbC(0)

LZMMA 2.4. Let To- to <= tl and assume (D) and (P) hold. There exists a
positive constant M such thatfor each > O, (0, 1 and each 6 thefollowing holds:

(2.5) inf sup P(Aa, Fa) inf sup P(Aa, Fa).
A6 F6eC6y(2Ne) A6eC5(Me,) F6eC6y(2NI3)

Proof of Lemma 2.3. Let 7 > 0 be given, and let Po be such that

Va(e,0)__< inf P,o(Ao, F)+7.
A6eC(O)

Lemma 2.1 implies that if 7 is sufficiently small the y-outcomes of (Aa, pa) satisfy

(2.6)
To

p207a(t), Y) dt < 2Ng.
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Now ffa will be modified into a member of Cr6(2Ne), which we shall denote by
f’a. Let z L2’q(to, To). Denote the y-outcome of (z, if6) as ff6(z). Suppose there is
a (to, To) such that

p2(6(z), dt 2Ns.Y)

Then define f’6(z)= 6(z) for o t , and let t6(z) be any point in Y for
< To. Upon varying z over the space L2’(to, To), we see that 6 is indeed a

member of C6(2N). Furthermore, the y-outcome of (6, 6) coincides with the
y-outcome of (6, if6) for each 6 C(0). This proves (2.4), since 7 was arbitrary.

Proof of Lemma 2.4. Let Q sup {]y]’y Y). All y-outcomes of pairs
(6, F6) where F C(2N) satisfy

(2.7) lye(012 dt 2N + Q2(To to)+ 2Q(2N)1/2(To to) /2.

Similarly to Lemma 2.1 we have a W > 0 such that

(2.8) -W < inf P(y, z) for every y 6 L2’(to, To)
z6L2,q(to,To)

such that (2.7) holds.
Given 7 > 0 sufficiently small there exists A such that

(2.9) sup P,(6, F6)inf sup P(A6, F6)+7<N.
U6C(2Ne) A6 U66C(2Ne)

The remainder of the proof resembles the proof of Lemma 2.3. We can take
M=3N+

From Lemma 2.4 and (2.1) we obtain the following inequality"

(2.10) inf sup
A6C(M) F6C(2N)

provided To to . (Note that the z-outcomes here are not necessarily valued
in Z almost everywhere. Nevertheless, P,o by its definition implies that z receives
no penalty for leaving Z.)

We can now prove the following lemma.
LEMMA 2.5. Let To to and assume (D) a (P) hold. Then there is a

positive constant F such that for each

(2. ) (, ) (, 0)

Proofi By Lemma 2.3 and (2.10) it follows that it suces to prove

(2.12) inf sup P o(A6, F6) > sup inf P o(A6, F6) F/2

A6C(M) F6eC(2Ne) F6eC(2Ne) A6eC(O)

Let p be any point in R. Let Z(p) denote the subset of Z such that

p(p, Z) p(p, Z(p)).

We now shall define a lexicographic ordering on R. We say

if either I < U l, or fil u l,-.., fis- us-1, ls < Us for some s 2, ..., q.
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Via this ordering it follows that there is a unique point/3 e Z(p) such that/3 << w
for all w Z(p). Thus we have defined a single-valued map "" from R onto Z,
taking p into/3.

A slight modification in the proof of Fillipov’s lemma [2] yields the following
result.

LEMMA 2.6. Let z(t) be any measurable function on [to, To] valued in Rq. Then
(t) is also measurable.

We are now in the position to define a certain mapping L from the space of
lower f-strategies for z onto C(0). Let Y (Y l, Y2,"’, Yn)be any member of
Lz’S(to, To) and let Aa be any lower f-strategy for z. L(Aa) z is defined as follows:

A,I 1, where z

Aa,2(l, Yl) 2, where z2

Af,j(I Yl, 2, Y2, j-
where zj A,j(z Yl, z2, Y2, Zj_ 1, Yj-1), 2 < j __< n, and

& I&,,&,, ...,
Let Ao be any lower 6-strategy for z, and y any control for player y. Denote

the z-outcome of (Ao, y) by za, and denote the z-outcome of (Ao, y) by A(y). By the
way in which Aa is defined we have that

&(y).

Let ?, > 0 be given. There exists Ao e C](M) such that

(2.13) sup P.,o(a, F) N inf sup
FdC.dv(2N) AdC,](M) F6C.6,(2N)

and there exists P e Cr(2Ne) such that

P,o(Ao, F) + 7,

(2.14) inf P,o(Aa, Po) > sup inf P,o(Aa, Fa) 7.
A6eC(0) FdeCy6{2 N) A6eC(0)

In view of (2.12)-(2.14) and the arbitrariness of 7, the proof of Lemma 2.5
will be completed if we can show that

(2.15) P,o(, Po(o)) => P,o(, Pa) F1/2.

Here A L(Ao), and F (Ao) denotes the y-outcome of the pair (,
Let us denote the outcome of (A, Fa(A)) by (,)7), and the outcome of

(, P) by (}, ). The corresponding trajectories for these pairs will be denoted.
by 2a and } respectively. Thus (2.15) will hold if a constant F can be found such
that

(2.16) II(To)l = -I(To)l= g1/2,

(2.17)

and

To To
p(t)12a(t) 2(012 dt p(t)lc6(t) 2(012 dt __< F1/2

(2.18)
To To16(t)l 2 dt 16(t)l 2 dt
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Let X(e, ) denote the space of trajectories generated by pairs (A, F6) as A6
varies in C(M) and F varies in C(2Ne). If e and are both in (0, 1, then one can
show that X(e, ) has a uniform bound in the sense of cO’re[to, To. Relations (2.16)
and (2.17) follow from this fact and from the following"

(2.19) ro p(a(t),Z)dt < (M{)/e(To to) 1/2

Relation (2.18) follows from (2.19) alone. This completes the proof.
LEMMA 2.7. Let TO o <= r and assume (D) and (P) hold. Then there is a

constant H such that for each (TO to)In and (0, 13 we have

(2.20) V(e, 0) V(0, 0)l He. 1/2.

Proof The proof is quite similar to the proof of Lemma 2.5. Details will not
be given. Here one verifies that

(2.21) sup inf P(Aa, Fa) =< inf sup P(Aa, -’a) q- He,/2
F6C6y(2N) A6C(0) A6C(0) F6C(O)

in a fashion similar to the proof of (2.12).
We can now state the following general approximation theorem.
THEOREM 2.1. Let To to < rl and assume (D) and (P) hold. Then there is a

positive constant D such that for each 6 and each e 6 (0, 1], (0, 1] the following
holds:

(2.22) Vf(g, )- V(0, 0)l D(g1/2 -I- 1/2
__

5).

Proof From Friedman’s proof of existence of value for games like G(0, 0) it
follows that for a positive constant C we have V(0, 0) V(0, 0)1 _-< Cc5. Lemmas
2.5 and 2.7 then give (2.22).

Remark 1. In G(e, ) replace p by any function q which is 0 on the control sets
Y and Z but which dominates cp everywhere, c > 0. It follows that Theorem 2.1
generalizes to this case provided that q is measurable.

Remark 2. Consider the payoff

(2.23) P(y, z) g(x(To)) + h(t, x, y, z)dt,

where h is continuous on [to, To] R Y Z and g is continuous on Rm. The
general approximation theorem can be extended to the case where the payoff for
G(0, 0) is given by (2.23) and the dynamics are given by (1.1), (1.2) provided the
following assumptions hold:

(i) g is uniformly Lipschitz continuous on compact subsets of Rm;
(ii) for any compact subset X of R the function h is uniformly Lipschitz

continuous in x on [to, To] x X R2

(iii) for any compact subset X of R the function h is uniformly Lipschitz
continuous in y(z)on [to, To] X x R x Z ([to, To] X x Y Rq);

(iv) for each y e Li’*(to, To) and z e Le’(to, To) the numbers inf z,,.(,o,ro)P(Y, z)
and supr,..o,ro) P(y, z) are finite.
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3. Polynomial penalty functions. In this section we shall specialize the control
sets Y and Z, and use an approximating game different from G(e, ), namely
which was introduced in 1.

The control sets for G(0, 0) are now given by

Y-- (yRS’lYl < 1}, Z--- (zRq’lzl <= 1}.
THEORZM 3.1. Let TO o <= r and let (D) and (P) hold. Then there is a positive

constant D such that for each c5 and each positive integer k the following holds"

(3.1) V- V(0, 0)1 =< ( k-/2 / k-1/2 nt_ ().

Proof Define the following sets"

Y {y RSlYl <= k-,/2}, z {z Ra.lzl =< k-1/2k}.
Let Gk(0, 0) denote the differential game associated with (1.1)-(1.3), where y

and z choose controls valued almost everywhere in Y and Zk respectively.
Vk(0, 0) and V(0, 0) denote the upper 5-value and value of Gk(0, 0) respectively.

Now define the following functions"

0
b(y)

lyla

f
Define the following payoff functional"

(3.2) P4,,q,(Y, z) P(y, z) Wo

if [Yl k- 1/2k,
otherwise,

if zl k- 1/2k,
otherwise.

T
4)k(y(t)) dt + k(z(t)) dt.

The differential game associated with (1.1), (1.2), (3.2) where both players choose
their controls from square-integrable function spaces is denoted by G(;bk, 0k). Its
upper f-value is denoted by V6(bk, 0k). Even though the integrand of (3.2) is not
continuous in the controls, a result similar to (2.1) holds for this game also, since
all the results on 6-games in [2] extend to this case.

Define another payoff:
T

(3.3) P+,o(Y, z) P(y, z) dpk(y(t)) dt.

The differential game associated with (1.1), (1.2), (3.3) where y chooses square-
integrable controls but z chooses controls valued almost everywhere in Z is
denoted by G(q5k, 0). Its upper f-value is denoted V6(bk, 0). A result analogous to
(2.1) holds also for this game. Similar to Lemma 2.2 we have, for each positive
integer k, the following:

(3.4) -N < Va(bk, k) =< V(qSk, 0)< N.

Theorem 3.1 will be proven upon verification of the following three in-
equalities"

V(bk, ffk)-- V(0,0)I -<_fi(k-1/2 +6) for some D>0,
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(3.6)
2(To to)

v(, ) Vl <
k

(3.7) Va(0,0)- V(0,0)I <-S(1-k-1/2k) for some S>0.

Relation (3.5) follows from the fact that kl/2p(y, Y) < dpk(y) and k/2p(z, Zk)
=< p(z) for all y Rs, z R and Remark of 2.

Relation (3.6) follows easily from the fact that for each y LZ’S(to, To) and
z LZ’q(to, To)we have IPk,(y, z)- P(y, z)l < 2(To to)/k.

We prove (3.7) as follows" To each pair of controls (y(t), z(t)) in G(0, 0) we
uniquely correspond a pair of controls for G(0, 0), namely, (k /2ky(t), k /2kz(t)).
A constant S can be computed such that IP(y,z)-P(k-X/2Uy, k-I/2Uz)]
=< S(1 k- /2). Using arguments in [2] (where continuity of the value for games
of fixed duration is proven) we have that (3.7) holds. This completes the proof of
Theorem 3.1.

4. Open-loop solution of Gk. We shall require the following theorem, adapted
from [2].

THEOREM 4.1. Suppose y L2’S(to To) and L2’q(to, To) satisfy

(4.1) P(y, ) _-< P(Y, ) _-< PG, z)

for any y L2’S(to, To) and z L2’O(to, To). Then G has value V and

(4.2) V P(.k, ).

The pair (, ) is referred to as an open-loop solution of G.
In [2] a variational method is given for computing the (unique) open-loop

solution to Go. We now shall extend the method to Gk, k a positive integer.
A sufficient condition for (, 5) to be an open-loop solution of G is that the

following four conditions hold"

(4.3)

(4.4)

(4.5)

(4.6)

d

d?
d

d7
P(k, z)

--P(Y + 7w, )1=o 0 for all w L2’S(to, To)

--P(y,, 5, + ?v)[= o 0 for all v e L2’q(to, To)

is a convex functional on L2’q(to, To) which is bounded below,

P(y, ) is a concave functional on L2’S(to, To) which is bounded above.

The fact that (4.3)-(4.6) constitute a set of sufficient conditions is due to
well-known theorems on global optima.

Conditions (4.3) and (4.4) yield the following system of integral equations"

(4.7)
2y(t) + 2klY(t)l 2k- 2;(t) B*(t)S*(To, t)Yk(To)

+ p(z)B*(t)S*(t, "c)[ff(r) 2(’c)] dr,

2(t) + 2kl(t)12-2(t)= C*(t)S*(To, t)(To)
(4.8)

p(z)C*(t)S*(t, r)[ff,(r) 2(r)] dr,

where (t) is the solution to (1.1)-(1.2).
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We now define a certain map of R into itself:

(4.9) #k(y 2y + 2k[ y[ 2k- 2y.

A map of R into itself is similarly given by

(4.10) (z) 2z + 2klz12-Zz.
Notice that the maps given by (4.9) and (4.10) have continuous inverses. The

inverse of is given by

W
o-l(w =2 + 2k[r,(lwl)] 2-2’

where ra(lwl) is the unique real root of the polynomial 2kx2’- + 2x -[w[ 0.
Similarly, the inverse of is given by

V
-(v) =2 + 2k[ru(lwl)z-2"

Using the fact that and k have inverses, we can rewrite the system
(4.7)-(4,8) as follows"

(4.11) (0’,(y,(t)),((t))) T(,(.,), ff()),

where T is a mapping of C’[to, To] C’[to, To] into itself. From this point on
we shall denote this space simply by C’ C’.

THEOREM 4.2. Let (D) and (P) hold. If To to is sufficiently small, then for each
positive integer k there exists a unique pair (y:, ) such that conditions (4.3)-(4.6)
hold.

Proof From the solution of Go found in [2] we have that if To to is suffi-
ciently small, say To to _<- f/, the following holds for each positive integer k:

T(,(Y2), ,(z2)) T(?/’(Y,), (z,))[Ico.co.
(4.12)

<= 1/211(y, z)

for every (Y2, z2) and (y a, z a) in C’ x C’.
We claim that if To to =< 0, then each T in (4.11) is a contraction. To this

end it suffices to prove that

(4.13)
(Y2, z2) (y, z) co, co,.

[[(0k(Y2), k(Z2)) (Offk(Yl), k(Z’))IIC, C,q

for every (Y2,22) and (Yl, zl) in C’s x C’q, and every positive integer k. Relation
(4.13) follows from the definitions of the maps and , and the following
geometry If v and v2 are members of the Euclidean space Rr such that ]v21 > [v11,
and c e R, c2 e R are such that C2 C 1, then IF2 Vl] tC2U2 ClVl].

Thus, if To to =< f/, each T has a unique fixed point (k($,), ()), the
pair (, 5k) satisfying (4.3), (4.4).
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From the solution of Go in [21, we have > 0 such that if To to =< , then
the following inequalities hold"

(4.14)

(/2

d7
2P(y, z + 7v)l=o ->_ 0 for every z, v in L2’q(to, To) and

y e L2’S(to, To),

d2

2P(y + 7w, z)l= o =< 0 for every y, w in L2’S(to, To) and
d7

(4.15)
z e L2’q(to, To).

Thus P(k, z) is convex over L2’q(to, To) and P(y, 2,) is concave over L2’S(to, To). It
easily follows that Pk(, z) and P(y, 2,) are respectively convex and concave over
these spaces for each positive integer k when To to _-<

The boundedness requirements in (4.5) and (4.6) follow from Lemma 3.1.
Upon taking To to _-< min {0, r/} the proof is completed.

Remark. In [4] it is proven that when Y and Z are compact convex sets (as
they are in 4), then G(0, 0) has an open-loop solution (., 2,). It is not known,
however, how to compute P(y, 2,) V(0, 0). In the next section a computational
procedure is given for estimating V(0, 0).

5. Computational procedure. Letting 6 ---, 0 in (3.1) we have

(5.1) Vu V(0, 0)l =< (1 k-

when To to < q, where r/is as in Lemma 2.1. The right side of (5.1) tends to 0
as k --, oe. Thus, upon determining D we can pick k sufficiently large to suit the
tolerance we have set for our estimate of V(0, 0).

Let (Yo, Zo) be any element of C’s x C’q. Consider the following sequence
of successive approximations"

(5.2) (%(Y.), k(Zn)) Tk(@lk(Yn- 1), k(Zn 1)) (Q(Y"- ), S(z"-

n= 1,2,

Assume To to < min {r/, 0, 0}. Then (o#(y,), (z,)) converges in C’ x C’ to
(0’(pk), k(2,)), and P(., ) V by Theorem 4.1. Note that the maps Q and S
which are defined by the equality on the right in (5.2) are independent of k.

Notice that in (5.2) the inverses - and- are employed to generate the
successive terms. Unfortunately, these maps do not have explicit representations,
due to the fact that the root function r, introduced in the previous section, does
not have an explicit form for k > 2. Our computational procedure circumvents
this problem.

Let 7 > 0 be given. Then there is an n such that n >= n implies

(5.3) II(k(Yn), ’Yk(Zn)) (k(-P), k(2,))llCO, Co,q

In particular, n can be taken to be any n such that

(5.4) (1/2)"-’ (0’(Yo), k(Zo)) (Q(yo), S(zo)) co, co,q <=
due to (4.12), (4.13), and the fact that T is a contraction mapping.
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Also notice that for each n > 0 we have

(k(Y,), k(Z,)) (Q(Yo), S(zo))[ co,v co,q

<- 211((yo), u(Zo)) ((2(yo), S(zo))[Ico, co,,.

Let B denote the closed ball of radius II(Q(yo),S(zo))llco,co,q
/ 211(k(Yo), k(Zo))- ((2(Yo),S(zo))llco,co, in the space C’Sx C’q. In view
of (5.5), the sequence (5.2) remains in B for all n 0, 1, 2,....

We now shall give a computational procedure for estimating the terms of
the sequence (5.2), up to stage n.

Let e > 0 be given. We shall find a pair of functions, 071, 1), such that

(5.6)

Let fl be a positive integer. Define

(To to)
fl

j 0 fl

At each tj compute the values rk(lQ(Yo(tj))[) and rk([S(zo(tj))[ ). Let qa(t) be a poly-
nomial which agrees with rk(lQ(yo(tj))l) at each tj. Similarly, let s(t) be a polynomial
which agrees with rk(lS(zo(tj))l at each tj. (See [3] for a method of accomplishing
this.) Since the derivative of rk is bounded on [0, oo) by 1/2, the polynomials q(t)
and s(t) approximate rk([Q(Yo(t))l) and rk([S(zo(t))[) uniformly on [to, To] to an
arbitrary tolerance, depending on how large fl is chosen to be.

Now define

Q(Yo(t))
(5.7) )71(t) =2 + 2k[ql(t)32k-2

and

S(zo(t))
(5.8) (t) =2 + 2k[s(t)]2-2"

Thus, given the pair (yo(t), Zo(t)), fi may be chosen to be sufficiently large so
as to guarantee (5.6).

Now define a pair 07, ) by the relation

(5.9) ((Y), ()) (Q072), S(22)).

In the same way that we constructed 07, 1), we construct (;2, ;2) such that

(5.0) (;, ) 0i, i)Ico, co,. _-< e.

Let be a compact subset of C’s x C’q such that B c /. If e is sufficiently
small, then both 07, ) and 072, 2) are in B. Let O(. denote the modulus of
continuity of k on B, and let O(. be the modulus of continuity of ek on B. Let
O(. O(. + O(. ). Then (5.10) implies

(5.11) I1(#k(372), k(2)) (k(), k(2))llco,co,, =< O(e).
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In view of the fact that the maps Q and S are Lipschitz continuous on C’S

and C’q respectively, we have a positive constant C such that

(5.12) (fft(Y2), k(Z2))- (0-//’k(2), (2))11CO,cO, __--< OB() + C
due to (5.6), (5.9) and (5.11).

We continue in this way step by step up to stage n,. If e is sufficiently small
(which means fl is sufficiently large at each stage), then ((),), (,))e B for each

Define the following function"

g() C + CO().
We then have

(5.13) ((y,), (z,))- ((y,), (,))[ co,co,, g"-z)(e),

where the function on the right is the (nr 2)-fold composition of g with itself,
evaluated at e. It is clear that g"-2)(e) 0 as e 0.

Thus, (5.1) and (5.13) yield

IP,((ff,), (,)) V(0, 0)1
(5.14)

(1 -l/2k + -1/2) + B( + g(n-2)()),

where m is the modulus of continuity of P on B.
Remark 1. The method presented in 4 and 5 extends to more general

convex control sets Y and Z than the unit balls. For example, the procedure will
generalize directly if

In this case one chooses polynomial penalty terms in G which are of degree 4k.
Remark 2. Suppose that we defined the payoff in G as follows"

(5.15) P(y, z) P(y, z) Ck(lylz- ) dt + e(11- ) dt.

An approximation result similar to Theorem 4.2 may be proven for this case.
Upon generalizing the computational method of ff 5, one encounters a variant of
the difficulty presented by the fact that r has no explicit form; that is, the inverse
of the function d(x) 2x + 2k x e(x- 1) when x e R has no explicit form.
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UNCONSTRAINED CONTROL PROBLEMS WITH QUADRATIC COST*

RICHARD DATKO’

Abstract. This paper considers a class of control problems where the cost is quadratic, the dynamics
are linear and the controls are unbounded. The optimal control is obtained by computing the Fr6chet
derivative of the cost and setting it equal to the zero vector. In the case of linear autonomous differential-
difference equations conditions are found for optimization of the cost over an infinite interval. These
lead to feedback controls which stabilize the system.

Introduction. In and 2 of this paper we show that a class of linear optimal
control problems with quadratic cost functionals can be treated by a reasonably
simple and straightforward procedure which reduces the problem to the Solution
of a Fredholm integral equation. The type of problem studied here was first
considered by Kalman [13] for finite-dimensional systems and an excellent
treatment of it can be found in the book of Lee and Markus [17]. Extensions of
Kalman’s work either to a Hilbert space setting or involving linear differential-
difference equations can be found in [6], [7], [16], [183, [19] and [20].

The basic idea in this paper is to treat the problem as a variational one and to
compute the Fr6chet derivative of the quadratic cost functional in a Hilbert
space. It is shown that the optimal control is unique and can be obtained by setting
the Fr6chet derivative equal to the zero vector. The optimal control can then be
described as either a linear feedback or as a time-dependent function of the initial
point in the phase space. From either viewpoint this leads to the solution of a
Fredholm integral equation. Kushner and Barnea [16] have considered a problem
similar to ours for differential-difference equations and have reduced it to solving
a system of partial differential equations. We believe that our approach is more
satisfactory for two reasons: first, we can deal with a more general class of prob-
lems and second, the solution of many systems of linear partial differential
equations are obtained by solving integral equations.

Using results from 2 we are able, in the case oflinear autonomous differential-
difference equations with quadratic cost functionals, to consider optimal control
over an infinite interval. We show for these problems that if we can optimize them
over the positive half-line, then the optimal control is a linear feedback control
which gives rise to an asymptotically stable linear differential-difference equation.
This result extends the work of Krasovskii [14] and Ross and Fltigge-Lotz [22]
since in both these papers the admissible controls are assumed to satisfy conditions
which we show must hold a posteriori. In [14] and [22] it is assumed that the
admissible controls are feedback controls which stabilize the given system.

Section 4 is essentially an appendix to 3. Here we obtain a necessary and
sufficient condition for the problem in 3 to be optimized over the positive half-line.

Since 1 is an extension of the work in [73 to a more general setting and the
proofs of the results in this section are essentially the same as in that paper, they
will thus only be sketched. The proofs of the results in the remaining sections will
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be given in more detail; however, in some instances routine but technically
complicated proofs will be omitted.

Delfour and Mitter [24] have recently obtained results similar to those of 3
for linear autonomous hereditary differential equations in a Hilbert space setting.

1. We first introduce some preliminary notation.
1. X will denote a Banach space over the real numbers and X* its topological

dual. The norms on both spaces will be denoted by l. and the continuous linear
functionals by the notation (x*, x), where x* X and x X.

2. H will denote a real Hilbert space with inner product (.,.) and norm [[.
3. Let [0, T] I be a finite closed interval. Then L2(I, H) will denote the

equivalence classes of measurable mappings from 1 into H which are square
integrable. The norm in L2(I H) is given by u (.Ilu(t) 2 dt)l/2. It is shown

r (u(t)v(t)) dt is a Hilbert space.in [10] that L2(I H) with the inner product (u, v) j’o
4. Let X1 and X2 be any two real Banach spaces. The Banach space of con-

tinuous linear mappings from X1 into X2 will be denoted by L(X, X2). In the
special case where X2 is the real line, the notation X]’ L(X, R) will be used.

The following operators will be used to define the control problem given by
(1.1) and (1.2) below.

5. (a) S(t, s) will denote a family of mappings in L(X, X) which are strongly
continuous in the triangle A {(t, x)’0 < s < =< T}. The adjoint system S*(t, s)
will also be assumed to be strongly continuous on A.

(b) The mapping B’I --) L(H, X) will be assumed to be strongly measurable
as well as the adjoint mapping B*’I L(X*, H).

(c) The mapping W’I --) L(X, X*) will be assumed to be strongly continuous.
In addition W will be assumed to be nonnegative and symmetric on I in the sense
that for all pairs x, y in X and in 1, ( W(t)x, x) >= 0 and ( W(t)y, x) ( W(t)x, y).

(d) The mapping U’I --+ L(H, H) will be assumed strongly continuous and
symmetric. Moreover, there exist two positive constants m and mz such that for
all u H and in I, m u 2 (O(t)u, u)

_
m2 ul[ 2. The last condition ensures the

existence of U- l(t) as a strongly continuous mapping from I into L(H, H).

Statement of the problem. Let Xo in X be given. The problem is to minimize
the functional defined on L2(I H) by the equation

(1.1)

where

(1.2)

C(u, Xo) { W(t)x(t, u, Xo), x(t, u, Xo)) dt

+ (U(t)u(t), u(t)) dr,

x(t, u, Xo) S(t, O)xo + S(t, s)B(s)u(s) ds.

DEFINITION 1.1. If the infimum of the functional C(., Xo) exists, it will be
denoted by m(xo). A u in L2(I, H) for which the infimum is attained will be denoted
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by/,/m and the corresponding solution of (1.2) by xm. The mappings u and x will
be called, respectively, the optimal control and optimal trajectory for C(., Xo).

LEMMA 1.1. For each Xo in X the infimum m(xo) of the problem (1.1)-(1.2) is

finite.
Proof Observe that C(u, Xo) >= 0 for all u L2(I, H). Let u(t) =_ 0 on I. Then

since W(t) is strongly continuous, 0 =< m(xo) =< C(0, Xo) < + , which proves the
lemma.

LEMMA 1.2. There exists a unique u" in L2(I, H) such that m(xo) C(um, Xo).
Proof The proof is entirely similar to the proof of existence and uniqueness

given in Theorem 1 in 7] and is therefore omitted.
THEOREM 1.1. The optimal control for the problem (1.1)-(1.2) is given by the

equation

(1.3)
T

Urn(t) U- l(t)B*(t) S*(s, t)W(S)Xm(s) ds.

Proof Let u L2(I, H) be fixed. The Fr6chet derivative of C(u, Xo) can be
computed as in [7, (10)] to be

(1.4) C’(u, Xo)(t 2 B*(t) S*(s, t)W(t)x(s, u, Xo) as + u(t)u(t)

Since u" is the unique minimal point of the functional C(., Xo), it follows that
C’(um, Xo)(t) 0 a.e. on I (see, for example, [4] or 8]). But U-x(t) exists for all

I. Hence (1.3) follows from (1.4).
The following corollaries are consequences of Theorem 1.1. Their proofs are

omitted since they are similar to some numbered corollaries in [7, 1].
COROLLARY 1.1. The second Fr,chet derivative of the functional C( ., Xo) exists

and is a positive definite bilinearfunctional in L2(I, H).
COROLLARY 1.2. There exists only one point in L2(I, H) such that C’(u, Xo) O.

Hence the integral equation (1.4) and the optimal control have unique solutions.
COROLLARY 1.3. Let a and b be scalars. Ifu" and v are optimal controlsfor the

functionals C( Xo) and C(. xl) respectively, then au" + by" is the optimal control

for the functional C(., axo + bx).
We define the mapping (t, x) K(t)x from I X into X* given by the

equation
T

K(t)xo S*(s, t)W(S)Xm(s, Um, XO) ds.

THEOREM 1.2. The mapping, from I x X into X* defined by (1.5) is for each
fixed in I a linear mapping from X into X* and K(O) is symmetric in the sense that
(K(O)x,y) (K(O)y,x) for all x,y in X. Moreover, for each Xo in X,
(K(O)xo, Xo5 m(xo).

Proof The linearity of K(t)x is a consequence of Corollary 1.3. To prove the
rest of the theorem, let xx and x2 be fixed in X and let u(t) and v(t) be the optimal
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controls for C(., xl) and C(., x2) respectively. By (1.5) and (1.2),

(K(0)X1, x2) (S*(s, O)W(S)Xm(s, U, Xl) X2) ds

(1.6)

( W(s)x(s, u, x), S(s, 0)x2) ds

( W(s)xrn(s, U, X1) xrn(s, I), X2)) Ms

(W(s)x(s,u, xl),S(s,e)B(e)v(e))deds.

We apply Fubini’s theorem to the multiple integral in (1.6), interchange the order
of integration and use (1.3) to obtain

To ( W(s)xm(s, U, X1) S(s, e)B(e)u(e) ) de ds

(1.7) de (B*(e)S*(s, e)xm(s, u, xl), v(e)) ds

(U(e)u(e), v(e)) de.

Substitution of (1.7) into (1.6) leads to the equation

(K(0)XI’ X2) fo (W(s)xm(s’ u, x1) xm(s, 1), X2)) ds

(1.8) + (U(s)u(s), v(s)) ds
0

(K(0)X2, X15"
The last statement of the theorem is a consequence of equation (1.8) when

x x2. This completes the proof of the theorem.
Remark 1.1. The mapping xo (K(O)xo,Xo) of Theorem 1.2 induces an

inner product on X.
Utilizing the form of the optimal control described by (1.3) the optimal

trajectory for the problem (1.1)-(1.2) has the form

xm(t, Um, XO) S(t, O)xo

IS(t, s)B(s)U- I(s)B*(s)S*(e, s)W(e)xm(e, um, X0) de ds

S(t, 0)Xo

(1.9) IS(t, s)B(s)U- X(s)B*(s)S*(e, s)W(e)Xrn(e, Um, XO) de ds

IS(t, s)B(s)U- l(s)B*(s)S*(e, s)W(e)xm(e, Urn, NO) de ds.
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(1.10)

Let

(1.11)

Applying Fubini’s theorem to both of the multiple integrals in (1.9) we obtain

xm(t, Um, XO) S(t, O)x0

da IS(t, s)B(s)U- I(s)B*(s)S*(o, s)W(o)xm(o, Um, XO)]ds

da IS(t, s)B(s)U- l(s)B*(s)S*(a, s)W(a)xm(a, Um, XO) ds.

S(t, s)B(s)U- l(s)B*(s)S*(o, s)W(o0 ds

Qtt, )

j S(t, s)B(s)U- (s)B*(s)S*(o, s) W() ds

Using (1.11) we can state the following theorem.

if t<a<T.

THEOREM 1.3. The optimal trajectory for the problem (1.1)-(1.2) is the unique
solution of the Fredholm integral equation

(1.12) x"(t, Xo) S(t, O)xo + Q(t, O)xm(o, XO) da,

where Q(t, ) is given by (1.11).
2. In this section we shall consider an analogue for functional differential

equations of the control problem posed in 1. As in 1, we shall first introduce some
conventions.

1. We shall use vector matrix notation. All vectors and matrices are real.
Vectors will be denoted by lower-case letters and matrices by upper-case letters.
The transpose of a vector will not be distinguished when it is clear what is meant
from the context. In this regard xy will denote the usual inner product oftwo vectors
of the same dimension. The transpose of a matrix A will be denoted by A*. Thus
if A is an n x n matrix and x and y are n-vectors, xAy yA*x. In general, unless
otherwise specified, the notation will conform to that used in [2 or [11.

2. A(t, s) will denote an n x n matrix with entries aij(t, s) such that"
(i) A(t, s) is Lebesgue measurable in (t, s) and for fixed is of bounded varia-

tion in s.

(ii) There is a constant : > 0 such that A(t, s) A(t,-) if s __< -r and
A(t,s) =0if s>_0.

(iii) There exists a Lebesgue integrable function re(t) defined on the finite
interval [0, T] such that ]aij(t, s)[ <= m(t) for all s and the variation with
respect to s satisfies the inequality

o
V aij(t, s) <= m(t)

for all i, j and t.

3. B(t) will denote an n x m matrix whose entries are uniformly bounded
and measurable on [0, T].
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4. Lz(R+, Rm) will denote the equivalence classes of all measurable square
integrable mappings from [0, oe) into Rm. This is a Hilbert space with inner product

u)  (Ou(t)
5. Wo(t, s) will denote a symmetric n x n matrix which is measurable and

uniformly bounded on [0, T] x I-z, 0] and such that xWo(t, s)x >= 0 for all x in
R" and (t, s). W/(t), 1 =< =< k, will denote n x n positive semidefinite matrices
which are measurable and bounded in [0, T].

6. U(t) will denote an m x m ma.trix which is symmetric and measurable and
such that for all u 6 R and [0, T] the inequality muu <= uU(t)u <= m2uu holds,
where rn and m2 are positive constants.

7. BV[-z, 0] will denote the Banach space of all mappings b "[-z, 0 - R"
which are of bounded variation, and C[-z, 0] will denote the Banach space of
continuous mappings from -z, 0] into R". The norm on C[-z, 0] will be given
bylqS[ sup-<_s<_0(’=t ((Di(s))2) 1/2"

Statement of the problem. Let b B V[-27, O] be given. The problem is to
minimize the functional C(., 4)) defined on L2(R +, Rm) by the equation

(2.1)

C(u, 4))= [x(t- zi)Wi(t)x(t- 27,)
i=1

O

+ x(t + s)Wo(t, s)x(t + s)ds + u(t)U(t)u(t)] dt,

where 0 =< 271 _-< 272 27k 27, and x(t) satisfies the differential-difference
equation

(2.2) 2(t) x(t + s)dsA(t, s)+ u(t)B(t)

with

(2.3) x(t) q(t) on [- 27, O-l.

It has been shown in [1] and [2] that given u L2(R +, Rm) and q5 BV[-27, 0]
there exists a unique absolutely continuous vector function x(t) which satisfies
(2.3) on [-27, 0] and (2.2) a.e. on [0, T]. Moreover, x(t) has the following analytic
representation for > 0"

(2.4)

x(t) dp(O)S(t, O) + u(a)B(a)S(t, a)da

+ dp(s) d A(a, s )S(t, ) da

where S(t, ) is a unique n x n matrix which is measurable in (t, cz) and of bounded
variation in for fixed, and conversely. S(t, cz) also satisfies the relation (see, for
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example, [2])

s(t, t) I (the identity matrix),

(2.5)
S(t,z)=O if cz> t,

S(t, ) + A(fl, fl)S(t, fl) dfl I, o [0, t.
Remark 2.1. Although we consider the control problem in this section to be

over the interval [0, T], this is not restrictive. The main reason for not considering
a more general interval of the type [to, T] is to keep notational complexity to a
minimum. However, all results obtained in 2 apply equally well to the same
problem considered over intervals of the form [to, T. This fact will be needed in 3.

DEFINITION 2.1. If the infimum of the functional C(., 4) exists, it will be
denoted by m(4). A u in L2(I for which the infimum is attained will be denoted
by u and the corresponding solution of (2.2) by x. The functions u and x will
be called, respectively, the optimal control and optimal trajectory for C(., 4).

The following lemma is similar to Lemma 1.1, and therefore its proof is
omitted.

LEMMA 2.1. For each BV[-z, 0] the infimum of the problem (2.12.2) is

finite.
LEMMA 2.2. For each BV[- z, 0] aM u L2(R +, R) the FrOchet derivative

with respect to u exists a is given a.e. on [0, by the equation

C’(u, )(t)= 2 u(t)U(t) + x(e i)(e)S*( ,, Ode
i=1

(2.6)

+ x( + s)Wo(, s)S*( + s, t)dsd B*(t)

Proof The existence of the Fr6chet derivative is a consequence of the fact that
C(., 4) is a quadratic functional on L2(R +, R). Using the fact that S(t, )= 0
if > 0, it is easy to compute for each h L2(R +, R) the identity

(c’(u, ), )= (- )()()B()(- ,)
i=l

(2.7) + x(t + s)Wo(t, s)h()B()S(t + s, e)ddsdt

Applying Fubini’s theorem to the multiple integrals in (2.6) we obtain

i=l

(2.8) + x(t + s)Wo(t, s)S*(t + s, )B*()h()dsdtd
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Since (2.8) holds for all h L2(I it follows that C’(u, ) must be given by (2.6).
This completes the proof.

TI-mOREM 2.1. The optimal control for the problem described by equations
(2.1)-(2.3) is given by

him(t) xm(O "ci)W/(00S*(0- zi, t) d
i=1

(2.9)
+ xm(a + s)Wo(a s)S*(a + s, t) ds da B*(t)U- (t).

Proof The optimal control satisfies the condition C’(u, )(t)= 0 a.e. on
[0, T]. Thus (2.9) is an immediate consequence of (2.6).

The following corollaries are stated without proof since the proofs are
similar to those given in [7, ff 1].

COROLLARY 2.1. The secoM Frkchet derivative ofC(., ) exists aM is a positive
definite bilinear functional in L2(R +, Rm).

COROLLARY 2.2. There exists only one point in Lz(R +, Rm) such that C’(u, ) O.
Hence (2.9) has a unique solution.

COROLLARY 2.3. Let a aM b be scalars. If u aM v are optimal controls for
C(.,) and C(.,) respectively, then au+ by is the optimal control for
C(., a + bO).

COROAR 2.4. The solution of the control problem (2.1)2.3) is given by the
linear integral equation

xm(t) (O)S(t, O)- xm( Ti)()S$( T,, )d
i=1

+ xm(fi + s)Wo(fi, s)S*(fl + s, a) ds dfi B*(a)U- I(a)B(a)S(t, ) da

+ 4(s) s (, s )s(t, )

DEFINITION 2.2. Let b and (/)2 in BV[-r, 0] be given. Let the pairs (xl(t), ul(t)),
(x2(t),u2(t)) be the optimal control and optimal trajectory for the functionals
C(., bl) and C(., q52) respectively. Define the expression

(2.10)

Q(bl, q2)-- Z xl(t- "ci)wii(t)x2(t-
i=1

+ Xx(t + s)Wo(t,s)x2(t + s)ds + Ul(t)U(t)u2(t dt.

Notice that Q((D1, 2) Q((2, (D1) and Q((/)I, (]1) m((/)l).
DEFINITION 2.3. Let b be in BV[-z, 0]. Let x denote the optimal trajectory

for C(., b). For each [0, T define the column vector

(2.11)
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Remark 2.2. Notice that (t,b) L(t)d? is a continuous mapping from
[0, T] x BV[- z, 0] into the space ofcontinuous functions defined on R". Moreover,
because of Corollary 2.3, it is linear on BV[-z, 0] and for fixed L(t)dp is a linear
mapping from BV[-r, 0] R".

Consider the bilinear form on BV[-, 0] given by

(2.12) ((4, 0)) 0(0)L(0)4 + 0(s) d A(a, s a)L(a)4

THEOREM 2.2. The bilinear form defined by (2.12) is symmetric and equal to the
form Q ofDefinition 2.2. That is, for all aM 0 in BV[-z, 0],

((, 0)) ((0, qS)) Q(b, ) and ((b, qS)) m(b).

Proof Let b and (2 in BV[ , 0] be given and let the pairs (xi(t), ui(t)) denote
the optimal trajectories and optimal controls for the functionals C(., bi), 1, 2.
Using (2.11) we can write

(2.13)

Observe that by (2.4), (2.5) and the fact that -z =< s < 0,

(2.14)

and

(2.15)

2(0)S(O "i, O)-- x2((z- "ci)- u2(a)B(a)S(o- "ci, a)da

q2(a) d, A(fl, a fi)S(a ,, fi) dfi

(/)2(O)S((z -- s, O)-- x2(o{ -.t- s)- u2(a)B(a)S(o nt- s, tT)dt7

4( (, -/s( + s,/

(2.16)

Substitution of (2.14) and (2.15) into (2.13) yields

(0)L(0), x(- ,)W,()x,(- ,)d
i=1

+ [x2(a + s)Wo(a, s)x2(a + s)] dsda

[u2(a)B(a)S(a zi, a)Wl(a)xx(a zi)]da da
i=1

()d A(fl, fl)S( ,, fl) dfl
i=1

()x,(- )d (cont.)



UNCONSTRAINED CONTROL PROBLEMS 41

[u2(a)B(a)S(a + s, a)Wo(e,s)xl(e + s)]dads se

dpz(a) d, A(fl, a fl)S(e + s, fl) dfl

Wo(, S)Xl( + s) ds d.

If we examine the multiple integrals in (2.16)which contain Stieltjes integrals and
apply the unsymmetric Fubini’s theorem (see, for example, [3] or [2]), Fubini’s
theorem, the fact that S(e, fi) 0 if fl > e and equation (2.11), we can express the
integrals as follows:

Wo(e s)x l(e -]- S) ds de

(2.17)

Wo(e, s)x(e + s) ds de dfi

2(a) d A(fi, a fi)L(fi)l dfi.

We substitute the right side of (2.17) into (2.16) and apply Fubini’s theorem in a
judicious manner to obtain

b2(0)L(0)b x2(e- zi)W/(e)x(e- "ci)de
i=1

+ X2(e -+- s)Wo(e S)Xl(e --3i- s)ds de

/,/2(o)B(o)S(e Ti, o)W/(e)Xl(e Ti)de
i=1

u2(a)B(a)S(e + s,a)Wo(e,s)xt(e + s)dsde ds

b2(a)d, A(fi, a fl)Lfldpl dfl
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But because of (2.9),

(2.19) -Uz(a)U(a)u(a).

If we substitute (2.19) into (2.18) and apply (2.10) we obtain

;o(2.20) b2(0)L(0)b, Q(b,, b2) b2(a d A(fi, a fi)L(fi)dp, dfi,

which proves the theorem.
Example. The following example, a system considered by Kushner and

Barnea [161, will perhaps motivate the reason for selecting the bilinear form
defined by (2.12).

Consider the problem

(2.21) (t)= Ax(t)x(t) + A2(t)x(t ) + C(t,s)x(t + s)ds + D(t)u(t),

(2.22) C(u, 4)= [x(t)W(t)x(t) + u(t)U(t)u(t)] dr.

Here Ai(t), 1, 2, and C(t, s) are continuous n x n matrices, x(t) is an n-vector,
D(t) a continuous n m matrix, u(t) a measurable m-vector whose norm is square
integrable, W(t) a continuous n n positive semidefinite matrix, U(t) a con-
tinuous m m positive definite matrix and q is fixed in BV-z,O]. Using
Theorem 2.1, we compute the optimal control to be

(2.23)

and

T

u(t) U-’(t)B*(t) S*(a, t) W(a)x(a) da

T

(2.24) L(t)dp y(t) S*(, t)W(a)x(a)da.

Observing that S*(a, t) satisfies the differential equation (see, for example, [11])

d
d-7[S*(’ t)] -A(t)S*(o, t)- A(t + z)S*(o, + z)

(2.25)

we find that

(2.26)

dy(t)
dt

C*(t s, s)S*(o, s)ds,

--W(t)x(t)- A(t)y(t)- A(t + )y(t + )

o

C*(t- s, s)y(t- s)ds.
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Thus L(t)O can be looked upon as a solution of a differential lead equation, and
the optimal control and optimal trajectory are then obtained by looking at a
particular solution of the coupled system (2.21) and (2.26). This is the procedure
used by Nosov [20].

Define the system

(2.27) (t) -A";(t)z(t)- A(t + )z(t + )- fo C*(t- s, s)z(t- s)ds

and let x(t) be a solution of (2.21) with u(t) 0. The "inner product" of any solu-
tion of (2.27) with x(t) is defined to be

(2.28)

It is shown in [2] or [11] that (z(t), x(t)) is constant for all t. Equations (2.26) and
(2.28) are the motivation for defining the bilinear form on BV[-z, 0] given by
the equation

o

((0, O)) (L(0)0, O(0)) O(0)L(0)qb + L(a + z)bA2(o + ,)O(a)da
(2.29)

+ L(s)cC(s, s)O(e) ds d.

Using the fact that S(e, s) 0 if e < s, it is not difficult to prove directly that

0, )) , b)) and that 0, 0)) m(0). However, these are also consequences
of Theorem 2.2.

3. In this section we shall apply the results of 2 to an autonomous control
problem involving differential-difference equations. Our main result in this
section is to prove that for certain linear autonomous systems with quadratic
cost functionals the optimal control is a feedback control which gives rise to an
asymptotically stable linear differential-difference equation. It will become
apparent that the results of this section remain valid for more complex linear
systems. The reason for restricting the problem is to limit notational difficulties.

We shall first introduce some additional notation.
1. All vectors considered in this section will be column vectors. The inner

product of two column vectors x and y will henceforth be denoted by x.y.
2. Let to >_- 0; by the notation b,o we shall mean a continuous mapping

from [-z, 0] into R which is given by the expression Oto(S), to z <= s <= o.
We shall first consider the control problem given by the equations"

(3.1) 2u(t) Aox.(t + A,x(t- ) + Bu(t)

fort=> to andu6L2(R+ Rm)

(3.2) x,(t) dpto(t) if to : <- __< 0,
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and cost functional

(3.3) C(u, c,o, o, T) [Wx,(t). x,(t) + Uu(t). u(t)] dt,

to<=T<oo.
Here we assume Ao and A are n n constant real matrices, B is an n m constant
real matrix, W is a positive definite real n n matrix and U is a positive definite
real m m matrix.

DEFINITION 3.1. We define

(3.4) m(bto, to, T) inf C(u, qS,o, to, T),
uL2(R ,Rm)

and denote by

(3.5) x"(t, to, T,

and

(3.6) Urn(t, to, T, d?,o),
respectively, the optimal control and optimal trajectory for the problem (3.1)-(3.3).
In addition the notation

(3.7) xm( to, T, b,o), to < s T,

will designate the point in C[-z, 0] given by (3.5) for s z =< =< s.
Observe that, since (3.1) is autonomous in the variables involving x, the

matrix S(t o0, o <= t, of equation (2.5) can be written as in the form S(t
(see, for example, [12, p. 84]). Thus for each bo e C[-z, 01 and triple ofnonnegative
real numbers (to, t, T) with o _<_ < T, we define

(3.8) L(t, to, T)dPto S*(o t)wxm(o, to, T, qbto)da.

Applying Theorem 2.1 we see that

(3.9) Urn(t, to, T, qbto) U- ’S*L(t, to, W)qbto.

(Theorem 2.1 is phrased in terms of row vectors, but by transposing (2.9) and
using (3.8) we obtain (3.9).) In Remark 2.2 it was observed that L(t, to, T) is a
linear mapping from BV[ z, 0] into R". In the present case it is clear that L(t, o T)
is a linear mapping from C[-z, 0] into R".

LEMMA 3.1. If {btno} C[-$, 0] tends in norm to qbto C[-z, 0], then there
exists a subsequence {q} of the natural numbers such that for each [to, T] the
subsequence {xT’(’, to, T, btqo)} tends in norm to xT’(" to, T, qSto and the subsequence
{Urn( to, T, tqo)} tends in L2(R +, Rm) to Urn( to, T, dPto).

Proof There exist positive constants M and a such that ]bt"o] < M1 for all n
e"t for all 6 R + Thus if we set u _= 0 in (2.4) and substitute theand IS(t)[ =< M1

corresponding solutions {x,,}, with x,(t)= 4)t"o(t) on [to- z, to], into the cost
functional (3.3) we see that for some positive constant M2, m(bt"o, to, T) N M2 4)t"o 2

for all n. Since U is positive definite, the form of the cost functional (3.3) implies
that the optimal controls {u’(., to, T, qS"o)} are uniformly bounded in L(R+, R’).
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However, L2(R +, Rm) is a Hilbert space and hence reflexive. Consequently there
exists a subsequence {q} of the natural numbers such that {Urn( ", to, T, Gqo)}
converges weakly to some point Uo in Lz(R +, Rm). Thus for each e to, T] the
subsequence {xm(t, to, T, qstqo)} converges pointwise to X,o(t, o, T, qSto). Due to the
assumption that both W and U are positive definite matrices we can infer that
C(uo, Go, to, T) <= lira inf m(qStqo, to, T). By an argument similar to the proof of
(c) in Theorem 4 in [7, p. 357], it can be shown that C(uo, 0,o, to, T) m(Chto, to, T).
But then it easily follows that

lim Uum(t, to, T, qSto) Urn(t, to, T, q57o)dt Uuo(t). Uo(t) dr.
q’-

Again, since U is positive definite this implies that

lim lu(-, to, T, bo)l lUol.
In a Hilbert space weak convergence and convergence of the norms implies
strong convergence (see, for example, 21). Hence {u(., to, T, bTo)} converges in
norm to Uo.

Lastly, observe that the operator oS(t- s)Bu(s)ds is a continuous linear

mapping from L2(R +, Rm) into C[-z, 0]. Thus it follows that {xT’(., to, T, 0o)}
converges strongly to xT’(., to, T, bo in C-, 0.

Some properties of the mapping L(t, o, T).
PROPERTY 1. L(t, to, T) is continuous.

Proof The proof is an immediate consequence of Lemma 3.1 and the closed
graph theorem.

PROPERTY 2. For d/)tofixed in C[-r, 0] the function L(t, to, T)t is continuous

in the variables (t, T).
Proof The proof is by contradiction, but uses standard arguments and is

therefore omitted.
PROPERTY 3. For each Oto e C[-’c, O] the identity

L(t, to, T)dPto L(t, t, T)xT(’, to, T, diG)
holds.

Proof By the uniqueness property of Corollary 2.2 it follows that if
xT’(., to, T, bto) is optimal over the interval [to, T], then

x’(., t, T, xT’(., to, T, qbto)) xm( o, T, bto)
is optimal over the interval It, T. Substitution of these mappings into (3.8)
establishes the identity.

PROPERTY 4. If to > 0 and Oto(to + s) /(s) for s e [- r, 0], then

L(t + to, to, T + to)dPto L(t,O, T)/ and m(c/)to, to, T + to)= m(O,O, T).

Proof This property is a consequence of the fact that (3.1) is autonomous,
W and U are independent of and the definition of L(t, to, T).

Necessary and sufficient conditions under which the following hypothesis is
valid will be given in 4.

HYPOTHESIS H. For all to _>- 0 and for each qSto e C[-r, 0] it will be assumed
that limr_oo m(dpto, o, T) < o.
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DEFINITION 3.2. Let to =< T and (/)1 and (15 2 be in C[-r, 0]. Let the pairs
(x 1, x2) and (u 1, u2) denote the respective optimal trajectories and optimal controls
for the control problem (3.1)-(3.3) with initial values q51 and (1) 2 over the interval
[to, T]. We define the bilinear form Q(to, T) on C[-r, 0] x C[-z, 0] by the
expression

(3.10) Q(to, T)(4) 42) [Wxl(t) x2(t) -+- Uul(t) u2(t) dt.

Notice that for each b,o e C[-r, 0],

Q(to, T)(dPto, dpto) m(to, T, dPto).
LEMMA 3.2. Let 0 < to <= T. Let R(to, T) be the bilinear form defined on

C[- r, O] x C[- , O by the expression

(3.12)
R(to, T)(dpto, /,o) L(to, to, T)qb,o(to)" to(to)

+ AL(s + r, to, T)c/)o" Oo(S)ds.

Then R(to, T) is symmetric and equal to the form Q(to, T)defined by Definition 3.2.

Proof This lemma is a special case of Theorem 2.2 in which column vectors
replace row vectors.

The following lemma will be used in the sequel. It is given in an abstract
setting since it is of interest in itself and extends a result which is well known for
Hilbert spaces (see, for example, [21]).

LEMMA 3.3. Let {R(t)}, R +, be a family of continuous symmetric bilinear

forms defined on a real Banach space X such that for each x in X,

O< R(t)(x,x) <= R()(x,x) !1" <=
(3.3) and

lim R(t)(x, x) < .
To each R(t) let there correspond the continuous linear mapping g(t) from X X*
which is given by the relation

(3.14) (g(t)x, y) (g(t)y, x) R(t)(x, y)

(see, .]’or example, 8, p. 104). Then there exists a continuous linear mapping
g’X X* such thatjbr all x, y in X,

(3.15) (gx, y) (gy, x) lim R(t)(x, y)
t--

and such that for all x X,

(3.16) lim [g(t)x gxl 0.

Proof We shall first show that IR(t)] is uniformly bounded on R+. To this
end define for each e R+ the seminorm

O0(t)(x) [R(t)(x, X) 1/2.
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By the principle of uniform boundedness (see, for example, [23, p. 68]) it follows
that limlxl_ o (t)(x) 0 uniformly on R +. Hence given e > 0, there exists 6(e) > 0
such that for all e R+,

This means

R(t)(x,x)<e if Ix] <

(3.17) R(t)(x, x)

for all R +, where M4 e/c52. This proves uniform boundedness since R(t) is
symmetric.

Since for all x, y in X and e R +,
I(g(t)y, xSI 1/41/(t)(x + y, x + y)- t(t)(x- y, x y)l,

it follows for ix[ y[ that

(3.18) (g(t)y, x) M4[Ix + yl 2 + Ix y[2] 2M4.
This proves that [g(t)[ 2M for all e R +.

Because R(t) is symmetric monotone increasing and uniformly bounded on
R+ it follows that there exists a bilinear form R defined on X and a continuous
mapping g’X X* such that for each pair x, y in X,

lim R(t)(x, y) lim (g(t)y, x) R(x, y)
(3.19)

Because of (3.18), Igl 2M. Moreover, (g g(t)x, x) 0 for all R +. Thus
we can apply the Cauchy-Schwarz inequality to obtain

(3.20) ((g g(t))y, yS((g g(t))x, x5

Since lim, ((g g(t))y, y) 0 for all y e X, (3.20) shows that g(t)y gy
strongly in X*. This completes the proof of the lemma.

TOREM 3.1. Assume Hypothesis H holds" then there exist a continuous
bilinearform Q on C[-, 0] and a continuous linear mapping

q.C[-z, 0] 8v[-z, 0]

such that for to, to in C[-, 0],

lim Q(to, T)(0,o, 4,o) O(0eo, ,o)
(3.2)

(q,o, 0,o5 (q0,o, 4,05.
Moreover, for each eo C[- , 0],

(3.22) lim L(to, to, T)4eo lira [(q,o)(0)- (q,o)(S)].
T sO-

Proof The first conclusion of the theorem is a special case of Lemma 3.3
in which R(t) is replaced by Q(to, t) and it is observed that the topological dual of
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C[ r, 03 is isometric to the subspace ofBV[ :, 03 which consists ofthose mappings
qb of bounded variation from [-r, 03 -+ R" for which (-) 0 (see, for example,
I9]). The fact that both Q and q are independent of to is a consequence of Property 4.

To prove the second conclusion of the theorem, observe that by Lemma 3.2
for (to, T) fixed and qto, g’,o in C[-r, 0],

Q(o, rl(4,o, 0,o C(o, o, r4 ,o(Ot + c( + , to, r4,o"
O--r

The above representation of Q(to, T) gives rise to a linear mapping

q(to, T)’C[- , 0] - BV[- r, 0]

given by the equations

(q(to, T)gP,o)(S) AL(o + r,, to, T)gA do, -r, <= s < O,
to--

(3.23)

Thus

to

(q(to, T)qS,o)(0) L(to, to, T)$,o + AL( + r, to, T)b,o d.

lim [-(q(to, T),o)(O -(q(to, T)O,o)(S)l L(to, to, T)dp,o.
s-O

From (3.16) of Lemma 3.3 it follows that for each q,o e C[-:, 0],

(3.24) lim q(to, T)b, qqS,
Too

in the normed topology of BV[-:, 0], which implies that

lim L(to, to, T)(t lim (qto)(O)- (qfl/)to)(S)],
T-oo s0-

and establishes (3.22).
DEFINITION 3.3. We shall denote by L the mapping from C[-:, 0]-+

given by (3.22).
COROLLARY. L is a continuous linear mapping from C-, 0] --+ R".
Proof The proof is an immediate consequence of Theorem 3.1 since

q C[- r, 0] - BV[ :, 0] is continuous.
We now want to consider the problem posed by (3.1)-(3.3) when T

To this end we shall allow T in (3.3) to be infinity if for each q,o e C[-r, 0] the
cost functional in (3.3) can be made finite over R+ for some choice ofu e Lz(R +, Rm).
If this is the case we shall denote the cost by C(u, dp,o, to,

THEOREM 3.2. Assume Hypothesis H holds and let L be as in Definition 3.3
and O be defined by (3.21). Consider the linear differential-difference equation given
by

(3.25)
Ye(t) Aox(t + Alx(t- z)- BU-1B*Lxt,

x(t) to -c __< =< to,
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and let x(t, dPto) denote the solution of(3.25) and xt(Cto) the corresponding point in

C[-, 0. Then for any sequence of points {T,} = R+ such that lim,
the following holds"

(i) lim,_. x"(-, bto, to, T,) xt(b,o for each e [to,
(ii) lim,_ m(qbto, to, T,) 0(bo, bto and

(iii) the point u e L2(R +, R") given by u(t) -U-1B*Lx(t, dpto) optimizes the
cost functional C(., d?to, to, c).

Proof of(i). Notice that by using the equation for the optimal control, (3.9),
and the Property 3 we can form for any n and __> to the expression

(3.26)

Hence,

(3.27)

Let

xm(t, 4),o, to, T.) x(t,

S(t s)Be- lB*[L(s, to, Tn))to LXs(Cto)]ds

S(t s)BU-1B*[L(s, s, T,)x’(. o, T,, dpto) Lx(dPto)l ds.

xm(t, dpto, to, Tn) x(t, dp,o)l

< S(t s)BU- ’B*C(s, s, T,)[x’(., to, T,, dPto) x(dpto)] ds

+ S(t s)BU- 1B*[L L(s, s, T,)]x(4,o) ds

(3.28) r,(t) M, e(t- S)lBU- ][L L(s s T,)]x(b,o)]]ds

There exist constants M5 and a > 0 such that

(3.29) ]S(t s)BU- B*L(s, s, T,)I _-< Mse(t-).
Hence using (3.27), (3.28) and (3.29) we can make the estimate

Ix(t, 4,o, to, T.) x(t, 4,o)1
(3.30)

<__ r,(t) + M Ix"2(’, to, T,, qS,o x(Ch,o)le’- ds.

Observe that for fixed the left-hand side of (3.30) also majorizes the expression

x"(t + o, 4to, to, T,,) x(t + o, @o)1
as long as to<= t-_<_ t+o_<_ t. Thus

xT(’, 4),o, to, T) x,(
(3.31)

<= r,(t) + Ms ]x’(., to, r,, 4,o) Xs(4),o)l e’’- ds.
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Using Theorem 3.1 and the Lebesgue dominated convergence theorem we can
show that r,(t) 0 as n o. Thus by Gronwall’s inequality (see, for example,
5, p. 37, Prob. 1]) it follows that lim,_. xT’(., b,o, to, T,)= x,(bo for each

[to, ).
Proofof(ii). This is a consequence of Theorem 3.1 and the fact that

Proofof(iii). Let

(3.32)

(3.33)
and

(3.34)

Q(to, T,)(dpto, qbto) m(c/)to, to, T,).

x.(t) x(t, +,o, to, T.),

hi(t) U- 1B*Lxt()to)

u,(t) -’3*/{t, t, T,)x,( 4),o, to, rn).

Since IL(t, t, T,)I =< M4 for all n, L(t, t, T,)4) L(t, t, 4)) for all b e C[-z, 0-] and
by part (i) above x’(., bo, to, T,) - x(bo as n - , we can show that

lim L(t, t, T,)x,(., b,o, to, T,)= Lx,(c/)).

Hence using the notation in (3.32)-(3.34) it is easy to prove that for each e [to, ),

(3.35)
lim [Wx,(s). x,(s) + Uu,(s). u,(s)] ds
tl--

[Wx(s, 4),o)" x(s, 4),0) + Uu(s) u(s)] as.

From this it follows, since Hypothesis H holds, that

lim m(qbto, to, T,) >= lim [Wx(s, dpto)" x(s, dAo) + Uu(s). (s)] ds.
tl-+ t-+

(3.36)

Suppose strict inequality holds in (3.36). Then for some

m(qbto, to, T) > [Wx(s, dpto), x(s, qbto) + Uu(s) u(s)] ds,

which is impossible. Hence equality holds in (3.36).
On the other hand, suppose that the optimal cost is attained by - u and

C(, qS,o, to, oo) < ((qb,o, qSto). Then for some n it must follow that C(, qS,o, to, T,)
<= C(, q),o, to, oo) < m(qb,o, to, T,) which is also impossible. Thus the optimal
control is given by (3.33) and the optimal cost is ((bto, 4%).

COROLLARY 1. IfHypothesis H is satisfied, then there exist positive constants fi
and M6 such that solutions of(3.25) satisfy the inequality

(3.37) Ix,(b,o)l M6e-"-t)14)tol, to,

that is, (3.25) is exponentially stable.
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Proof We complexify the spaces C[-, 0, R" and R" in the usual way and
observe that because of Theorem 3.2,

Wx(t, dpto), if(t, to)dt <

for all bto e C[-r, 0]. Hence (3.25) is asymptotically stable (see, for example, [12]
or [15]). But this implies that all the eigenvalues associated with the semigroup
generated by (3.25) lie in the right half-plane Re Z < 0. This is sufficient to guarantee
the conclusion of the corollary (see, for example, 12]).

4. In this section we give a necessary and sufficient condition for Hypothesis H
to be valid.

First observe that if the uncontrolled system

(4.1) Yc(t) Aox(t) + A,x(t- )

is asymptotically stable in the sense that all solutions tend to the origin as tends
to infinity, then Hypothesis H is valid. This is because asymptotic stability for
(4.1) implies exponential decay (see, for example, [12]). It is known (again see
12]) that solutions of (4.1) with values in the complex version of C[ r, 01 generate
a semigroup of operators, T(t), which has an infinitesimal generator A, and A
can have at most a finite number of eigenvalues lying in any right half-plane.
Moreover, the complex version of C[-r, 0] can be decomposed into a direct sum
of two closed subspaces P and Q, with P finite-dimensional, which enjoy the
properties that T(t)P

_
P, T(t)Q

_
Q, AP

_
P, the spectrum of A restricted to P

lies in the half-plane Re Z __> 0 and T(t)IQ is exponentially stable. Hale [12] has
also shown that on P solutions of (4.1) are determined by an ordinary differential
equation of the form

(4.2) 3)(t) Fy(t),

and that the projections of solutions of (3.1)-(3.2) on P are described by solutions
of an ordinary differential equation of the form

(4.3) p(t) Fy(t)+ Bu(t),

where/ is a linear mapping from the complex m-space into a finite-dimensional
complex linear space which has the dimensions of P (see, for example, 12, p. 122]).
Thus we can state the following theorem.

THEOREM 4.1. A necessary and sufficient condition for Hypothesis H to hold is
that the system (4.3) be completely controllable.

Proof Assume that (4.3) is completely controllable; then given any
4 C[-r, 0] let 4)p denote its projection on P. There exist u Lz(R+, Rm) and
T > 0 such that u(t) 0 on IT, oe) and the solution x,(., b) of (3.1) has its pro-
jection, x(., b), on P reach the origin of P, Op, in time T. But then since u(t) 0
on IT, oe), the solution of (3.1) on IT, ) is really a solution of (4.1) which lies
in Q. However, all solutions of (4.1) with values in Q are exponentially stable.

On the other hand, if (4.3) is not completely controllable, then because (4.2)
has its entire spectrum in Re Z > 0 there exists 4)e P such that all solutions of
(3.1)-(3.2) with 4) as initial value are uniformly bounded away from Op (see, for
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example, [17]). Hence Hypothesis H cannot hold since

fl Wx,(t, ok). x,(t, ok) dt

diverges for all u Lz(R +, Rm).
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THE RITZ-GALERKIN METHOD FOR ABSTRACT
OPTIMAL CONTROL PROBLEMS*

JAMES W. DANIELf

Abstract. This paper studies the Ritz-Galerkin procedure and abstract computational imple-
mentations of it as applied to solve abstract optimal control problems of the form" Minimize f(x, u)
over the set of (x, u) satisfying G(x, u) 0 and possibly additional convex constraints (x, u)s B. The
specific model problem has f(x, u) c(t, x(t), u(t)) dr, G(x, u) (t) + s(t, x(t), u(t)), and, say, B

{(x, u)’lx] <= 1, [u] =< 1}. Included in the computational procedures are generalized finite difference
methods.

Consider the following basic optimal control problem: Minimize

(1.1) f(x, u) c(t, x(t), u(t)) at

over the set of functions (x, u) satisfying the differential equation

(1.2) Y(t) 4- s(t, x(t), u(t)) 0 for almost all in [0, 1, x(0) 0,

and the additional control constraints

(1.3) ]u(t)] =< 1 for almost all in [0, 1].

We suppose that this problem has a unique solution (x*, u*) in some space X U.
The simplest direct Rayleigh-Ritz method for treating this problem is well known
and has been analyzed rather carefully [9], [7]. We simply let U, be a finite-
dimensional subspace of U and solve the above problem again with the additional
restriction u, U,. Since x, is uniquely determined from u. via (1.2), f(x,, u)
becomes a function of only finitely many variables u, and can "easily" be mini-
mized to yield an approximate solution to the original problem that can turn out
to be quite accurate [1], [2]. In practice however one cannot solve (1.2) exactly for
x from u except in special cases, for example when s(t, x, u) Ax + Bu with A and
B constant;instead a numerical method must be used. If we approximately solve
(1.2) by the Galerkin method in which x is chosen as an element of a finite-
dimensional space X, c X satisfying, say,

/

(1.4) | [,(t) + s(t, x(t), u,(t))]z(t) dt 0
d 0

for some finite set of functions z, the overall procedure of keeping u U,, x X,,
and approximating (1.2) by (1.4) is called a Ritz-Galerkin method. Since (x,, u,)
as determined by (1.4) no longer in general satisfies (1.2), the usual simple con-
vergence proofs for ordinary Ritz methods do not apply; we give a convergence
proof in 2.
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Example. Suppose for U, we take the piecewise constant functions with joints
at the equally spaced points ti t,,i i/n for 0 <= _< n, for X, we take the piece-
wise linear functions with the same joints, and for the functions z in (1.4) we choose
the n functions

if . [ti, t+l),
for 0 _< 1.zi(t)=

0 elsewhere, -<-
Then the Galerkin equations (1.4) become, in terms of x,, x,(t) and u,, u,(ti),

(1.5) x,,i+ Xn,i -’]-" S(t, Xn(t), bin,i)dt 0 for 0 =< =< n 1.

We immediately observe that (1.5) will be difficult to solve unless s(t, x, u) is
c(t, x,(t) u,(t)) dt will be difficultsimple, in addition, evaluation of f(x,, u,) o

as well. Thus we need a further computational modification of the Ritz-Galerkin
method in order to implement it. One obvious approach would be to replace
(1.5) by

(1.6) Xn,i+ Xn, + -s(ti, Xn,i, Un,i) 0 for 0 =< _<_ n 1

and to evaluatef(x,, u,) approximately as

(1.7) ,1 c(ti, x,,i, u,,i)
/’/ i=0

Roughly speaking (1.6) amounts to replacing (1.4) by

[n(t)Z 1() -]’- s(t, dt 0Xn(t), Un(t))z2(t)]
0

for the set of pairs (zl, z2), where zl is the indicator step function used above and
z2 is a Dirac "function" at t. In 3 we examine abstract models of this computa-
tional process.

Thus far we have not considered additional state and control constraints.
If we have control constraints of the simple form ]u(t)[ __< 1 almost everywhere--or
more generally u(t) e C almost everywhere for a fixed set C, the constraint ]u,(t)] =< 1
almost everywhere is easily implemented in terms of the finitely many variables
u,, by means of ]u,,] =< 1 for 0, 1, ..., n. Thus there is usually no difficulty
implementing discrete versions of control constraints;state constraints however
can cause some problems. It is quite possible to construct examples--see our
4--in which there are no points satisfying the discretized control, system and

state constraints but in which there are points satisfying all the continuous con-
straints. For this reason, we shall have to examine in 4 how one can conveniently
treat complicated constraints in addition to the systems dynamics constraints
(1.2).

2. The basic Ritz-Galerkin method. For simplicity, we describe our abstract
theory in a Hilbert space setting, although essentially all that is needed is a space
that is the dual of another and that has weak*-sequentially compact spheres such
as does L(0, 1), any reflexive space, or the dual of a separable space. For nota-
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tional convenience, we use the same symbol for norms in all spaces, where the
context will make the meaning clear.

Let X and U be real Hilbert spaces and let G: X U Z, a real normed
linear space, be continuous from the product norm topology to the norm topology.
Let f be a norm continuous and weakly lower semicontinuous functional on
X U and let B c U be a closed convex set. We consider the problem of mini-
mizing f(x, u) over the set

(2.1) C= {(x, u) e X x U; G(x, u) O, u e B}.
Although we could explicitly assume the existence of a solution to our mini-

mization problem, some hypotheses that we shall need later serve to guarantee
such existence; therefore we henceforth assume the following hypotheses.

HI. For each u U, there is a unique x x, X solving G(x, u) 0, and if u
ranges over a bounded set then the resulting set of x, is bounded.

H2. G(x, u) is weakly sequentially closed at zero in Z, that is, if (x,, u,) and
G(x,, u,,) converge weakly to (x, u) and zero respectively, then G(x, u) O.

H3. f(x, u) tends to infinity with Ilull and u U.
By the usual arguments using minimizing sequences 7], it is easy to show that

under hypotheses Hl-H3 there exists at least one solution (x*, u*) to our minimiza-
tion problem.

We now describe the Ritz-Galerkin discretization. Let X,,, U,,,Z’,, be
finite-dimensional subspaces of X, U and Z’ (the dual space of Z) respectively for
each n. Let r, denote orthogonal projection in X onto X,, and let b, denote
orthogonal projection in U onto B 71 U, which is assumed to be nonempty. In
many cases of interest, when B {u ]u(t)] =< 1} for example in L2(0, 1), if u e B,
then b,(u) is just the orthogonal projection of u onto U,. Let {z’,,i} for 1 =< =< m,
be a basis for Z’,, and let s.’Z "" be defined as s,(z)= ((z’,,i(z)))i"2 a. Our
approximate problem now is that of minimizing f(x., u.) over

(2.2) C, {(x,,u,)eX, x U,; s.G(x,,u,) 0, u,e/},
which we assume is nonempty. We assume also the following hypothesis.

H4. For each u, U,, there is a unique x, X, such that s.G(x,, u.) 0, and
if there is a constant ca such that Ilu,[I _<- ca for all n with u. B, then there is a
constant c2 such that the generated x. satisfy Ilx,[{ _<- c2.

First we wish to show that there are some points in C. near to (x*, u*).
LEMM 2.1. In addition to the preceding hypotheses, assume the following ones.
H5. There exists a constant c > 0 such that [[s.(z)l[ -< c[[z[[ for all z Z and

such that ]]s,a(x,, u,) s.G(y,, u.)][ _> cllx. y.]] for all x,, y, X, and
u, eB (’l U,.

H6. lib,(u*)- u’l{ + lira,x* x*[[ 0 as n .
Define r,(x*, u*)= (r,x*,r,u*)6 C. via r,u*= b,(u*) and r,x*= w,, where

s.G(w,, r,u*) O. Then Ilr,(x*, u*) (x*, u*)ll 0 as n --, .
Proof We need only show IIx* r.x*ll -+ 0. We have

IIx* r,x*ll <= IIx* ,x*ll + II,x* r,x*ll

5 Ilx* c.x*ll + clls.G(.x*, r.u*)- s.G(r.x*, r.u)ll

We use c as a generic constant, perhaps different in each occurrence.
(cont.)
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< [[x* rc,x*ll + clls,G(rc,x*, b,(u*)][

=< x* .x*ll + cl[6(.x*, b.(u*)) 6(x*,
which tends to zero. This completes the proof.

Let (x,*, u,*) C, satisfy f(x*,, u*,) < infcnf(x,, u,) + e, where e, >= 0 tends to
zero. We know that f(x*., u*,) <__ f(r,x*, r.u*) + , which converges to f(x*, u*),
and hence by H3 and H4 there is a constant co such that Ilx*l[ + [[u*[[ +
+ I[u,*[[ =< Co. Later we will need to know that limit points of {(x,*, u.*)} lie in C.
To this end we define

(2.3) C" (C U C,) {(x, u); Ixll / Ilull _-< Co}.
LEMMA 2.2. In addition to the above hypotheses, assume thefollowing hypotheses.
H7. G(x, u); x D, u E} is a bounded set whenever D and E are bounded sets.
H8. For every z’e Z’ and e > 0, there exists N such that n >= N implies

e > d(z’,Z’,)= inf {llz’ z’,ll ;z’, Z’,}.
If (x,,,u,,)eC"’ converges weakly to (x,u), then (x,u)eC. Moreover, if

7, =- f(x*, u*) infc. f(x, u), then 7, >= 0 converges to zero as n .
Proof Let (x,,, u.,) satisfy the above assumptions; we claim that G(x,,,

converges weakly to zero. To show this, let z’ e Z’, e > 0, and choose N according
to H8 and z’, e Z’, for n > N such that IIz’ z,[[ < e. Then, for large i,

I(z’, (x.,, u.,)) =< I(z’ z.;, a(x.,, u.,))l + I(z’.,, 6(x.,, u.)) __< l a(x.,,
which, because of H7, can be made arbitrarily small; thus G(x,,, u,,) converges
weakly to zero and so by H2 we have G(x, u) 0. Since B is closed and convex,
u B and thus (x, u) C as required. For the second part, clearly 7, >= 0. Choose
(x,, u,) C" such that f(x,, u,) infc.f(x, u)+ 1/n; since the C" are uniformly
bounded, from any subsequence of {(x,, u,)} we can choose a further subsequence
{(x,,, u,,)} weakly converging to some point (x, u), which we now know must lie
in C. Thus

0 < f(x, u) f(x*, u*) <= lim inff (x,,, u,,) f(x*, u*)

< lim inf [inf f(x, u)] f(x*, u*) < lim inf (- 7,,).
-’ Cni i-

Since . __> 0, we have

0 __< lim inf 7.i --< lim sup 7., -lim inf (-7.,.) _-< 0,

and thus 7., converges to zero.
With these basic lemmas in hand, it is now straightforward to prove our first

theorem on the convergence of the Ritz-Galerkin method, following the style of
the arguments in [6], 7].

THEOREM 2.3. Under all the hypotheses of this section, let (x*,, u*,)
_
C, satisfy

f(., u*.) < infc.f(x u.) + e., where e, > 0 converges to zero. Then {(x,*, u,*)}
is a minimizing sequence, that is, f(., u*. converges to f(x* u*) infcf(x, u), and
{(x,*, u.*)} has weak limit points all of which lie in C and minimize foyer C; iff has
a unique minimizer over C, then (x*,, u*,) converges weakly to it.

Proof By the definitions we can write f(x*, u*) infc.f(x, u) + 7, <= f(x*, u*,
+ 7, <= f(r.x*,r.u*)+ , + 7., the latter of which converges to f(x*,u*) by
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Lemma 2.1 and the norm continuity off Therefore {(x,*, u,*)] is a minimizing
sequence and, by the remarks following Lemma 2.1, it is a bounded sequence. It
therefore has weak limit points (x0, u0) which, by Lemma 2.2, must lie in C. The
weak lower semicontinuity off then implies that f(xo, Uo) f(x*, u*). The final
statement is obvious.

In this paper we shall not discuss conditions under which the weak conver-
gence concluded above can be replaced by norm convergence; once one has a
minimizing sequence, there are quite general hypotheses which allow one to
deduce norm convergence in [8], [10], [7], to which we refer the reader. The Ritz
method has been successful in unconstrained minimization problems largely
because of the excellent (essentially optimal) norm error bounds that one can
deduce; it would be good to have similar results for our constrained problem. By
using Lagrange multipliers and the Lagrangian L(x, u, z’) f(x, u) + (z’, G(x, u))
when B U, for the special case of(1.1) and (1.2), error bounds have been derived
[1], [3] under the extremely strong and a priori unverifiable (except in special
cases) hypothesis that L(x, u, z’) is uniformly convex in (x, u) for (x, u, z’) near the
optimal point (x*, u*, z’*); these bounds carry over in a straightforward fashion
to our general setting with B U, but because of the extremely restrictive hypo-
thesis mentioned above we examine this no further here.

Example For clarity we present a simple example of the above results in a
simple special case of the problem (1.1), (1.2), (1.3). In this format, let

(2.4) s(t, x, u) a(t, x) +
where a(t, x) is Lipschitz continuous in x uniformly for in [0, 1] and b(t) is con-
tinuous. Let

(2.5) c(t, x, u) q(t, x) + ru2,

where r > 0 and q(t, x) is continuous in (t, x) and convex and bounded below in x.
More complicated dependence on u than that described here can be treated
similarly, but the technical details tend to obscure the ideas and are therefore not
presented here. To put this in our abstract setting, we let U Z L2(0, 1) and
X {x; x W1’2(0, 1), x(0) 0}, where W1’2(0, 1) is the usual Sobolev space of
absolutely continuous functions having derivatives in L2(0, 1); the operator
G(x, u) Yc + a(t, x) + b(t)u satisfies H1, H2 and H7 as is easily shown. We have
B {u; ]u(t)] _< 1 almost everywhere}.

Suppose that for U, and Z’, we take the piecewise constant functions with
i}i=o chosen as theequally spaced joints at ti t, i/n for 0 < < n, with {z’,, "-1

obvious orthogonal basis, while for X, we take the piecewise linear functions with
the same joints, exactly as in the example of 1. Thus we seek to minimize

dr,t,x,i+xi+h xi(t_ ti) +ru,
i=0

where h 1/n, over the (x., u) satisfying

ftt’+ ( x" i+ x"’i(t ti)) + b(t)u,,i} dt,Xn,i+ Xn,i a [, Xn, +

X.,o=0 and lu.,l < 1
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for all i. By essentially the usual stability analysis in the numerical solution of
ordinary differential equations, it is easy to see that H4 and H5 are satisfied, where
the norm in R" is given by II(wx, ", w.)ll {h Y,".--xw2}/2o Clearly H3, H6 and
H8 are satisfied. The weak convergence asserted by Theorem 2.3 in this case refers
to L2(0, 1)-weak convergence of 2, and u, and to uniform (i.e., C[0, 1]) convergence
of x,.

3. Computational Ritz-Galerkin methods. In actual computations with control
problems, as we saw in 1, the pure Ritz-Galerkin method can be rather difficult
to implement; one would rather use discrete constraints in the form (1.6) instead of
(1.5) and evaluate costs via (1.7) instead of (1.1), for example. These discretizations
represent the result of replacing s(t, x(t), u(t)) and c(t, x(t), u(t)) by interpolating
piecewise constant functions; we now show how these ideas can be treated
abstractly.

LetX, U,Z,X, U, Z’, z’,,i, s,, B, b, and rc, be as defined in 2. Let G’X
x U --. Z have the special structure

(3.1) G(x, u) G I(X u) + G2(x, u),

where we shall treat in a different way G l(x, u), playing the role of 2 in applications,
and Gz(X u), playing the role of s(t, x, u). We suppose that we have operators p,
mapping Gz(Xn, Un) into Z. Suppose that f: X x U R is norm continuous and
weakly lower semicontinuous, with the special form

(3.2) f(x, u) g(D(x, u)),

where D maps X x U into a normed space W and g maps W into . We suppose
that we have operators q, mapping D(X,, U,) into W; the operators p, and q, in
applications will be, for example, piecewise constant interpolation mappings.
Instead of minimizing f(x, u) over Q {(x, u) X x U G(x, u) O, u B} we
now minimize

(3.3) f,(x,, u,) =- g(q,D(x,, u,))

over

(3.4) Q, {(x,, u,) e x, x u,; s,[G(x,, u.) + PnGz(xn, u,) O, u e B}.

We wish to make the same kind of arguments as in 2, with obviously necessary
modifications.

Assume that H and H3 from 2 hold.
We now need something somewhat different from H2, so we now assume the

following
H2’. If G(x,, u,) 0 for (x,, u.)e X x U and if (x,, u,) converges weakly to

(x, u), then G(x, u) 0. If G(x,, u.) + pnGz(xn, un) converges weakly to zero with
(x,, u,) e X, x U, converging weakly to (x, u), then G(x, u) O.

Again it is easy to show that at least one (x*, u*) minimizing f over Q exists.
To be sure that the Ritz-Galerkin method can be used at all, we assume the
following.
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H4’. For each u.e U,, there is a unique x.X, such that s.[Gl(x.,u.)
+ p,G2(x,,u,)] 0, and if there is a constant cl such that Ilu.II _-< c and
for u. U., then there is a constant c2 such that the generated x, satisfy IIx, <_- c2.

As in Lemma 2.1, we now show there are points in Q. near (x*, u*).
LEMMA 3.1. In addition to the preceding hypotheses of this section, assume the

following ones.
H5’. There exists a constant c > 0 such that ]]s,(z)[[ =< c]]z]] for all z Z and

such that

Is,[G(x,, u,) + p,G2(x., u,)-] s.[G(y,, u,) + p,Gz(y,, u0]ll _>- cllx. y.

for all x,, y, X, and u. B f) U,.
H6’.

lib,(u*)- u*ll / lira,x*- x*ll /

+ PnG2(gnx*, b,(u*))ll 0 as n -+

Define r,(x*, u*)= (r,x*,r.u*)e Q. via r.u*= b.(u*) and r.x*= w,, where
s,[Gt(w,, r.u*) + p.Gz(w,, r,u*)] 0. Then [[r,(x*, u*)- (x*, u*)[[ 0 as n -+

Proof The proof is an obvious and trivial modification of that of Lemma 2.1.
Now let (x*,, u*, Q, satisfy f,(x*,, u,*) =< infQ,f,(x,, u.)+ e,, where e, _> 0

tends to zero. We know now that

X* *(3.5) f,( u,) < f.(r.x*, r.u*) + e.
and we want to be able to conclude that {(x.*, u,*)} is uniformly bounded. This
requires more work then in 2. We here assume the following hypotheses.

H9. If (x,,u,)eX. U,,u, eB, and if there is a constant c such that
IIx.II / Ilu.II =< c, then Ig(D(x,, u.)) g(q.D(x,, u.))] 0 as n

H10. If u, e U. f’l B and if Ilu.[[ oo as n --+ oo, then g(q.D(x., u,)) -From the hypotheses H9, H6’, Lemma 3.1, and the norm continuity of f,
it follows that f,(r,x*, r,u*) [f,(r,x*, r,u*) f(r,x*, r,u*)] + [f(r,x*, r,u*)

f(x*, u*)] + f(x*, u*) must converge to f(x*, u*); thus from (3.5) we see that
X*f,( u,*) is bounded which implies the boundedness of (x,*, u,*) via H10 and H4’.

X* U*As in 2 we can therefore choose Co such that I}x.* + Ilu / / < Co
and define

(3.6) Q" (Q O Q,) fq {(x, u); Ilxll / Ilull _-< Co}.

Using the same kinds of arguments as in Lemma 2.2, we can easily prove the
following lemma.

LEMMA 3.2. In addition to the preceding hypotheses of this section, assume the
following one.

H7’. If (x,, u,) X, x (U, f’) B) for each n and if there exists a c such that
IIx.II / Ilu.II _-< ca, then there exists a C 2 such that 11Gx(x., u.) + p.Gz(x,, u,)[[ _< c2.

Assume that H8 from 2 holds.
If (x,,,u,,)e Q"’ converges weakly to (x, u), then (x, u)e Q. Moreover, if

2. =- f(x*, u*) infQ.f(x, u), then 7, > 0 converges to zero as n

Proof See the proof of Lemma 2.2.
With these lemmas, we now can prove convergence for the computationally

feasible Ritz-Galerkin method.
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THEOREM 3.1. Under all the hypotheses of this section, let (x,*, u*,) Q, satisfy
f,(x*,,u*.) <= inff,(x,,u,)+ e,, where , >= 0 tends to zero as n oe. Then
{(x*, u,*)} is a minimizing sequence, that is, f(x*, u*,) and f,(x*, u*,) converge to

f(x*, u*) infQ f(x, u), and {(x,*, u,*)} has weak limit points all ofwhich lie in Q and
minimizefoyer Q; iffhas a unique minimizer over Q, then (x*,, u*, converges weakly
to it.

Proof Once that we prove {(x,*, u,*)} to be a minimizing sequence, the re-
mainder of the argument follows precisely as in the proof of Theorem 2.1. To this
end, we consider the inequality

X*f(x*, u*) inf f(x, u) + , <= f( u*, + ,
Qn

L(x*., u*,) + . + . <= L(r,x*, r,u*) + , + , + .
f(x*,u*) + y. + 6. + e. +

X*where y. and e, are as defined before while 6, f( ,,u*.)- f,(x*,,u*,) and
rl, f.(r,x*, r,u*) -f(x*, u*). We already know that y, and e,---, 0 by Lemma
3.2 and the hypothesis of this theorem; 6, --, 0 by H9 and the previously deduced
boundedness of (x,*, u,*). We have q, f,(r,x*, r,u*) f(r,x*, r,u*) + f(r,x*, r,u*)

f(x*, u*) which tends to zero by H6’, H9, Lemma 3.1, and the norm continuity
of f. Therefore, shortening the above inequality to f(x* u*)<= f( u*,)+ 7,

f,( u*,) + 7, + 6, < f(x*, u*) + 7, + 6, + e, + r/,, we conclude that {(x,, u,
is a minimizing sequence. The rest of the proof follows as in that of Theorem 2.1.

Again we remark that general conditions can be used to deduce norm con-
vergence; error bounds could also be found under the restrictive hypothesis
mentioned in 2. We pursue these topics no further here.

Example. For clarity we look at the same examples as at the end of 2, namely
(1.1), (1.2), (1.3) in the special case of (2.4) and (2.5), although more complicated
nonlinearities can be treated as well. We let U, Z, X, X,, U,, Z’,, B and G be as in
the example of 2. We now let

(3.7) Gl(x, u) 2,

(3.8) Gz(x, u) a(t, x) + bu,

and let p,z and q,z both be, for any piecewise continuous function z, the piecewise
constant interpolation of z at the joints ti t,,i i/n ih for 0 N N n 1, the
piecewise constant function chosen to be continuous from the right; that is,
(p,z)(ti) z(ti) for ti <= < ti + 1. We let D(x, u) c(t, x, u) and g(w) f w(t) dt. The

n-1computational Ritz-Galerkin procedure now is to minimize h =0 [q(t,,i,x,,)
+ ru2,,i] subject to ]u,,il =< for 0 __< _<_ n, X,,o 0, and x,,i + x,,i + h[a(t,,ix,,i)
+ b(t.,)u.,] 0 for 0 _<_ __< n 1. As in 2, it is a straightforward exercise to
verify that the hypotheses in Theorem 3.1 are satisfied, allowing us to conclude the
same kind of convergence of (x,*, u, as described at the end of 2.

4. Complicated constraints. Thus far we have considered problems for which
the constraints, except for the system laws G(x, u) 0, were rather simple, namely
u e B where B f’l U, was nonempty and presumably the discrete constraint
u. e U, f3 B was easy to implement in terms of the finitely many parameters
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determining u. there were no state constraints such as x E. In the model control
problem with B {u;lu(t)] <= almost everywhere} and U. being the usual space
of piecewise constant functions with joints at {i/n}7= o, the constraint u. U. ["l B
is implemented simply as lu.,il =< for 0 <= =< n. The same approach can of course
be used on state constraints x E, such as x(1)= 3 and [x(t)l =< 3 everywhere;
unfortunately this can lead to empty discrete constraint sets.

For example [6, [7, if the set

C {(x, u); u, 2 <= x(t) _<_ 2 -+- t, 0 <- u(t) 3t on [0,

is discretized via

C. {(x., u.)" x. i+ x.,i (1/n)u.,i t2n, " Xn < 2.... .,i + t.,i and 0 =< u.,i <= 3t.,i

for i= 0, 1,...,n},

then C is nonempty while C. is empty for all n. However it is clear that there are
points (x., u.) with u. satisfying the control constraints, (x., u.) satisfying the
discrete system dynamic constraints, and x. being very near the state constraint
set; we are led to allowing the discretized state constraints to be relaxed and
expanded slightly. In this section, therefore, we wish to examine the Ritz-Galerkin
procedure when complicated constraints of the form x e E, u e B are present, for
which the requirements x. e E f-)X. are difficult to implement, leading us to
expand the discretized constraints. The question arises first as to how to discretize
the constraint x e E say, other than by x. e E I"1 X.. Consider the case when
E {x; [x(t)l-<_ everywhere} is discretized by requiring Ix,,il-<_ for

0, 1,..., n. If one lets j,, for 1,..., n + 1, be the linear functional

j,,i(x) x((i- 1)/n), then this discretization merely asks j,,i(x,)ej,,i(E)= {r;r
j,,(e) for some e e E} for 1, ..., ,. This approach generalizes.
For each n, let J, {j,,z; 1, -.., #,} be a set of linear functionals of norm

one over X let E be a closed convex subset of X. In the setting of 3, we seek to
minimize f(x, u) g(D(x, u)) over

(4.1) T= {(x,u)X U;G(x,u)=O,uB,xE}.

We instead approximately minimizef.(x., u.) g(q.D(x., u.)) over

(4.2)

where

(4.3)

T. {(x.,u.)6X. U.;s.[Gl(x.,u.) + p.Gz(x.,u.)] O,

d(a.(x.), J.(E)) <_ d., u. B},

d(J.(x), J.(E)} max inf ]j.,i(x) j.,i(e)].
<i<fn eE

Note that the requirements d(J.(x.), J.(E)) <= d. merely replace x. e E by the
requirement that j.,i(x.) lie within d. of j.,(E) for all i. Here d. describes a small
expansion of the constraint sets;its magnitude is not yet determined. We wish to
choose d. so that T. will not be empty.

Assume H1, H2’ and H3 of {} 2 and 3.
Then we have the existence of (x*, u*) as usual, if T is nonempty.
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Assume H4’, H5’ and H6’ of {} 3. Then the mapping r. constructed in Lemma
3.1 satisfies Ilr,(x*, u*) (x*, u*)ll 0. Let us define

(4.4) d*. >=
Then we can choose d.* so as to tend to zero, and r,(x*, u*) e T, if we define T, T,*
with d, d.*.

Assume H4’, H9, H10, H7’ and H8 of {} 3.
Under these hypotheses, all of the arguments leading to Theorem 3.1 can be

duplicated in our new setting, once we know that weak limits (x, u) of (x,,, u,,) T"’
(TU T,*,) {(x,u); x + Ilul _-< Co} must lie in T, as in Lemma 3.2. The

arguments of Lemma 2.2 show easily that G(x, u) 0 and u e B; the only problem
is to demonstrate that x e E. To do this, clearly we need to know that J, accurately
represents E. By the construction of T"’ from T*,, using d, d,* ---, 0, we know that
dni(Jn,(xn,), J,,(E)) -+ 0. We can conclude (x, u) e E x B from the following
assumption.

H11. If (x,i, u,,) converges weakly to (x, u) and if d.(J,,(x,,), J,,(E)) converges
to zero as tends to infinity, then x e E.

We have thus outlined the development of the following result, the details of
whose proof are easy to provide.

THEOREM 4.1. Under all the hypotheses of this section, let (x*,, u*,) e T, satisfy
f,(x,*, u,*) _< infr.,f,(x,, u,) + e,, where e, >= 0 tends to zero as n --+ oo. Then

f,(,,u*,) converge to{(x,*, u,*)} is a minimizing sequence, that is, f(x*, u*,) and x*
*)} has weak limit points all of which lie in T andf(x*, u*) infr f(x, u), {(x,*, u,

minimizefover T; iff has a unique minimizer over T, then (x*,, u*,) converges weakly
to it.

In order to implement the above algorithm, we require bounds d,* satisfying
d,* >__ Ilr,x* x*ll, so that we know by how much to expand the discrete con-
straints. The problem of by how much to expand constraints in the special case
of (1.1), (1.2) with complicated state and control constraints has been well studied.
In [4] it was shown that there exist amounts by which we can expand and prove
convergence, much as in Theorem 3.1; in [6, [7, under regularity hypotheses
on u*, it was shown essentially that lit,x* x* was (i/n), so that d,* x//n,
say, would work for large n. Most recently in [5], d, was determined as the minimal
expansion under which T, is nonempty, and it was proved, under additional
hypotheses, that d, tends to zero and yields a theorem like Theorem 4.1.

The hypothesis Hl l is interesting in itself and leads to the following
question. Given a closed convex set E in a Hilbert space X, how can one choose
J, {J,,i; 1, ..., e,} such that the weak convergence of x, to x and the con-
vergence of d,(J,(x,), J,(E)) to zero implies x e E? We are not aware of general
results in this direction. In our model control problems, one often has
E {x; m(t) <_ x(t) <__ m(t) for all t, x(i) Ci for 1, 2, ..., q}, where m and m
are continuous functions, the {} are given real numbers, and the C are given
closed sets; we have X W1’2(0, 1) as usual. Using our standard X, of piecewise
linear functions with joints at t,, i/n for i= 0, 1,..., n, we can take, n + + q and j,,i(x) x(t,,i_ 1) for i= 1, ..., n + 1, j,,i(x) x({i-,-1) for

n + 2, ..., n + + q. If x, converges weakly to x--so that x,(t) converges to
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x(t) uniformly on [0, 1J--and if d.(J.(x.), J.(E)) converges to zero, then it is easy
to see that x E.

It is also possible in some cases that one have rather complex control con-
straints for which it would be difficult to implement the discrete constraint

u. U. f-) B; this would be true for example if B {u; 0 =< u(t) <= sin (I/t) + 1
almost everywhere}. If one has a constraint set B {u; u(t) <= M(t) almost every-
where} with M continuous, it is tempting to discretize this by requiring

(4.5) u..i <= M(t..i)
This is the same as

for all i.

M(t)dt + .,
h

u.(t) dt <= - [M(t..,)- M(t) + M(t)] dt - .,

where e. is given by the modulus of continuity ofM over intervals of length h 1In.
Writing

j.,i(u) u(t) dt,

we have j.,i(u.) <= j.,i(M) + e.h 1/2, a format we can easily generalize much as in
(4.2). Thus it is straightforward to generalize the results leading to Theorem 4.1 to
allow expansions ofthe control constraints so as o include the simple discretization
of (4.5). We leave the simple details for the reader.
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ON THE MINIMIZATION OF A QUADRATIC FUNCTIONAL
SUBJECT TO A CONTINUOUS FAMILY OF LINEAR

INEQUALITY CONSTRAINTS*

GRACE WAHBAf

Abstract. The problem of minimizing a positive definite quadratic functional subject to a con-
tinuous family of linear inequality constraints is studied. Upper and lower bounds are given for the
value of the functional at the minimum. In certain cases, the given bounds coincide, and an explicit
formula for the solution is given. Convergence rates for a sequence of (computable) approximate
solutions obtained by discretizing the constraint set are established.

1. Introduction. Let oug be a separable Hilbert space of real-valued functions
and let J(f) be a quadratic functional over with mllf{[ 2 J(f) <= Mllfll 2 for
some 0 < m =< M < . Then, without further loss of generality, we may take as
a norm

(1.1) Ifll2 d(f)

and 2(f,fz)e f + f21l- Ilf Ie- IIf211. Let T D U E, where D is a
finite set of points not in E and E [a, b] is a closed, bounded interval. Suppose
{qt, T} is a family of elements in g, and (t) a real-valued function defined on
T such that

(i) every finite subfamily of {rh, T} is linearly independent,
(ii) 0 < (t), t T.

We consider the basic problem"

(1.2) Minimize d(f)(= Ilf I)
subject to

(1.3) (t) <= Qlt,f)e, T.

A solution f* of this minimization problem always exists and is unique.
This follows since the feasible set 5 of functions satisfying (1.3) is closed and
convex in ug, being the intersection of a family of closed half-spaces,

e N ,,
where {f:(t) =< (r/,,f)r}. Thus, 5e has a unique element of minimal norm.

The main result of this paper is the establishment of convergence rates for
approximate solutions f,* obtained by discretizing the constraints of (1.3). Here
f,* is the unique solution of the problem (1.2) subject to

(1.4) (t) <=
where T, D U E, and E, {a t < 2 < < b}.

* Received by the editors September 28, 1971, and in revised form January 27, 1972.
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supported by the Wisconsin Alumni Research Foundation, and by the U.S. Air Force Office of Scienti-
fic Research under Grant AF-AFOSR 69-1803.
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Let Q(s, t) be the symmetric kernel on T x T defined by

1
(1.5) Q(s, t) (,rh))e, s, e T.

Since the {rh, e T} are linearly independent, we always have that Q is positive
definite in the sense that

k

(1.6) CicjQ(si, Sj) > 0
i,j=

for any finite constants c,c2,..., ck not all 0, and distinct s,s2,..., sk T.
In this note we reduce the study of the solution f* and its approximants f,* to the
study of the properties of the kernel Q. In 2 we show how this reduction is
carried out. In 3 we find upper and lower bounds on Ilf*ll in terms of Q.
When the upper and lower bounds coincide we may determine f* by inspection.
This easy result is summarized in Theorem 1. Rates of convergence of f* to f*
in terms of the continuity properties of Q on E [a, b] are given in 4, Theorem 2.

The convergence results are germane to questions raised by works of Daniel
[2] and Mangasarian and Schumaker [7]. In 5 we discuss these applications
and collect a number of examples, other applications, and remarks.

2. Transformation of the problem to canonical form. We now introduce a
Hilbert space associated with Q which will be convenient in the sequel. Let Qt be,
for each fixed t, that function defined on T by

Q,(s) Q(s, t), s e T.

Let 3g2 be the vector space of real-valued functions defined on T of the form

(2.1) gO= Z c,Q,
i=1

for some finite l, finite constants c,c, ..., c and any s,sa, ..., s points in T,
with the inner product induced by

(2.2) (Q, Q,)t2 Q(s, t).
Equation (2.2) induces an inner product on 3(2 because of (1.6). Let Wo be the
completion of W2 with this inner product. 3t0 is the reproducing kernel Hilbert
space with reproducing kernel Q (see, for example, [9, 6.2]). Q, has the usual pro-
perty for reproducing kernel spaces, namely,

(2.3) (Q,, g)o g(t), g "o, T.

The reader may verify (2.3) by noting that if

i=1

and

Ilgk gll O,
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then

(2.4) (Q,,gk)t2 Q,, ci,Qs,k ciQs,k(t g(t)
i=1 (2 i=1

and

so that gk(t) converges for each fixed to (Q,, g)o, giving (2.3). The span of the
family {Q,, e T} is dense in fit2, since (Q,, g)t2 0, e T, implies g 0.

Let V be the closure of the span of {q,, e T} in 3. For any fe 3, let

f= fl + f2, where fl e V and f2 e V +/-. Since (rh,f2)e 0, e T, then f satisfies
(1.3) iffl satisfies (1.3) and it is obvious that the solution f* must be in V. There
is an isometric isomorphism between V and 3’t2 generated by the correspondence

This follows since {r/t, e T} span V, and

(2.7)
(s)(t)
(r/s, r/,)ae Q(s, t) (Q,

Furthermore, fe V g e vft2 if and only if

(2.8) a(t)(r/"f)av g(t) (Q,, g)o., e T.

Iffe V g e o, then

(2.9)

to

fllo- Ig .
Thus the minimization problem may now be reformulated as" Find

(2.10)

subject to

(2.11)

Minimize

1 <= (Q,,g)o. g(t), t6T.

Then, if g* is the solution to this problem, the solution f* to the problem of (1.2)
and (1.3) is given by finding f* which corresponds to g* under the isomorphism

"" of (2.6) and (2.8),

1
(2.12))a(t--7(r/"f*>at g*(t), e T.

In many cases (2.12) may be solved analytically for f*, given g*, by noting
that if

(2.13) g*(t) cjQt(t
j=l



MINIMIZATION OF QUADRATIC FUNCTIONAL 67

for some constants {cj)= 1’ then

(2.14) f*(t) c]h(t)/(t),
j=l

and if

(2.15) g*(t)

then

(2.16) f*(t) lim Cjllt,(t)/O(tjl).
l--* j=

3. Determination of the exact solution in certain cases. In certain cases, the
solution f* may be found by inspection. In any case, Theorem 1 gives upper and
lower bounds for f* IIe,

THEOREM 1. Suppose {qt, T} and satisfy (i) and (if) of 1 and Q is defined
by (1.5). Let T’ {s:s T, inftT Q(t) > 0}. Then

(i)
V/O(s, s)

(3.1) inf sup > IIe, , --{777;f f* > sup-----,

where the left-haM side is interpreted as oo if T’ is empty.
(if) If there exists a (necessarily unique) s, for which

1
(3.2) sup

and

(3.3) Q(s,, s,) inf Q(s,, t),
tT

then
1

(3.4) f* Q(s,, s,)a(s,)

Proof The right-hand inequality in (i) follows from the Cauchy-Schwarz
inequality"

(3.5) o(t) __< <r/t,/*>ae <= Ilrhllell/*ll o(t)v/Q(t, t)ll/*ll.

The left-hand inequality in (i) follows by considering elements of the form
given by

(3.6) gs
inftr Q(t)

for s T’. Each such g satisfies the constraints (2.11) so that

(3.7) inf IIgll inf
IIQIIe inf sup >
tT
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If there exists an s, satisfying (3.2) and (3.3) it must be unique, since, by (1.6),
if s, - s**,

(3.8) Q(s,, s,)Q(s**, s**) > Q2(s,, s**).
To prove (ii), note that if (3.2) and (3.3) hold, s, e T’, and

x//Q(s,, s,)sup 1 x//Q(s, s) 1
(3.9)

x//Q(s,, s,) teT Q(s,, t) >= inf sup __>

so that

(3.10) gs, llQ x/Q(s, s,)
Hence, by the uniqueness of the solution,

Qs,(3.11) g* gs* Q(s,, s,)
and, by (2.13) and (2.14),

(3.12) f* Q(s, s,)offs,) rl,.

4. Properties of the approximate solution. Let f,* be the (unique) solution to
the problem"

(4.1) Minimize f ae

subject to

(4.2) a(t) <= (rh,f)ae e T,,
where T, {s1, $2, ..., Sn, S e T}.

f,* is obtained as follows" For any fe ,, we may write

f= ciq,/a(si) + p,
i=1

where (r/,, p)e 0, e T.. Then (4.1) and (4.2) become"

(4.3) Minimize cQ,c’ + (p,

subject to

(4.4) < Qnc’

where c (cl, 2, "’", Cn) and Q, is the n x n matrix (of full rank) with (i,j)th
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element

1
[Q,]ij <q,, r/j>av Q(si, sj).

O(Si)O(Sj)

It is obvious that p must be 0 in (4.3). Thus the problem is reduced to finding c

to minimize cQ,c’ subject to (4.4), a standard quadratic programming problem.
Let c* (c’, c, ..., c,*) be the (unique) solution to this problem.

Thus, f,* V is given by

(4.5) f,* c.*,rl,/e(si)
i=1

and

(4.6) g,* c.*,Qs,
i=1

is that element in Q corresponding to f,* under the isomorphism of (2.6). g,* is
the solution to the problem"

(4.7) Minimize IgllQ

subject to

(4.8) <_ (Q,, g) g(t), e T,.

It is our purpose to study the behavior of IIf* -f’lifo. Since IIf* -f* e
Ig,*- g*llo, we may restrict our attention to Ilg,*- g*ll. For notational

simplicity we let T {i}li-1 U [a,b], where {i}i_ D consists of/isolated

points not in [a, b] E. The argument below may be carried through for [a, b]
replaced by any finite union of closed bounded intervals. The study of the behavior
of lg,* g* Q now proceeds by studying Q. We have the following lemma.

LEMMA 1. Let T D U E, T, D U E,, where E is a closed, bounded interval
[a, b] and E, {a tl < t2 < < t, b}, with A maxilti+ til. Let Q
satisfy (1.6) and have continuous mixed partial derivatives of all orders to 2p 2,
and bounded mixed partial derivatives to order 2p- on E x E. Then there
exists k k(Q) depending only on Q such that

(4.9a) g*,(t) kllg*lloAminp- 1/2,2)

(4.9b) => k g* QAmin(p- 1/2,2), T.

Proof Relation (4.9b) follows from (4.9a) since g lie g* I. Since D T,,
it is only necessary to consider e E. Let {d}= be any set of real numbers with

d>0," d 1 Then sinceg(t)> 1," dig(ti)> 1 and

i=1 i=1 Q

(4.0)
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Thus

(4.11) g*(t) Ig,*ll2

Now, for p 1, 2, we find, for each t, a set of {di} for which

(4.12)
i=1

-<_ k(QW’-

For [tj, tj+ 1], let d O, =/= j,j + 1, and

(tj+ t) (t-- tj)(4.13) d (t+ tj)’ dj+
(t+ tj)"

Then, for Its, t+ ],

IIG dsQ,j ds+ xQt.,+, 2 Q(t, t) 2dQ(tj, t) 2dj+ xQ(t+ a, t)

(4.14) + dQ(tj, tj) + 2djdj+ 1Q(tj, tj+ 1)

+ d+ 1Q(tj+ 1, tj+ 1).

For p 1, Q has a bounded first derivative in each variable and

(4.15) Q(u, v) Q(tj, tj) + (u tj)kl + (v tg)k2,
where k and k2 are bounded in absolute value by

(4.16) max -Q(t, x)

Substituting (4.15) into (4.14) with u, v replaced by tg, and tg+ as appropriate,
the zeroth order terms all drop out, leaving only terms involving (u- tj) and
(v tj). So, for e [tj, tj+ 1], there exists k k(Q) such that

(4.17) Q, dQtj d+ 1Qtj+, 2 <= k2A, p 1.

For p 2, Q has continuous mixed partial derivatives of order 2 with the
third order mixed partial derivatives bounded. Thus we may write

Q(u v)= Q(tj, tj)+ [(u tj)+ (v tj)]z + [(u tj)2 (v -!tj)2.]2!
+

2 2

(4.18) (u- t)(v t) (u- t)’ (v- t)-+
2 i=0ZL i! (3 i)!

ki+3,

where

(4.19)
(2

o2 xz Q(tj, X)lx=t,

2
fi axayQ(x,
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and the ki, 3, 4, 5, 6, are all bounded in absolute value by the bound on the
absolute third mixed partial derivatives of Q.

Substituting (4.18) into (4.14), some tedious calculations, partly reproduced
in the Appendix, show that all but the third order terms cancel out, giving the
existence of a k k(Q) such that

(4.20) Q, djQ,j dj+,Q,j+, kZA3, p 2.

To begin the study of the case p >= 3, we next show that, if g Wo with p 3,
then g"(t) exists and is continuous for E. First, note that, for any 6,

g(t + 26)- 2g(t + 6) + g(t)
(4.21) 62 (g, (Qt+2, 2Qt+ + Q,)/62)o..

Next, letting Q;’, (Qt+2- 2Qt+ + Q,)/62 it can be shown that
rn 1, 2, ..., is a Cauchy sequence in Wo as 6m T 0 and as 6m $ 0 through any
sequence of real numbers, and that the two limit elements are the same. This
demonstration proceeds by expanding out Q;’,.. Qt’i, , using (2.2) and then
using the hypothesis that c34Q(u, U)/I2NZu exists and is continuous on E E.
The limit element, limm_, 0 Q,,, Q, say, is given by

and

(4.22)

Thus

2
Q’(t’) Q(u,

4

(4.26)
tJ

+ dj+ (tj+ u)g"(u)du

(t+ t) <
k__<__ k [g[[o

2 [[g[ 2A2’

(4.23) lim
g(t + 26)- 2g(t + 6) + g(t)

-o 62 (g’ irn0
(g, Q’)e h(,t), say.

h is continuous, since [h(tl)- h(t2) [<g, Q’’, Q;’>el ilglie Q’, Q’t’2IIQ 0
as t t2, again by the continuity of 4Q(u, v)/2u2v. By a similar argument, we
prove that g and g’ are continuous, so that h(t) of (4.23) equals g"(t). Finally, then,

(4.24) [g"(t)l < llgllellQ’lle N ]gllosp [2OuvQ(u 1/2u=v=t

We may now expand g in a Taylor series as

(4.25) g(ti) g(t) + (t t)g’(t) + (t u)g"(u)du.

For e [tj, tj+ ], choose {di} as in (4.13). Then, with the aid of (4.24),

Ig(t) dg(t) d+ g(tj+ )l dj (tj u)g"(u) du
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where

c4
(4.27) k sup Q(u, v)2UO2V u=v=tl 1/2

Thus we have proved (4.9a) for p >__ 3.
We may ask if these rates may be improved upon. Suppose
(i) c3Q(t, t’)/c3t exists and is continuous on E E for -: t’, 0, 1, 2, ..., 2p,

c3Q(t, t’)/c3t exists and is continuous on E E for 0, 1, 2, ..., 2p 2.
(ii) lim, ,, (2p- 1Q(t, t,)/cqtZp- and limt+ ,, 2p- *Q(t, t’)/C3t2p- exist and are

bounded for all t’ e E.
It may be shown (see [11] and [12]) that if(i) and (ii) hold, there exist constants

{el} for which

(4.28)

Examples may be found in [10] for which it can be shown that this rate is exact.
We now give an example, with p 3, which demonstrates that this method

of proof cannot be used to show that g*,(t)>__ 1- kllg,*llQA2+ for e > 0. The
method of proof depended on finding {d,} such that di >_- 0, ’--1 d, so that

(4.29) kllgllQAmin(p 1/2,2)

for all g e e and all t, where k depends only on Q.
Let

Q(s, t)
sits

+ ’ (s u)2+ (t u)2+
du,j=O-- JO 2! 2!

where

; if x>O,
(x)+

otherwise.

Q satisfies the hypothesis of Theorem 2 with p 3. Then e {g:g" absolutely
continuous, g"’ c2[0, 1] } and

g()(0)g()(0) j*l(gx, gz)e + g’;’(u)gz’(u)du.
j=O J! o

Here we may expand g in a Taylor series with remainder to order 2 and have

(4.30)

g(t) g(ti) d(t)
i=l

g(t)-
i=x

{g(t) + (t t)g’(t)+

f,’’(t’ u)2
+ 2!

g’"(u) du di(t)

(t t)2

2
g"(t)
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Here

u)------g"’(u) au < au [g’"(u)] au
2! (2])2 -t

< (ti- t)5/2

Thus, in order that the right-hand side of (4.30) is o(A2) independently of the
choice of g we need that

(4.3 ) (t t) a, o(:),
i=1

(4.32) (t 02 d o(A2).
i=1

For (4.32) to hold with d > 0, d 1, we need for each that there be an such
that (t- t) o(A2). But suppose (t + tj+ a), where (t+ tj) A; then
(ti t)2 (A) for all i, so that (4.32) is impossible.

We are now able to prove the following theorem.
TnEORE 2. Let T, , Q aM A be as in Lemma 1. Then

(4.33) f.* f* II,o o(mmin(p- 1/2.2)/2).

Proof We may replace IIfW- f*ll by Ilgn*- g*l . Let k be as in (4.9a)
and let ,, k g* Q

mmin(p- 1/2,2). Then by Lemma we have

(4.34) infg.*(t) >= 1 7..

Since

(4.35) 1_7.>__1 and

we must have

(4.36)

and so

(1 7.) llg.*llQ Ilg*llQ IIg*llQ Ilg* Q(1 T.)

(4.37) IIg.*lle Ig*lld 0.)

for some 0 [0, 1], or

(4.38) IIg.*ll--IIg*ll(1 207. + 027.2),

(4.39) 211g*112 g,7, > II- Ig.*l - <g*-g,*,2g,*)o + (g*-g.*, g*

Now, (g*, g,*)e >= (g,*, g,*)Q since g* is in the closed convex set of functions
satisfying the constraints for e T,, and g,* is the element of minimal norm in this
convex set. (Draw a picture.) Thus, we have (g* g,*, 2g,*)Q => 0 and

3 Amin(p- 1/2,2) 2llg*ll. > IIg* * f* *(4.40) 2kllg*llo.,. g. II f. IIe.
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5. Remarks and applications. 1. As an example of a Hilbert space and quad-
ratic functional, let Yg be the Sobolev space Wm’2,

Win,2 { f:f(m- X) absolutely continuous, f(m) e P2[0, 1]}
and

(5.1) J(f) 2j(f(J)(0))2 + (Lmf(t))2 dt,
j=0

where 2i > 0, 0, 1, ..., m 1, and

(5.2) L,,f(t) a(t)f()(t), am(t) 4 0 in [0, 1],
j=0

a(t) e C2", j O, 1, 2, m.

This Hilbert space is such that all the linear functionals N defined by Nf f(v(t),
e [0, 1], are continuous for v 0, 1, ..., m 1.

Whenever the evaluation functionals Nff(s) and Nf-f(V(s),
v 0, 1,..., m- 1, are all continuous in , then strong convergence entails
pointwise convergence of f*,((s) to f*((s) for v 0, 1,.-., m- 1, as follows"
If R is the representer of N, that is,

(5.3) Nf (R,f}ae f()(s),

then

(5.4)

v=0,1,...,m- 1,

2. Atteia [1] and Ritter [8] considered minimizing

J(f) (Lmf(t))2 dt

in Win’2 subject to the constraints
m-1

(5.6) (t) <= Q(t)f(J)(t) <= fi(t),
j=O

for some real numbers {cj(t), j 0, 1, ..., m 1, e T,}, where T, is a finite set,
T, {tx, t2, ..., t,}. For fl(t) oe, this problem is of the type considered here,
with {r/t, te T,} being the representers of the continuous linear functionals
j=o cj(t)Nt, e T,, appearing in (5.6). However, J(f) of (5.5) is only a seminorm
on W"’2, and the solution may not be unique. It was shown in [8] that the solution
of this problem can be reduced to the solution of a (finite) standard quadratic
programming problem. This problem was also discussed by Jerome and Schumaker
[3], who also considered continuous equality constraints.

3. Mangasarian and Schumaker [6] and Laurent [5] considered generaliza-
tions of the problem in the above remark, obtaining them by enlarging the
constraint set by replacing T, by T D U E, where D is a finite set of points and
E is a finite union of closed, bounded intervals. An example of such a set of
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constraints is"
m-1

ao(t) <= Q(t)f)(t) <= rio(t),
j=O

tD {,, 2,
m-1

OF,(t) <= E bij(t)f(J)(t) <= fle,(t),
j=o

teEi [0,1], E [,_J E i, i= 1,2,-..,k.

Various characterizations of the (possibly nonunique) solutions are discussed.
4. Mangasarian and Schumaker [7 discussed a completely discrete analogue

of the problem of Remark 3. That is, Wm’2 is replaced by a Euclidean space, and
differential operators and derivatives are replaced by difference operators and
divided differences.

5. Daniel [2] considered an approximate method of solving the minimization
problem of Remark 3 with J and the constraints as in (5.5) and (5.7). Daniel’s
procedure consists of replacing E in (5.7) by the discrete set Ei, c E,

A solution f,* to the problem’ minimize J(f) of (5.5) subject to

m-1

o(t) <= 2 CJ(t)f(J)(t) <= rio(t) t D,
j=o

(5.8) m-1

OEi(t) Z bij(t)ftJ)(t) <- flEi(t)’ t@ Ein
j=o

may be found by the methods described in [8, and is taken by Daniel as the nth
approximation to the solution of the original minimization problem with con-
straints (5.7). He discusses the convergence properties off,* as n ---, v. No con-
vergence rates are given however.

6. If itself possesses a (known) reproducing kernel, we may always find
(q, r/t)o of (1.5), where q is the representer of an arbitrary continuous linear
functional M on . The necessary and sufficient condition that possess a
(real-valued) reproducing kernel R(u, v), u, v U, is that f be a Hilbert space of
real-valued functions defined on U and all the evaluation functionals Nu, u U,
N,f f(u) be continuous. In this case,

(5.9) (r/s, rlt)e Ms(,)M,(v)R(u, v),

where Ms(,) means the linear functional M applied to R considered as a function
of u. (For further discussion of Hilbert spaces possessing a reproducing kernel,
see [4], [9], [11] and references cited therein.)

7. We now use (5.9) and Theorem 2 to obtain convergence rates for approxi-
mate solutions to a problem similar to that considered by Daniel. Consider the
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problem of minimizing J(f) of (5.1) subject to

(5.10) a(t) M,fa bj(t)f(J)(t), [a, b] [0, 1],
j=O

where q <= m 1. The linear functionals Mr, [a, b], are all continuous on Wm’2.
It is well known (see, for example, Kimeldorf and Wahba [4]) that W"’2 with the
norm defined by f ]at J(f) of(5.1) possesses the reproducing kernel R(s, t) given
by

ml min(sd)(5.11) R(s, t)
dpj(s)dpj(t) + G(s, u)G(t, u) du, s, [0, 13,

j=o ’j .o

where

Lm 0,

and G(s, u) is the Green’s function for the problem

Lmf g,

f()(O) O,

Then

j=0,1,2,...,m- 1,

v,j=O, 1,2,...,m- 1,

v =0,1,2,...,m- 1.

(5.12)

Q(s, t) a(s)a(t---{r/,, ti,)at
a(s)a(t) M(")M’(v)R(u’ v)

q (j+k
bj(s)bk(t g(s t) s [a b]

(S)(t) j,k o 3sJOtk

By recalling the properties of Green’s functions, we see that

j+k
(5.13) sctkR(S, t), j, k O, 1, ..., q, s, [a, b],

has continuous mixed partial derivatives to order at least 2(m- q)- 2 and
bounded (left and right) derivatives of order 2(m q) 1. Thus if a, bj C2t’- q)- 2,
a2(m-q)- 1, bt,,-q)- bounded, then Q of(5.12) satisfies the hypotheses ofTheorem 2
with p m- q. Thus, if f,* are the approximate solutions to this problem, as
described in 1, then Theorem 2 and (5.4) give

(5.14) If,*(v)(t) f*(v)(t)] O(A(min(m-q- 1/2,2))/2), Y 0, 1, "’", m 1.

The approximate solutions f,* to this problem are Lg-spline functions in the
sense of [33. To see the connection with [3, note that f,* is a linear combination
of the functions {tit, T,}, where tit is the representer of Mt of (5.10). We may
find tit(s) as follows" Letting R be the representer of the evaluation functional
in W’’2 with norm given by J(f) of (5.1), then R(s’) R(s, s’) with R as in (5.11).
Then

c
ti,(s) (tit, R)at M,R bj(t)-jR(s, t).

j=O
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When R is given by (5.11), then, for each fixed t, c3JR(s, t)/&, considered as a
function of s, is an Lg-spline with knot at t. Thus f.* is an Lg-spline with knots
for te T,.

8. We give an example of the application of part (ii) of Theorem 1. We seek
the solution to the problem" Find f* W2’2 to minimize

(5.15) J(f) 2of(0) + 21(f’(0))2 + (w(t)f"(t))2 dt

subject to

(5.16) a(t) <= f’(t), t6 T [1/2, 1],

where 2o, 21 > 0, and and w are given positive functions. The reproducing kernel
for W2’2 with Ilflle J(f)is

1 st fmin(s,t) (S- u)(t- U)
(5.17) R(s, t)= oo + + wZ(u

du.
a0

The representer r/t of the continuous linear functional N’t defined by N’tf --, f’(t)
is given by

( S fmin(s,t) (S U)
(5.18) rh(S (rlt, Rs)ae NRs R(s, t)= - +

.o w2(u---- du"

Here

(5.19)

where

2
Q(s, t)

a(s)a(t
-----(rl’ rh)e

a(s)(t) csOt R(s’ t)

a(s)a(t)
+ q(min (s, t)) s, t6T,

-o
q(s)

w2(u

If a(t) is nonincreasing on T [1/2, 1], then with s, 1/2,

sup

(5.20)
Q(s,, s,) inf Q(s,, t).

teT

Thus Q with s, 1/2 satisfies (3.2) and (3.3) and so

f*= a(s,)Q(s,, s,)

a(1/2) [_ fmin(s,(5.21) f*(s) (1/2i 1/2)) +
.,o
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Similarly, if

(5.22)
(1 + 2q(t)) o(t) o(t)
(1 + ;-)

>
0(1---) >= "/(1)!

then Q with s, satisfies (3.2) and (3.3) and so

(5.23) f* 0(1)Q(1, 1) r/l’

(1){sfo(s-u) tf*(s) (1/2 q(1))
+ wZ(u

du

Appendix. Table for calculations, substitution of (4.18) into (4.14).

t,t)

j, t)

tj 1, t)

itj, j)

tj, tj+ )

Coetticient of

Q(u, v) in (4.14)

+1

{5

{51{52
+2--

(u tj)(v t)

{51 {51

0 {51

0 0

0 {5

Q(t, t) oi

Coefficients in (4.18)

(u t) + (v t)

2{51

{51

(u t) + (v ti)

2{521

(u O(v t)

2{5

{5

2{52 {5

{51 (t tj), {5 (tj+ t), {5 {51 + {5 (tj+

To obtain the coefficient of Q(tj, tj)in (4.14)with (4.18)substituted in, multiply
entries in column 2 with the corresponding entries under the column headed by
Q(tj, tj), and add. To obtain the coefficient of 01, multiply entries in column 2
with the corresponding entries under the column headed by 01, and add, and
similarly for 02 and ft. The results are all 0.

Acknowledgment. The author wishes to thank one of the referees for a
simplification of the proof of Theorem 2.
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AN ADAPTIVE PRECISION GRADIENT METHOD
FOR OPTIMAL CONTROL*

R. KLESSIGf AND E. POLAK:I:

Abstract. This paper presents a gradient algorithm for unconstrained optimal control problems.
The algorithm is stated in terms of numerical integration formulas, the precision of which is controlled
adaptively by a test that ensures convergence. Empirical results show that this algorithm is considerably
faster than its fixed precision counterpart.

1. Introduction. In certain unconstrained minimization problems, precise
evaluation ofthe cost function and its derivative is very expensive. One well-known
problem of this type is the continuous optimal control problem. In this problem,
evaluation of the cost and its derivative requires the numerical solution of a
system of differential equations. Thus, if a gradient-type algorithm is applied to
this problem, most of the computational time will be taken up by numerical
integration. If the numerical integration is of high accuracy, the algorithm will
require a large amount of time to solve a problem. On the other hand, if the
numerical integration is not accurate enough, the convergence of the algorithm
to a solution may be lost, thus nullifying any time saving.

It is to this dilemma that we address ourselves. Specifically, we propose a
method for adaptively varying the accuracy of the numerical integration, as the
computation progresses in a gradient algorithm for solving unconstrained optimal
control problems. We use low accuracy numerical integration while far from a
solution and improve the accuracy as a solution is approached. This is achieved
by means of a test in the algorithm which decides on the required integration
precision. The resulting adaptive precision gradient method, for solving uncon-
strained continuous optimal control problems, is convergent and considerably
more efficient than its fixed precision counterpart. Our adaptive precision method
is based on the algorithm models described in 4] and [5]. Because of this, in 2
we state the model on which our scheme is based. In 3, we define the control
problem, state our new algorithm, relate it to the model in 2, and then apply
the theory of 2 to establish convergence of our new method. In 4 we present
some computational results that support our claim of efficiency for our method.

2. An abstract prototype. Let be a linear space with a topology defined by
the seminorm [1" I1 containing a set of desirable points denoted by A. The
algorithm prototype we are about to present is designed to compute points in A.
It is similar to (A.I.1) in [5].

Let {Dj}j o be a sequence of subsets of e such that

(2.1) Dj Dj+x, j 0, 1,....

* Received by the editors April 6, 1971, and in final revised form March 9, 1972. This research
was supported in part by the National Aeronautics and Space Administration under Grant
NGL-05-003-016, by the Joint Services Electronics Program under Grant AFOSR-68-1488 and by
the National Science Foundation under Grant GK-10656X.

" Bell Telephone Laboratories, Holmdel, New Jersey 07733.
:I: Department of Electrical Engineering and Computer Sciences, and the Electronics Research

Laboratory, University of California, Berkeley, California 94720.
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Let

(2.2) D U Dj.
j=0

Next we introduce a sequence of search functions {Aj}]=o, A’D 2Dj, and a
sequence of test functions {ca}__o, cj’Da 1. We make the following assump-
tions.

2.3. Assumptions.
(i) D .
(ii) There exists a set M c e, satisfying M f’l A , such that for every

z M, z A, there exist an e(z) > O, a 6(z) > 0 and an integer N(z) >= 0 satisfying

(2.4) cj(z") ej(z’) <= -6(z)

for all z’ B(z, e(z)) f"l M fq Dj, for all z" Aj(z’) and for all j >= N(z), where

(2.5) B(z, (z))

(iii) There exists a continuous function c:M 1 and a sequence {fl}=o
= [+, possibly depending on M, such that

(2.6) ,8 < oo
=0

and

(2.7) ]cj(z) c(z)l _-< fls for all z e Dj M, for all j _>_ s.

2.8. Remark. Since cj is an approximation to c, Assumption 2.3 (iii) can be
interpreted as a requirement on how fast cj(z) converges to c(z). Note that if c(z)
converges to c(z) linearly, Assumption 2.3 (iii) should not be difficult to satisfy.

2.9. ALOORITX-IM PROTOTYPE.
Step O. Select an integer Jo >--0. Select zo e Djo, eo > 0 and e(0, 1). Set
0, j Jo, and %.
Step 1. Compute a y Aj(zi).
Step 2. If cj(y) cj(zi) <= -, go to Step 3; else, set j j + 1, set e ee,

and go to Step 1.
Step 3. Set zi+ y.
Step 4. Set + 1 and go to Step 1.
2.10. Remark. Because of (2.1), Aj(zi) and cj(zO are always well-defined in (2.9).
We now state the convergence properties of (2.9) in the following theorem.

We omit a proof since the theorem is only a minor modification of Theorem
(A.1.26) in [5.

2.11. THEOREM. Let {Zi} be a sequence constructed by (2.9). Suppose that
Assumptions 2.3 are satisfied and suppose that {zi} M. If {zi} is finite (because
(2.9) is jammed up between Step 1 and Step 2) with last point z, then zs A. If {zi}
is infinite, then every accumulation point of {zi} is in A.

3. Adaptive optimal control algorithm. We now turn to the optimal control
problem and relate it to the quantities in the previous section. This requires some
notation.
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(3.2)

3.1. Notation. (i) We denote the space of square integrable functions from
[0, T] into [" by LT[0, T-]. (ii) With T > 0, and I1" and (.,.) denoting the
Euclidean norm and inner product respectively, we define, for u, v e L’[0, T],

(u,

A 1/2(3.3) Ilul12
(3.4) Ilulloo ___a ess sup Ilu(011.

te[0, T]

3.5. Optimal control problem.
Minimize g(x(T, u)) subject to

u L’[0, T] and x(., u) satisfying the differential equation

(3.6) (t, u) f(x(t, u), u(t), t) a.e. on [0, T], x(0, u) Xo,

where g:R" [x,f:N" x Nm X [ N", Xo e " is given, and T > 0 is given.
3.7. Assumptions. Throughout this section we assume that
(i) g(. is continuously differentiable on [";
(ii) f(., .,. is continuously differentiable on R" x [m X [1;
(iii) there exists an 09 > 0 such that (3.6) has a unique, absolutely continuous

solution, x(., u), with IIx(T, u)[I <= K1 < o(3, for all u e M’ _a {u’e LT[0, T]I Ilu’ll
< 2o}.

In applying the results of 2, we shall take = L’[0, T], the seminorm

II" I I[" 112, and M {u’ e L[0, T]I [lu’lloo < o}. Thus the convergence prop-
erties of our algorithm will be established with respect to this seminorm topology.
We believe that Theorem 3.48 can be extended to hold also with respect to the
weak topology, with L’[0, T] viewed as a space of equivalence classes. This
appears to be possible because the results of 2 can be stated in terms of a general
topological space, and thus we could use the weak topology on L’[0, T]. However,
verifying Assumptions 2.3 for the weak topology on L’[0, T] seems to require
stronger assumptions on the optimal control problem. For example, it seems
necessary that (3.6) be such that u u* weakly implies x(., u) -+ x(., u*) strongly
(in the space of continuous functions). In any event, we shall concern ourselves
solely with the seminorm topology on L’[0, T] in this paper and leave the weak
topology case as a question for further research.

We should also explain the use of the sets M and M’. Since the algorithm
to be presented generates a sequence of step functions, it is natural to work in a
space in which the step functions are dense. The space L’[0, T] with the seminorm
topology appears to be the natural choice. Unfortunately, the performance index
cannot be shown to be differentiable in this topological space. However, in the
Appendix, we show that the performance index is differentiable in an appropriate
sense on M’, and of course, the step functions are dense in M’. Finally, by requiring
the sequence generated by our algorithm to lie in M, we insure that the performance
index is "differentiable" at accumulation points of the sequence which allows us
to apply the theory of {} 2.

Note that this is not the space of equivalence classes.
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Next we define the subsets Ds.
3.8. DEFINITION. For any integer j >__ 0, let

(3.9) r/s T/2

and let

(3.10) tjs srij, s O, 1,..., 2j.

Then we define D c L’[0, T as the set of all functions u" [0, T] R such that
the components ui( of u(. are real-valued step functions having mesh points
at tj, which are continuous from the right, and which satisfy ui(T) u(T- rlj).

We see that as j increases, these step functions have smaller step sizes. It is
these step sizes that we shall use to control the accuracy of the numerical integra-
tion.

3.11. DEFINITION. For any u M’, we define

(3.12) c(u) g(x(T, u))

and

(3.13) h(u)(t) --f(x(t, u), u(t), t)rp(t, u), e [0, T,

where p(., u) is the solution of the differential equation

(3.14) /(t, u) _--f(x(t, u), u(t), t)Tp(t, U), e [0, T],
OX

(3.5) p(r, u) Uxg(x(r, u)).
The following theorem is proven in the Appendix.
3.16. THEOREM. For any u m’ and 6u {u’ LT[0, T]] Ilu’]]oo < m},

(3.17) lim
c(u + 26u)- c(u)

c’(u, 6u)= (h(u), au)2

and c" m’ x {u’ e LT[0, T]I u’ll < } N is continuous.

Finally, to introduce cj and Aj, we make use ofnumerical integration formulas
which lead to approximations to c and h.

3.18. DEFINITION. Let F :N" x N x N x N N" and F2 :R" x N" x
x x N2, be one-step integration functions (see (8.3) in [2]) for the dif-
ferential equations

(3.19) 2(t, u) f(x(t, u), u(t), t), e [0, T],

and

te[0, T].(3.20)
[o(t, u)J f(x(t, u), u(t), t)rp(t, u)
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Then for any u e/)j, we define the sequences {xj(s, u)}2o, {x’(s, u)}2o and
{pj(s, u)} o as follows"

(3.21) xj(s + 1, u) xj(s, u) + rljFx(xj(s, u), u(tjs), tjs, rO, s O, 1, ..., 2 1,

(3.22) xj(0, u) xo,

(3.23) rx-)(s’u-)-] [x)(s+ 1,Uu1[_pj(s, u)J pj(s + 1 + roF2(xj(s + 1, u), pj(s + 1, u), u(tjs), tj,

(3.24)

s=0,1,...,2J- 1,

g(xj(2

Finally, we use these sequences to construct step functions ffj:[0, T] x Dj --, N",
if}" [0, T] x Dj --, N" and/3j" [0, T] x Dj --} N" as follows"

(3.25) ffj(t, u) { xj(s, u)
xj(2 1, u)

x}(s + 1, u)
(3.26) ff/(t, u)

x}(2j, u)

(3.27) j(t u)= pj(s + 1,u)

[. pj(2j, u)

for e [sr0, (s + 1)r/j),
fort T;

for e [sr/j, (s + 1)r/j),
fort T;

for e [sr0, (s + 1)r/j),
fort= T.

s=0,1,...,2j- 1,

s=0,1,...,2j- 1,

s=0,1,...,2j- 1,

Since h(ui) is a step function, precise evaluation of Ilh(u)ll2 offers no difficulty.

3.28. DEFINITION. For j 0, 1,..., we define approximations to c and h,
cj: Dj --} N and hj: Dj Dj, as follows

(3.29) cj(u) a_ g(xj(2j u)),

(3.30) hj(u)(t) a_ __f(xi(s + 1, u), u(sr/j), srlj)rpj(s + 1, u)

forte[sr/j,(s+ 1)r/j), s=0,1,...,2j- 1,

(3.31) hj(u)(T) a= hj(u)(T- rlj).

We now state our adaptive precision algorithm for solving (3.5). This
algorithm defines the search function

3.32. ALGORITHM.
Step O. Select an integer Jo. Select uo e Djo, eo > 0, e e (0, 1), /? e (0, 1) and

/min G (0, 1]. Set i= 0, j Jo and e eo.
Step 1. Compute hj(ui)(. according to (3.18) and (3.28).
Step 2. Set 2 1.
Step 3. ComputeOj(ui,2) cj(ui 2hj(ui)) cj(ui) + (2/2)IIhj(u31122 according

to (3.18) and (3.28).2

Step 4. If Oj(ui, 2) _<_ 0, set y ui 2hj(ui) and go to Step 6 else, set 2
and go to Step 5.
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Step 5. If 2 _> 2min, go to Step 3; else, set y =/./i and go to Step 6.
Step 6. Compute cj(y) according to (3.18) and (3.28).
Step 7. If cj(y) cj(ui) <= -, go to Step 8; else, set j j + 1, set e ee, and

go to Step 1.
Step 8. Set ui+l Y.
Step 9. Set + and go to Step 1.
3.33. Remark. We have not stated algorithm (3.32) in the form in which it

should be programmed. For example, in the second part of Step 5, it would be
more efficient to go directly to Step 8. The reason for this form is to make (3.32)
similar to (2.9) so that the search function Aj, defined by (3.32), is more apparent.
Thus, our way of presenting (3.32) facilitates analysis rather than computational
efficiency. There should be no difficulty in identifying and removing these awkward
points in programming the algorithm.

3.34. DEFINITION. We define the search function Aj’Dj 2 for Algorithm
3.32 as the function defined by Steps through 6.

It should now be evident that (3.32) is of the same form as (2.9). Consequently,
to obtain convergence results, we only need to verify Assumptions 2.3 since
Theorem 2.11 will then apply. First, since h(fi)(-) 0 is a necessary condition of
optimality, we make the following definition.

3.35. DEFINITION. We define A c L’0, T] as

(3.36) A ___a {u’ L’[0, T]lh(u’)(. 0}.
Before proceeding to establish Assumptions 2.3, we must introduce addi-

tional assumptions.
3.37. Assumption. The 09 > 0 in Assumption 3.7 (iii) is such that

{u’ LT[0, T]I Ilu’lloo < o} A ,
3.38. Assumption. The one-step integration formulas used in (3.18) are such

that given any e > 0, there exist an integer J >__ 0 and a K e (0, ) satisfying

(3.39) IIx(’, u)- j(., u)ll K/2,
Ix( ",__u__)7 [xS(__’_, u)7(3.40) (-:,u)J

for all u M’ D; and for all j >= J.
Assumption 3.38 does not appear to be unduly restrictive. For example, it is

satisfied by the Euler-Cauchy method under a Lipschitz assumption on f and
(c3/t3x)f. The proof of this fact closely follows that in (8.1) of 2] (the fact that
u(. is constant over (st/j, (s + 1)qj) must be used). The proof of this fact can also
be found in [3].

Before applying Theorem 2.11, we present some preliminary results. Recall
that we are using Assumptions 3.7 and 3.38.

3.41. LEMMA. Given any u M’ and any 7 > O, there exists an e(u, 7) > 0 and
an integer N(u, 7) > 0 such that

(3.42) Icflu’)- c(u)l =< 7,

(3.43) [Ihflu’)- h(u)ll2 =< 7

for all u’ 6 B(u, e(u, 7)) f’) Dj f’) M’, for all j >= N(u, 7).
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Proof. First we note that (A.1) and the continuity of g imply that c is con-
tinuous on M’. Thus (3.42) follows directly from (3.39).

Similarly, (A.9) and the continuous differentiability of f and g imply that
h"M’ L’[0, T] is continuous. Thus (3.43) follows directly from (3.40).

3.44. LEMMA. Suppose that u M is such that h(u) v 0 and let fl (0, 1). Then
there exists an e(u) > O, an integer k(u) >= O, and an integer N(u) >= 0 such that

(3.45)
k(u)

c(u’ k(")ha(u’)) c(’) / ---Ih(u’)ll22 __< 0

for all u’ B(u, e(u)) f’) M f-) D for all j >= N(u).
Proof. Since u M, it follows that IIh(u)ll < o. Therefore there exists an

e’(u) > 0 and an integer k(u) >= 0 such that the line segment [u’, u’ flkt")h(u’)] is
in M’ for all u’ B(u, e’(u)) f’l M and such that

ilk(u) ilk(u)
(3.46) c(u flk(u)h(u)) c(u) + ---IIh(u)l122 --< --4 h(u)l122

(recall that c’(u,h(u)) Ilh(u)ll2 from (3.16)). But since [l" [[2 is continuous, we can
choose the appropriate 7 > 0 in (3.41) to find e(u) (0, ’(u)] and N(u) >= 0 such that

(3.47)

ilk(u)
C(U- flk(u)h(u)) C(U) +

cj(u’- flu{")hj(u’)) + cj(u’)- -Ihj(u’)l/3") 2 ilk(u)
--Ilh(u)ll22

for all u’ B(u, e(u)) f) M, for all j >__ N(u). Thus, (3.46) and (3.47) imply the desired
result.

3.48. THEOREM. Suppose that Assumptions 3.7, 3.37, and 3.38 are satisfied.
Consider any sequence {ui} constructed by (3.32) such that {Ui} C M. 3 If {ui} is

finite because (3.32)jammed up at u, then h(u) O. If {ui} is infinite and u* is an
accumulation point of {ui}, then h(u*) O.

Proof. All we need do is verify that various sets and functions introduced in
this section satisfy Assumption 2.3.

(2.3) (i). Since the step functions are dense under the topology we are using,
it is straightforward to show that D L’[0, T].

(2.3) (ii). First, (3.37) implies that M A . Now suppose u M is such
that u A (h(u) # 0). Then because of our definition of Aj, (3.34), and Lemma 3.44,
there exists an ’(u) > 0, an integer k(u) >- 0 and an integer N’(u) >_ 0 such that
u" Aj(u’) is of the form u" u’ fft"’)h(u’), with l(u’) <= k(u), for all u’ B(u, e’(u))
( M f’) Dr, for all j >= N’(u). (In other words, the test in Step 4 of Algorithm 3.32
is satisfied.) Now, by the appropriate choice of 7 > 0, we can apply Lemma 3.41
to find an e(u)(O,e’(u)] and an integer N(u)>-N’(u) such that h(u’)l] 22
-> [11h(u)[[/2 > 0 for all u’ B(u, e(u)) f) M f’l Dr, for all j >_ N(u). Thus using the

Whenever (3.6) has a solution for all u e L’[0, T] f’l L[0, T], the condition {ui} c M can be
replaced by supillull < oo and supillx(. ,ui)lloo <
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inequality satisfied in Step 4 of Algorithm 3.32, we obtain

c(u") c(u’) c(u’ ""’h(u’)) c(u’)
[fl

(3.49) < lhj(u’)ll 22

ilk(u)
4

llh(u)ll -(u) < 0

for all u’ B(u, e(u)) f"l M f"l Dj, for all u" Aj(u’) for all j >= N(u).
(2.3)(iii). Because of Assumption 3.7 (iii), there exists K1 _>-0 such that

]Ix(T, u’)]] _< K1 for all u’ e M. Thus, because of (3.38), there exists K2 >= K such
that ]]ffj(T, u’)] =< K2 for all u’ e M fq D2, for j 0, 1,.... Define

G sup { ]-g({) {I K2}.
Then from the definition of c and (3.38) we have

Ica(u)- c(u)l- Ig(xa(g, u))- g(x(g, u))l
(3.50)

-<_ GIIj(T, u) x(T, u)tl -< GK/2

for all u e M f) Dj, for all j 0, 1, It is now obvious that Assumption 2.3 (iii)
is satisfied.

4. Computational results. In this section we present numerical results for two
simple problems. On each problem we have used both the adaptive integration
approach and a nonadaptive integration approach. We have used two types of
numerical integration for each problem and each approach.

Because of memory limitations and roundoff effects, we modified (3.32) by
placing an upper bound on j, called Jmax" When j reached Jmax, g was set to zero
thus insuring that j would not increase beyond Jmax" The nonadaptive algorithm
was derived from the adaptive one by setting eo--0 and Jo--Jmax" Thus the
maximum accuracy was used for each iteration. In both algorithms, execution
was stopped when the reduction in cost for an iteration was below .0001 and

J--Jmax" The two types of numerical integration used were the Euler-Cauchy
method and the fourth order Runge-Kutta method.

4.1. Example. The first example is a simple linear plant, quadratic cost
problem:

(4.2)

(4.3)

(4.4)

(4.5)

(4.6)

c(u) x(),

o(t ]-xl(t)] 2 -+- [X2(g)] 2 -+- 0.5[u(t)] 2,

(t) -0.1x(t) + x2(t),

2(t) --x2(t) + U(t),

X0(0) 0, XI(0) 0, X2(0) --1, T--- 1.

The results are summarized in Table 4.7. The parameters used were eo 0.01
(--0 for the nonadaptive algorithm), 0.35,/3 0.4, and 2mi 10.0. The time
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TABLE 4.7

Euler-
Cauchy

Fourth Order
Runge-
Kutta

Nonadaptive

J0 Jmax 10
opt. cost 0.20408
time 65.620 sec.

Jo Jmax 8
opt. cost 0.20409
time 43.870 sec.

Adaptive

Jo-=-- 2, Jmax-- 10
opt. cost 0.20408
time 36.062 sec.

jo 2, Jmax 8
opt. cost 0.20409
time 36.078 sec.

referred to is the execution time in seconds required to solve the problem on a
CDC 6400.

4.8. Example. This example is a simple optimal control problem with a bang-
bang solution converted to an unconstrained form by penalty functions. Such
problems are generally considered to cause difficulty when solved by gradient
methods.

(4.9) c(u) x(1),

(4.10) 2(t)= [XI(t)] 2 + EX2(t)] 2 -- 10[max (0, u(t)- 1)] 2 + 10[max (0,-u(t)- 1)] 2,

(4.11) 21(t) xZ(t),

(4.12) 22(0 -(0.01 + 4zZ)xl(t) 0.2xZ(t) + u(t),

(4.13) x(0)=0, xl(0)= 1, x2(0)=0, T= 1.

The parameters used were eo 0.1 for Euler-Cauchy, eo 0.05 for Runge-Kutta,
% 0 for the nonadaptive algorithm, e 0.35, fl 0.4, and ’min 0.1. The
results are given in Table 4.14.

TABLE 4.14

Euler-
Cauchy

Fourth Order
Runge-
Kutta

Nonadaptive

Jo Jmax 10
opt. cost 16.436
time 152.414 sec.

Jo Jmax 8
opt. cost 16.435
time 131.684 sec.

Adaptive

Jo 2, Jmax-- 10
opt. cost 16.438
time 30.138 sec.

Jo 2, Jmax 8
opt. cost 16.435
time 43.184 sec.

These two examples indicate that the use of adaptive accuracy numerical
integration will result in significant improvement in computer time.
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5. Conclusion. The method presented here is of both theoretical and practical
interest. On the theoretical side, we have shown that it is possible to control to
good advantage the effects of imprecise function evaluations when dealing with
algorithms for solving minimization problems. In particular, we have considered
the effects of numerical integration when solving optimal control problems. On
the practical side, our method appears to provide significant savings in computer
time as compared to its fixed precision counterpart.

Finally we note that Algorithm 3.32 is of the humble, first order variety.
However, it is not difficult to see that the adaptive integration technique can also
be used in conjunction with Newton-Raphson or conjugate gradient-type
methods.

Appendix. Differentiability of c. In this Appendix, we closely follow many of
the proofs in [1].

A.1. LEMMA. Under the assumptions and definitions of 3, given any u* M’,
there exist k > 0 and 7 > 0 such that

(m.2) IIx(’, u)- x(., u*)ll _-< kllu u*l12 for all u B(u*, 7) f-) M’.

Proof. Let o9’e (0, m) be such that

(m.3) sup IIx(t, u*)ll < co’.
t[0,T]

Because of Assumption 3.7 (ii) and the generalized mean value theorem, there
exist K 1, K2 6 (0, ) such that

(A.4) f(xl, , t) f(x2, rE, t) Klx x211 4- K2 Iv 2

for all x 1, X2 {X’ n Ilx’l[ 2o9’}, for all vl,/)2 {/)’ [nl ]IV’II 209} and for
all [0, T] (09 was defined in Assumption 3.7 (iii)). Now set

(A.5) 7 -[g2N// eKT3-1

and choose any u B(u*,7) f) M’. Since x(., u) is continuous and
[[Xol < o’, there exists (0, T] such that Ix(t, u)ll _-< 2’ for all 0, ].

Now, because of (A.4), we find that for any 0,

(n.6) Ix(t, u) x(t, u*)ll _-< K lllx(t’, u) x(t’, u*)ll dr’

/ gzllu(t’) u*(t’)ll dr’.

Since by the H61der inequality, for e [0, T],

g211u(t’) u*(t’)ll dt’ <_ g2@llu-

the Bellman-Gronwall inequality together with (A.6) yields

e/lr for allt0 t](A.7) IIx(t, u) x(t, u*) < g2x/ u u*ll2
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We now show by contradiction that T. If < T, we can assume without loss
of generality that IIx(, u)ll 2co’. Then from (A.5) and (A.7), we find that

(A.8) IIx(, u*)ll IIx(, u)ll
2 2’

which contradicts (A.3), and hence we conclude that T. Consequently, (A.7)
and the fact that u was arbitrary in B(u*, 7) ffl M’ imply the desired result.

A.9. LEMMA. Under the assumptions and definitions of 3, given any u*e M’
and any z > O, there exists an e > 0 such that

(A.10) lip(’, u) p(., u*)ll for all u e B(u*, e) f-I M’.

Proof Let K3 liP(’, u*)lloo. Then by Assumption 3.7 (ii) and (A.1), there
exist K4 e (0, oe) and e’ > 0 such that

(A.11) [[-f(x(.,U),U(.),.)T]Io <=K4,

(A.12, frol f’x’t’ u’ u(t" t"r-Lf(x(t"u*"u"t" t"rc3x 2K3T

for all u e B(u*,e’)f’l M’. By Assumption 3.7 (i), (3.15), and (A.1), there exists
e e (0, e’] such that

T -K4T B(u* ) f"l M’(A.13) liP(T, u) p(T, u*)ll <- e for all u e

Now using (3.14) and adding and subtracting appropriate terms, we obtain from
(A.11), (A.12), and (A.13) that

T,
KaT f S SIIp(T s, u) p(T s, u*)l =< } e + KIIp(T u) p(T u*)lt as’

(A.14)
Oxf(x(T s,u’ *), u*(T s’), T s’)

P(T s’, u*)ll as’

<= r, e -K‘T + K,[Ip(T- s’, u)- p(r- s’, u*)tl ds’

for all u e B(u*, e) f’l M’, for all s e [0, T]. An application of the Bellman-Gronwall
inequality to (A.14) completes the proof.

A.15. LEMMA. Let the assumptions of 3 hold. Then for any u* M’ and u such
that Ilu < ,

lim x(.,u*+2u)-x(.,u*)-2v(.)ll =0(A.16)
t,o 11
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where v(. is a solution of the differential equation

f;(t) -f-f(x(t, u*), u*(t), t)v(t)
(A.17)

+ -uf(X(t, u*), u*(t), t)u(t), v(O) O, e [0, T].

Proof Let 6zx(.)= x(.,u*+ 2u)- x(.,u*). Then 6zx must satisfy the
differential equation

d
-d-bzx(t) f(x(t, u* + )tu), u*(t) + )tu(t), t)

(A.1 8)

f(x(t, u*), u*(t), t), cSzx(0) 0, a.e. on [0, T].

By the mean value theorem, for any [0, T there exist real numbers v(t),
#(t) [0, 1], for 1, 2,..-, n, such that

d
bzxi(t) --fi(x(t, u*) + vi(t)3x(t), u*(t) +/i(t)2u(t), t)cSzx(t)

dt x
(A.19) + ff-fi(x(t, u*) + vi(t)fix(t), u*(t) + #(t)2u(t), t)2u(t),

i= 1,2,...,n,

For simplicity, we write (A.19) in the following vector form"

(A.20) dd Sx(t) xf’u6x(t) + --f’u2u(t)"We now can combine (A.17) and (A.20) to obtain

8 O---f/2u(t)d[cszx(t)dt 2v(t)] 8f.Sx [6ax(t)- 2v(t)] + uf,u cqu !
(A.21)

+ Sx -x 6x(t) a.e. on [0, T].

It follows from (A.21) that

8x
II,xx(t’) 2v(t’)ll dt’

(A.22) + llulloo fo
T

dt’

a.e. on [0, T].

dt’

for all e [0, T]. Applying the Bellman-Gronwall inequality to (A.22), we obtain

(A.23) ..5zx(t)- 2v(t),. <= (Ii + /2)exp (for[ c3-f dt’)
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for all e [0, T], where

(A.24) 11 2llull ufv,, f dr’

(A.25) 12 Ill, lifo b--;xfv,- dt’.

Since Ilu < oo, we conclude that

NA,. f 0 and -fv,. f 0

as 2 0. Thus the integrals in (A.24) and (A.25) converge to 0 as 2 0. Consequently,
making use of (A.1) and the fact that ull < , we obtain

(1.26) lim I f f dr’lim Ilu 0,o o L,
and since Ilu 12 Ilull,

(A.27) lim I2 f f,o limx+o k u 2 ,.
Ox

dt’ O.

But now, if we combine (A.23), (A.26), and (A.27), we see that (ll6xx 2vll /X) 0
as 2 + 0 and the proof is complete.

A.28. THEOREM. Let the assumptions of 3 hold. Then for any u* M’ and u
such that Ilull < ,
(A.29) c’(u*, u) lim

c(u* + 2u) c(u*)
(h(u,), u)2,

o 2

where

(A.30) h(u*)(t) f(x(t, u*), u*(O, t)p(t, u*),

with

(A.31) p(t, u) -f(x(t, u*), u*(t), t)rp(t, u*) a.e. on [0, T],

(A.32) p(T, u) g(x(T, u*))

and c" m’ x {u LT[0, T]I Ilull < } a is continuous.

Proof From (A.17), (A.31), and (A.32) there exists a continuous matrix-
valued function :x x x ,, such that

(A.33) v(t) (t, s) f(x(s, u*), u*(s), s)u(s) ds,

,))r(A.34) p(t, u*) r(T, t)g(x(T, u
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for all e [0, T (see [6]). Because of Lemma A.15,

c(u* + 2u)- c(u*) g(x(T, u* + 2u))- g(x(T, u*))

(A.35) c3
x3
-g(x(T’ u*))[2v(T) + o1(2)] + o2(x(T, u* + 2u)- x(T, u*)),

where O1(/)/, 0 as 2 + 0 and o2()/[111 0 as [lll 0. However, Lemma A.1
implies that

(A.36)
o2(x(T, u* + 2u) x(T, u*,,_._, 0 as 2 + 0.

Thus we have that

c(u* + ,u) c(u*)
lim --g(x, (T, u*))v(T).
0 2

So if we apply (A.33) and (A.34) we obtain

c’(u*, u) g(x(T, u*))r, (T, s x(s, u*), u*(s), s)u(s) ds

(A.37, f(_ )f(x(s, u*), u*(s), s)Tp(s, U*), U(S) ds

(h(u*), u)2.

Finally, by (A.1) and (A.9) we see that x and p, as maps from M’ into the space of
n-vector-valued continuous functions, are continuous. Therefore it follows that
the map u* e M’ h(u*) L’[0, T] is continuous. But since (. ,. ) 2 is continuous,
c’(., is continuous and the proof is complete.
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CONSTRUCTION OF STABILITY MULTIPLIERS WITH PRESCRIBED
PHASE CHARACTERISTICS" AN IMPROVED VALUE FOR t. *

S. RAMARAJAN AND M. A. L. THATHACHAR"

Abstract. For a feedback system consisting of a transfer function G(s) in the forward path and a
time-varying gain n(t) (0 <= n(t) < k) in the feedback loop, a stability multiplier Z(s) has been constructed
(and used to prove stability) by Freedman [2] such that Z(s)(G(s) + 1/K) and Z(s a) (0 < a < a,) are

strictly positive real, where a, can be computed from a knowledge of the phase-angle characteristic
of G(ioo) + 1/k and the time-varying gain n(t) is restricted by a, by means of an integral inequality.
In this note it is shown that an improved value for a, is possible by making some modifications in his
derivation.

Introduction. Considering the linear time-varying system consisting of a
transfer function G(s) in the forward path and a time-varying gain n(t) (0 <= n(t) < k)
in the feedback path, Gruber and Willems [4] proved stability under the existence
of a multiplier Z(s) such that Z(s)(G(s) + 1/k) and Z(s a) are strictly positive
real (for some 0 < a < a,) and

dn(t)<dt=2an(t)(1-?) fort>0.=

Even though Z(s) is allowed to be any general positive real function, it may be
difficult under certain circumstances to find out such a Z(s) satisfying the above
conditions (since it need not be a rational function of s). A geometrical method of
constructing such a positive real function, which avoids the abovementioned
trial procedures, is given by Freedman [2]. He also obtained an approximate
value of the upper bound a,, which in turn depended on the phase-angle charac-
teristic of G(ko) + 1/k. Also Freedman 2] replaced Gruber and Willems’ [4 time
domain restriction by a more general integral criterion, namely, that the time-
varying gain n(t) satisfies the condition

-;lfla -5---(z)/k)_]n(z)-]2a 2
K

+

for some K > 0 and all > 0. In this note we follow a similar procedure and
obtain an improved value for the upper bound a,.

In the following we show that the value of a, can be improved to

4(1 0{/7)20{ 2
0", w. l,(09)[2 do9

from that given by Freedman [2], namely,

(3n/16)2o2

0", W,,Y-w 
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where
(i) (co) __a arg [G(ico) + l/k];
(ii) is such that I(co)l < rc for all

(iii) # (r )(rc 2)/(3r 2)and v (re )/3 (we note that # > 0 for
< re/2) and

(iv) W, __a min {wll(co)l <= # for Io91 >= W} and Wv =_a min {Wll()l <_- v
for Iol _>- w).
For small we see that # v and hence W, Wv so that the value of a, obtained
in this correspondence is approximately 12 times (i.e., 4(16/3n)e) that obtained by
Freedman [2].
The detailed proofs and derivations are not given since they more or less follow

that given in Freedman [2]. To start with we state a simple result which will be
used later.

LEMMA 1.

1 + re
dr

Proof. Using the residue theorem in complex algebra we can show that
[1, p. 256]

tz-1
dt=rccoseczcz for0<Rez< 1.

l+t

Now taking z 1/4 and putting T2 in the L.H.S. of the above equation we get
the desired result.

For the sake of continuity we state without proof the lemma which ensures
the existence of a causal multiplier with a prescribed phase characteristic. For a
detailed proof one can refer to Freedman and Zames [3].

LEMMA 2 (Operators with prescribed phase). If:
(i) o(O) is a real-valued continuous a.e. differentiable odd function of 09 for
o (- c, c);

(ii) o(O9) and ’o(O) are in
then:

(a) there is a function 2(.) in L(-oo, oo) with 2(t) 0 for < 0 and with a
Laplace transform A(s) satisfying Im A(iog) o(O9);

(b) there is a y(. in L(-oo, oo) with y(t) 0 for < 0 and with a Laplace
transform Y(s) satisfying

1 + Y(s)=exp[A(s) for Res>0;
(c) if -rt < 0o(() < rt, there is a y(.)Ll(-, ) with y(t) O for < O,

+ Y(s)OinRes>_Oand

arg (1 + (ico)) o(CO).

The following lemma is a slight modification of Lemma 2 in Freedman [2].
LEMMA 3. Under the same notations and assumptions as in Lemma 2, itfollows

thatfor every a > O,

sup ]Im A(ico + a)- o(CO)] <- w/ ](I)(O,))[ 2 do9
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Thus if- < q0(03) < for all 03 and if the principal value of the arg {. } is taken,
then

sup ]arg (1 + g(i03 + a)) 0(03)[ _-< I;(o)[ 2 do

Proof. If we denote Im A(s) V(a, y) where s a + iy, it can be shown [2]
that for a > 0,

v(, ) *o() + (y )[o() *o(y)] d

(1)

+ (y m)2
Now

0
.2 _.[.. (y 03)2

l f, 0.2 AC" (y 03)2 I;(t)l 2 dt (w y)1/2 do)

<_ I;(t)l dt o.. + (03 y)2

(Taking (co y)/ , the second integral in the R.H.S. of the above inequality
becomes

after using Lemma 1.) Now

Similarly we can show that

1 fY a
(3) (I)o(y)]

+ (y co):N)(c)

I;(t)l 2 dt) 1/2

"lcI);(t)l 2 dt
1/2

Combining (1), (2) and (3), we get

I(fy )1/2 fyx )1/21IV(a, y) o(y)l < x// I;(t)l 2 dt + I;(t)l 2 dt

_<_ I;(t)l dt

after using the inequality + Na + b for a, b 0. Since the R.H.S.
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is independent of y,

sup IV(a, y) o(Y)l _-< 1(I);(012 dt

and hence the proof is complete.
Finally we state the main result.
LEMMA 4. Under the usual notations, let

, 4(1 /)
G, W 2

_
I()l d

Then for any a [0, a.) there is a y(. in L[0, ) with Laplace transform Y(s)
and a 6 > 0, such that

(i) Re (1 + Y(i) 6 > O,
(ii) Re {[1 + Y(i + a)][G(/)+ l/k]} 3 > 0.
Remarks. Since arg G(i) + 1/k] lies in the interval (-n , ), as an

initial attempt we set

so that arg [1 + Y(im)] lies in the interval (-/2, /2). In the following we adopt
a procedure similar to that of Freedman so that the phase function and its
derivative satisfy the square integrability conditions stated in Lemma 2 for the
existence of a y(. e L[0, ).

Pro@ For each e > 0, choose l(m) a continuous, a.e. differentiable real-
valued function defined on [W,, ) and satisfying

(a) /(W,)= (") arg[G(io)+l/k(n 2 n =w.

all

(c) I/()1 e d < and I/’()12 d < .
(As stated in Freedman [2] such functions l() are easily constructed.) For any
e > 0, define_

n
arg G(im)+ forme[ W. Wu]

l(m) for m > W.,
l(-o) for < w..

Hence by the application of Lemma 2, it follows that there is a y(. )e LI[0, m)
with Laplace transform (s) and arg [1 + (im)] (m). Also by the above
construction it is assured that I(m)l < n/2 and hence

Re [1 -+- Y(io))] >__ 6(e)> 0
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for some constant 6(e). Thus (i) in Lemma 4 holds with y(. equal to y(. chosen
by the above procedure.

For further reference we see that the inequality

1(I)’(09)12 do9 -t- e(4) 1(I)’(09)12 do <
w,

holds. Now, in order for (ii) in Lemma 4 to hold it is sufficient to show that

larg [1 + Y(ico + a)] + (co)l < /2 for all co.

Proceeding along lines similar to that of Freedman [2] and using the result of
Lemma 3 and the definition of p, one can show that (see Appendix) a sufficient
condition for (5) to hold is that

(6) o" IO;(o9)12 do9 < 0
2

Now using (4) and making e sufficiently small, we see that (6) is satisfied for any a,
0 < a < a,, where

4(1 z/n)22
W. 2a,

_
w, Io’(o)l d

Thus y(. corresponding to such a choice of e will be an acceptable choice for
y(. in the statement of this lemma.

Also by defining Z(s)= 1 + Y(s + a) we see that Z(s)(G(s) + l/k) and
Z(s a) (0 < a < a,) are strictly positive real with such a choice of a,.

Appendix. Inequality (5) can be written as

(A.1) ]arg [1 + Y(ico + a)-] (co) + %(co) + (co)l < n/2

From Lemma 3 it follows that

larg[1 + Y(ico+a)-%(co)l<= x/(f_
Hence a sufficient condition for (A.1) to hold is that

(A.2) f
1/2

la,’(o)l 2 dco / sup

Now

sup lOb(co) + O(co)l sup
o, Io1_-< w.

and

sup

for -oc < co < .
1/2

I%(o) + (o)l < .
n 2e

2(n ,)

n 20 n

sup I%(o)1 + sup
o, ltol> w,

I(o)l
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Thus it follows that

sup IO(o)) + O(co)l < -- a.

Using this we see that a sufficient condition for (A.2) and hence for (5) to hold is
that

l;(og)l 2 do9 < ,
which is nothing but (6).
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SADDLE POINTS FOR LINEAR DIFFERENTIAL GAMES*

R. J. ELLIOTTf, N. J. KALTON AND L. MARKUS:

Abstract. It is proved that there is a saddle point over the relaxed controls, and so over the strategies
defined on the relaxed controls, for differential games in which the trajectory variable appears linearly
in the dynamical equation and payoff. This is a strong saddle point property, but the example of
Berkovitz [1], of a game that does not have a saddle point in pure strategies, does have a saddle point
in this sense. Saddle points over the chattering controls are obtained for linear games in which the
opposing control variables appear separated. The introduction of relaxed controls into differential
games is analogous to the introduction by von Neumann of mixed strategies into two person, zero
sum games.

1.1. Introduction. Motivated by work in the calculus of variations and control
theory (see [63, [12, [13] and [14), we introduce relaxed controls to study two
person, zero sum differential games. For differential games which possess a certain
linearity property in the trajectory variable (in the differential equation describing
the game and in the payoff function), we prove there is a saddle point over the
relaxed controls, and so over the strategies defined on the relaxed controls. As
pointed out below this concept of a saddle point over the (relaxed) controls is a
strong property because a player can use his saddle point control, and, indepen-
dently of what the other player does, not loose in comparison with the saddle
point payoff.

1.2. Outline. We first define a two person, zero sum differential game and
describe the notions of strategy and saddle point. In 3 and 4 we introduce relaxed
controls in a rigorous manner as elements of the dual of a Banach space of
integrable vector-valued functions. The presentation follows Warga [13]. The
relaxed controls are shown to be a compact convex set and we prove that the
"piecewise constant" relaxed controls are dense.

The games considered have a payoff which, though bilinear, is only separately
continuous on the product space of relaxed controls for the two players. However,
a general theorem of Sion [103 then states there is a saddle point, so our principal
result concerns the existence of a saddle point among the relaxed controls, for
linear differential games. We observe that the well-known example of Berkovitz [1]
(see also [3]) of a differential game that does not have a saddle point in pure
strategies does have a saddle point in our sense in the form of constant strategies
on the relaxed controls.

Finally, for linear games in which the control variables appear separated,
saddle points are obtained over the particularly simple relaxed controls known as
chattering controls.
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2. Differential games. The situation to be discussed is a two person, zero sum
differential game described as follows.

Notation 2.1. We have a dynamical system

(2.1) (t) f(t, x, u, v),

where the trajectory x(t)e R’, an initial position x(0)= (xl(0),-.., xm(O))= Xo
is given, and the time belongs to some closed bounded interval of T of R--say
T [0, 1]. There are two sets of control variables: {u} Y, a compact subset of
Rp, and {v} Z, a compact subset of Rq.

To ensure integrability of the differential equation we shall assume that the
vector function

f(t, x, u, v) (f(t, x, u, v), fro(t, X, U, V))

is continuous in t, x, u and v and satisfies a Lipschitz condition in x of the form"

If(t, x, u, v) f (t, x’, u, v)l W(t)lx x’l for X, X’ e R

(or at least for x, x’ in some compact subset of R wherein all trajectories x(t) are
known to lie), e T, u e Y and v Z. Here q(t) is an integrable real-valued function
of and l. denotes the usual distance in Rm.

Together with the above dynamical system we have a payoff of the form:

(2.2) P(u, v) l(X(t)) + h(t, x, u, v) dr.

Here / is a (not necessarily linear) real-valued function on the Banach space
C([0, 1]) of curves in R over [0, 1], and h is a continuous real-valued function on
TxRmx YxZ.

DEFINITION 2.2. A two player, zero sum differential game is a dynamical system
described by differential equations of the above form, together with the compact
sets Y and Z and the payoff P.

The first player chooses u e Y at each time e T in a measurable way, thus
generating a function u(t), so that the final payoff P(u(t), v(t)) is as large as possible.
At the same time the second player chooses v at each time e T so that P(u(t), v(t))
is as small as possible.

Remark 2.3. Denote by U (resp. V) the set of measurable functions from T
to Y (resp. Z).

A (pure) strategy for the first player would ideally be defined as some rule
which, for each time e T, determines for him his choice of u(t) on the basis of
what has happened in the game so far, that is, from the knowledge of x(r), u(r)
and v(z) for 0 _<_ z < t. Similarly, there would be a notion of strategy for the
second player.

On the grounds that a player knows his own previous choice of controls,
Roxin [5] has defined a strategy for the first player as a function e from V to U
which is nonanticipatory in the sense that"

if v(t), v2(t e V and v(z) =/)2(’17) for 0 __< z =< to, then ct(v)(z) ((/)2)(’17) for
O-<-<to.

The difficulty with this definition is that, in general, given a strategy for
the first player and a strategy fl for the second player we do not know that there
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is an "outcome" for a and fl, that is, a pair of control functions u(t) and v(t) such
that

av= u and flu v.

(We are looking for a fixed point of 0 fl:V V, but 0 and fl are not necessarily
continuous.)

If a pair of strategies a, fl do have an outcome u(t), v(t), we can write P(a, fl)
for the resulting payoff P(u, v). A solution to the game is a pair of strategies a*, fl*,
which have an outcome which is "simultaneously best" for both players. This
means that if a, fl are other strategies such that a*, fl and a, fl* both have outcomes,
then

(2.3) P(a*, fl)_>_ P(a*, fl*) > P(a, fl*).

DEFINITION 2.4. A pair of strategies a*, fl* which satisfy (2.3) are said to form
a saddle point for the differential game (over the pure strategies).

A much stronger notion of saddle point is now described.
DEFINITION 2.5. A pair of control functions u*(t) U, v*(t) V are said to

form a saddle point (over the controls) if for any other controls u(t) U, v(t) V,

P(u*, v) >= P(u*, v*) >= P(u, v*).

LZMMA 2.6. If (U*, V*) are a saddle point over the controls, then there are
identically constant strategies (a*, fl*) which are a saddle point in the sense of
Definition 2.4.

Proof. For any v(t) V and u(t) U we define a*v u*, fl*u v*. That is,
o* is described by saying that, whatever the second player does, the first player
continues to play his control u*(t), fi* is described similarly. If a, fl are any other
strategies, then 0*, fl have an outcome u*, v, say, and 0, fl* have an outcome u, v*.
Thus, P(a*, fl) _>_ P(a*, fl*) >= P(a, fl*).

Remarks 2.7. A saddle point over the controls is, therefore, a strong concept,
because if one player uses his saddle point control then independently of what the
other player does, he cannot lose. However, a saddle point over the strategies does
not give us a saddle point over the controls.

if (u*, v*) form a saddle point over the controls and if u* is played, then v
must play to minimize P(u*, v). Hence v*(t) is an optimal controller subject to
the maximum principle. Similarly, u*(t) is an optimal controller maximizing
P(u, v*).

Also, note that any other saddle point (, 5) over the controls must give the
same payoff, but nonsaddle plays might give the same value of P without satisfying
the saddle point inequalities.

Background 2.8. We have already noted that there are difficulties surrounding
the notion ofa strategy for a player in a differential game. Friedman [3] circumvents
these difficulties by considering "upper" and "lower" approximating games in
which one player or the other has advance information. To obtain the convergence
of the resulting "upper" and "lower" values of the game he requires in effect that
the payoff P(u, v) be jointly continuous in both control functions. This he ensures
by considering only dynamical systems of the form

fl(t, x, u) + f:(t, x, )
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and payoffs of the form

P(u, ) (x(t)) + [
Jo

hi(t, x, u) + hz(t, x, v) dt,

so that u and v are "separated."
Somewhat earlier (cf. [1]), Berkovitz studied differential games by a "varia-

tional approach," introducing related Hamilton-Jacobi equations which are,
unfortunately, hard to analyze.

2.1. A game with no pure strategy solutions. In [1] Berkovitz considers a
differential game described by an equation

(t)= 4(u-v)2 xeR

and with payoff

The control sets are

e [0, 1], x(O) O,

P(u(t), v(t)) x(t) dt.

Y= {u’O<=u<= 1} and Z= {v’O<=v<_ 1}.
In terms of his "variational approach," Berkovitz shows this game has no solution
in pure strategies.

A. Friedman also cites this example in [3] and shows that for this game his
upper value V + 1/2 while his lower value V_ 0. Thus, as V + - V_, this game
does not have a value in his theory.

We shall see below, however, that by introducing the idea of relaxed controls,
this game, for example, does have a saddle point over the relaxed controls.

3. Relaxelt controls. The notion of relaxed, or generalized, curve was
introduced into the calculus of variations by Young [14], and applied to control
theory by Warga [13], McShane [6] and Young [15]. For further introduction of
relaxed controls into differential games see the paper by Smoljakov [11]. The
method and content of Smoljakov’s paper, however, is quite different from the
treatment below. In the discussion of relaxed controls described below we shall
follow the setting described by Warga [13].

Suppose we have a dynamical system and payoff as described in Notation 2.1.
We have already introduced U and V for the spaces of measurable functions from
T to Y and Z respectively. U and V are, of course, just the spaces of (classical)
control functions.

DEFINITION 3.1. Denote by (PY) and (PZ) the space of all regular prob-
ability measures defined on the Borel subsets of Y Rp and Z = Rq, respectively.
A relaxed control for the first player is a function a from T-- [0, 1] to PY. A
relaxed control is continuous (resp. measurable)if y f(u)cr(du;t) is a continuous
(resp. measurable) function of T, for every continuous real-valued function f
on Y. A relaxed control for the second player: :T PZ is defined similarly. We
shall identify relaxed controls which differ only on a set of measure zero.

Remarks 3.2. Here a(A, t) denotes the a(t)-measure of any Borel set A = Y.
By approximating the characteristic function of A with continuous functions on
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Y, for example, it is easy to see that, if r is a measurable relaxed control and A
is a Borel subset of Y, then or(A, t) is measurable and integrable over T.

Notation 3.3. Denote by 5(Y) the set of measurable relaxed controls on Y.
If u(t) U is a classical control, then 6(u(t)) can be thought of as an associated

relaxed control giving, in effect, the same control. (By 6(u(t)) we mean the prob-
ability measure on Y which at time has total unit mass at u(t)that is, a Dirac
f-function at u(t).)

DEFINITION 3.4. Iful(t), ..-, uk(t are classical controls and zl(t) > 0, ..., k(t)
>= 0 are measurable functions on T such that zj(t)= almost everywhere,
then we shall say that = j(t)6(uj(t)) is a chattering control of degree k. Such
controls are special cases of relaxed controls and are discussed in Lee and
Markus [4].

DlqyIa’oys 3.5. C(Y) will denote the Banach space of continuous real-valued
functionsfon g with the usual norm’ fl supply [f(u)l LIo,(c(Y)) will denote
the Lebesgue space of integrable C(Y)-valued functions {0} defined on [0, 1]
with the norm

Ilq0l sup [qo(u, t)[ dt.
uy

For a discussion of Lebesgue spaces of Banach-space-valued functions, see
Dunford and Schwartz [2 and Schwartz [9.

A real-valued function q(u, t) defined on Y x [0, 1] defines a function in

Lo,, 1(C(Y)) if"
(i) q)(u, t) is measurable in for each u e Y;
(ii) o(u, t) is continuous in u for each e [0, 1] and

(iii) there exists an integrable real-valued function (t) on [0, 1 such that
I0(u, t)[ =< *(t) on g x [0, 1].

Conditions (i), (ii) and (iii) ensure that sup,r ]q)(u, t)] is integrable and so ]q[[ is
finite.

Notation 3.6. Write B for the Banach space L[o,a1(C(Y)).
DEFINITION 3.7. Denote by B* the dual of B and by (q,2) the value of

/l B* at q e B. We shall consider B* to have the weak star topology. A sequence
{2i} converges to 2 e B* in this topology if

lim (q, 2i) (q, 2) for all q) B.

Elements of B* are described by the following lemma, which follows from
results in [9, Expos6 4, p. 3].

LENA 3.8. Suppose 2 B*. Then there is a measurable map t from [0, 1] to

the class of regular signed Borel measures on Y such that

(q), 2) q)(u, t)lt(du; t) dt for all q) e B.

Furthermore, I/t] (Y, t)e L([0, 1]).
Note that the norm of 2 e B* is just ess supo,l I/I(K t). Hence the norm

of any relaxed controller a e 5(Y) is just 1. From this lemma we have the following
theorem.
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THEOREM 3.9. The set (Y) of relaxed controls can be considered as a closed
convex subset of the unit ball of B*, and so with the weak star topology 5,(Y) is
compact.

For the proof again see [13].
For simplicity of exposition consider, instead of a differential game, a control

system with just one control variable u Y c RP; that is, a dynamical system

(3.1) 2(t) f(t, x, u), x(t) e Rm,
with initial condition x(0) x0 and f satisfying a Lipschitz condition

If(t, x, u) f(t, x’, u)[ <= (t)[x x’[

with (t)integrable.
Under these hypotheses we quote from [13].
THEOREM 3.10. Suppose a 5(Y) is a measurable relaxed control. Then there

is a unique absolutely continuous solution x(t) of the differential equation

(3.2) (t) Jy f(t, x, u)a(du t)

differentiable and satisfying (3.2) almost everywhere, with initial condition

x(O) XO Rm.
DEFINITION 3.11. Such a solution is called a relaxed trajectory.
From this Warga [13] proves the next result.
THEOREM 3.12. Denote by x(t;tr) the relaxed trajectory solution of (3.2).

Suppose {tri} is a sequence of measurable relaxed controls such that t7 -- (7 in the
weak star topology of 5(Y). Then xi(t;tri) converges to x(t; ty) in the uniform
topology on [0, 1].

A corollary of this result is that the space of relaxed trajectories is compact
in the uniform topology.

In preparation for our discussion of differential games let us return to our
discussion of dynamical systems with two sets of control variables as described
in Notation 2.1.

LEMMA 3.13. If tr is a measurable relaxed control on Y and z is a measurable
relaxed control on Z, then tr z is a measurable relaxed control on Y Z, and
tr z can be considered to belong to the unit sphere of the dual of LI(C(Y Z)).

Proof. The first statement is a simple consequence of results on product
measures.

Given a function f(t,u,v) in LI(C(Y x Z)) we have that for each v’ e Z,
f(t,u,v’)eL(C(Y)). Therefore, fyf(t,u, v)a(du;t) is continuous in v for each
e [0, 1] and is measurable and dominated by an integrable function in (uniformly

for all v e Z). Thus we can consider

fo fyfzf(t,u,v)a(du;t)z(dv;t)dt= (f, a xz).

It is clear that a z is a probability measure on Y Z for each [0, 1] and that
a z has unit norm as a linear functional on LI(C(Y Z)). Thus a z belongs
to (Y Z).
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Remark 3.14. Note that by Fubini’s theorem,

f(t, u, v)(dv t)(du t).

Discussion 3.15. Suppose Y Rp, Z Rq are compact sets as above, and
write

Ba L(C(Y)), B2 Lx(C(Z)), Ba L(C(Y x Z)).

The dual spaces B will as usual be given the weak star topology. Denote by
5(Y), ,9(Z), 5(y Z) the spaces of relaxed controls over [0, 1] on Y, Z and
Y Z respectively, so that we have

S(Y)B, S(Z) B, (r Z) B.
Lemma 3.13 above tells us that we have a natural mapping from 5(Y) 5(Z)
to (Y Z). Of course this map is not surjective, but more surprising this
(bilinear on convex combinations) mapping is not jointly continuous in both
variables, as the following example shows.

Example 3.16. Suppose Y= [0,1] and also Z= [0,1]. Consider a
partition of the time interval T [0, 1] into 2" equal intervals T1 [0, 1/2"],
Tj (j 1)/2", j/2"], j 2, ..., 2". Corresponding to the 2" partition of T con-
sider a relaxed control a, on Y and a relaxed control r, on Z which are piecewise
constant on each T, j 1, ..., 2", and which are such that

,(. ;t) and z,(- ;t)

are the unit mass at the point 1 e Y(resp. 1 e Z) if e T1 U T3 U T5 U U T2._
and a,(. ;t) and :,(.;t) are the unit mass at the point 0e Y (resp. 0eZ) if

teT2 U T4 U T6 U U T2..
Then it is easy to see that both a, and :, converge in B]’ (resp. in B) to the

constant relaxed control a on Y (resp. on Z) which consists of a mass 1/2 at 0
and mass 1/2 at 1.

However, the product relaxed control r, x :. on Y x Z [0, 1] x [0,
converges in B to the constant relaxed control z which consists of a mass 1/2 at
(0, 0)e Y x Z and mass 1/2 at (1, 1)e Y x Z.

Clearly rc 4= z, so the map is not jointly continuous. (To check the above
statements about the weak star convergence of ,, :. and , x :,, it is sufficient
to check how these relaxed controls act on products of functions f(t), q)(u),
wherefis continuous on T, q is continuous on Y and is continuous on Z. This
is because, for example, sums of products of the form f(t)q)(u)/(v) are dense
in B3 .)

DEFINITION 3.17. In Definition 3.1, we introduced the idea of measurable
relaxed controls. Returning to a differential game described as in Notation 2.1,
following Theorem 3.10, if the first player uses a relaxed control (. ;t) and the
second player uses a relaxed control :(. t), then we define the dynamical equations
to be given by the system

f(t, x, u, v)a(du t)z(dv t).
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Furthermore, the payoff corresponding to the relaxed controls a and z is defined
to be

(3.4) P(a, z) #(x(t)) + h(t, x, u, v)a(du t)z(du t) dt.

Remarks 3.18. It is a consequence of Example 3.16 and Definition 3.17 that
P(a, z) is not in general jointly continuous in a and z. However, in special situa-
tions, for example those discussed by Friedman [3] in which the control variables
are separated, the payoff is jointly continuous and the definition of P(a, z) can be
motivated by continuity because (cf. [13, Thm. 2.4]) the classical control functions
are dense in the relaxed controls.

Similar to Definition 2.5 we have the strong concept of a saddle point over
the relaxed controls.

DEFINITION 3.19. A pair of relaxed controls r* e 5(Y), z* e 5e(Z) is said to
form a saddle point over the relaxed controls if for any other relaxed controls
r e 5z(Y), z e 5z(Z),

P(a*, z) >= P(a*, *) >__ P(a, z*).

Remarks 3.20. Having made the above definitions we remark that, as is
easily seen, one reason the Berkovitz game (cf. 2.1) is difficult to analyze is that
having introduced relaxed controls its payoff is not jointly continuous on
5z(y) 5z(Z).

4. Certain linear games. Suppose the system of equations describing the game
has the form

(4.1) (t) A(t)x(t) + f(t, u, v)

with initial condition x(0) Xo R". Here A(t) is a continuous linear function of
[0, 1], that is, A(t) is an m x m matrix whose entries are continuous functions

of time. f(t, u, v) is a continuous function on T Y x Z.
Furthermore, suppose the payoff has the form

(4.2) P(u, v) p(x(t)) + h(t, u, v) dt,

where p is a continuous real-valued linear function on the Banach space C([0, 1])
of continuous R"-valued functions on 0, 1].

We are now in a position to prove our final result.
THEOREM 4.1. Consider the differential game with dynamics and payoff given

by equations of the aboveform (4.1) and (4.2). Then there is a pair ofrelaxed controls
a*(., t), z*(., t) which give a saddle point for the game when each player can play
over his set ofall relaxed controls. That is, ifa(., t) (resp. z(. t)) is any other relaxed
control for the first (resp. second) player,

P(a*, z) >__ P(er*, z*) >__ P(cr, z*).

Proof. Since the system equations are linear in x, it follows that for fixed z
in 5z(Z) the mapping a p(x(. )) from 5z(Y) to the real numbers is continuous
and linear on 5(), where 5z(Y) is a subset of B]’, endowed with the weak star
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topology. Similarly, for fixed a in (Y) the mapping z #(x(. )) from 5(Z) to
the real numbers is continuous and linear. Hence for fixed z in 5(Z) the mapping
a ---, P(, z) is continuous and linear on 5(Y). Similarly for fixed a in 5(Y) the
mapping z P(a, z) is continuous and linear on (Z).

Since 5(Y) and (Z) are convex and compact, the existence of a saddle
point follows from the general theorem of M. Sion [10]. The results in Sion give
infsup supinf, but since we have P continuous in each variable and 5(y)
and (Z) compact, it is easy to see. that we also have max min min max and
the existence of a saddle point, that is, there are relaxed controls a* (Y) and
z* 5(Z) such that (4.3) is satisfied.

Remark 4.2. We note again that the example of Berkovitz [1] described in
2.1 is a differential game described by an equation of the form (4.1) and with

payoff of the form (4.2). This game, therefore, has a saddle point over the relaxed
controls.

In fact, Smoljakov [11] proves by variational methods that a saddle point is
obtained over the relaxed controls in the Berkovitz game if u (trying to maximize
the payoff) "plays" a constant probability measure a* (mass 1/2 at 0 and mass 1/2
at 1) throughout the time interval, while v plays the constant control v(t)- 1/2
throughout the interval.

5. Chattering control saddle points. In this section we examine several special
cases of Theorem 4.1; in particular, we consider when the saddle point (a*, z*)
over the relaxed controls can be reduced to a saddle point over classical controls
or, perhaps, chattering controls (see Definition 3.4) of a specified degree.

THEOREM 5.1. Consider a game with dynamics

c A(t)x + B(u, t)+ C(v, t),

and payoff

where

x(O) xo R",

P(u, v)= la(X(t)) + f] (F(u, t) + G(v, t)) dt,

B’Y [0, 1] R"; C’Z [0 1] -- RF:Yx [O, 1]R, G:Z x [O,1]R

are each continuous, and A and l are as in (4.1). Then iffor each [0, 1] the sets

L
F(u,

u Y M
G(v, t)

v e Z

in R"+1 are convex, there is a saddle point (u(t),v(t)) over the classical controls.
Proof. Let (a*(t), z*(t)) be the saddle point over the relaxed controls obtained

by Theorem 4.2. We determine s(t) R"+ by

s,(t)
r
Bi(u, t) da*(t, u), <= <= m,

fr F(u, t)da*(t, u), m + 1.
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L is by assumption convex, and it is also compact as Y is compact and B and F
are continuous. Hence it follows that s(t) Lt and is a measurable function of

[0, 1]. By the Filippov implicit function theorem (cf. [5]) there is a measurable
function u* :[0, 1] such that

F(u*(t), t) F(u, t)

Similarly we determine v*(t) such that

C(v*(t), t)) fz C(v t)) dz*(t v)"
6(v*(t), t) F(v, t)

It is clear that u*(t) has the same "effect" on the game as the relaxed control
a*(t), and similarly v*(t) has the same effect as z*(t). Hence it follows easily that

P(u*, v) >= P(u*, v*) >= P(u, v*)

for any other pair of control functions u(t), v(t).
COROLLARY 5.2. The above result holds when Y and Z are compact and convex

and

B(t, u) B’(t)u, C(t, v) C’(t)v,

F(t, u) F’(t)u, G(t, v) G’(t)v,

where B’(t), C’(t), F’(t), G’(t) are each matrix-valued.
The assumption that L, and,M, are convex for each may be dropped if we

are only interested in establishing a saddle point over the chattering controls of
suitable degree.

THEOREM 5.3. Consider a game with the same form as in Theorem 5.1 except
that we do not assume that L and Mt are convex. Then there is a saddle point (a,, z,)
over the chattering controls of a degree m + 2. If Y and Z are connected, we may
take (a,, z,) of degree m + 1.

Proof. Let F(Lt) be the closed convex cover of L in R" + then by a theorem
of Carathgodory, if 6 F(L),

m+2

i=1

where ai 1, ai _>_ 0 and e L,. Now consider the set A" + 2 x yrn + 2 )< [0, 1],
where A"+2 c R"+2 is the set of all {}7’=+( such that Z a, and a, > 0. The
map

O:Am+2 x ym+2 [0, 1] Rm+l

given by

0(01’ 0m+ 2, Ul, b/m+ 2, t) i
i= F(ui,

is continuous; hence if (a*, z*) is the saddle point over relaxed controls, we may
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apply Fillipov’s theorem to deduce the existence of measurable functions

i’[0, 1] ---, R, 1,2, ..., m + 2,

vi’[-0,1] Y, i= 1,2,...,m+ 2,

such that ei(t) >_- 0, oq(t) 1, and

i F(uj, t) f(u t)i=1

m+ 2for all t. The chattering control a, = (t)6,,,)has the same ’effect as a*.
A similar argument to that of Theorem 5.1 concludes the proof.

If Y (and then L) is connected, Carath6odory’s result may be improved to
expressing F(L,) as

m+l

i=1

and the proof proceeds as before.
This theorem may be extended to cases in which the u- and v-dependence in

the dynamics does not split entirely, but becomes "polynomial-like" (in the
terminology used in simple game theory). For simplicity we consider only the
case where x is a real variable (i.e., we assume m 1), with the dynamics of the
game given by

p

(5.1) 2 A(t)x + , aij(t)q)i(u, t)Oj(v, t)
i=Oj=O

(where we assume that qg0(u, t) _-- 1, O0(v, t) 1), subject to the initial condition
x(0) 0; the payoff is also "polynomial-like""

(5.2)

We assume that

P 2(x(t)) + bo(t)q)i(u, t)O2(a, t) dt.
i=0j=0

q)’Y x [0, 1] -+ R, =0,1,2,...,p,

j 0,1,2,.-.,q,

i= 0,1,2,...,p,

j-- 0, 1,2, ,p,

q91(U

(u, t)

%(u

t)

2:Z [0, 1] R,

ao [O 1] --+ R

bij’[O 1] R

are all continuous. Then we can state the following theorem.
THEOREM 5.4. The game described by (5.1) and (5.2) has a saddle point in

chattering controls (a*, *) of degree p + 1 and q + 1 respectively. If Y and Z
are connected, a* and * may be taken of degrees p and q.

Proof. Consider the map :Y x [0, 1] Rp,
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Let,(Y)=(Yx {t}), 0 =< _<_ 1;then

fr (u t) da*(t, u) e F(,(Y)).

Consider the map

O’Ap+I x YP+I x [0, 1]--+ Rp,
p+l

0(0{1, Op+ 1, bll’ "’’’ Up+ 1’ t) E Oi()(Ui’ t).
i=1

Then by Carath6odory’s result,

O(Ap+l x YP+I X {t}) F((I)t(Y))

and 0 is continuous. Hence by the Filippov theorem we may determine measurable
functions al(t), .", %+ 1(0, v(t),..., Vp+ (t) such that

P+’ Li=1

We show as before that the chattering control
p+l,
i=1

has the same effect as a*. Let z(t) be any relaxed control for the second player.
Then the trajectory described by (r,, ) is given by

2 A(t)x + o o aii(t) qi(u, t)/j(v, t)da,(t, u)dr(t, r)

A(t)x + o o aiJ(t) qh(u, t)j(a, t)da*(t, u)dz(t, a)

and is therefore the same as the trajectory described by (a*, z);a similar argument
may be used on the payoff. We determine z, for the second player and the result
follows. Once again if Y and Z are connected, we may reduce the (p + 1)-degree
to p, as in Theorem 5.3.

A similar theorem may be stated in R", where for each coordinate the
dynamical equation is "polynomial-like." We conclude by observing that the
Berkovitz game (see 2.1) may be analyzed by Theorem 5.4. Thus if

2 (U /3)2 U2 2uv + v2

we may take q)l(U, t)= U, (P2(U, t)-- U2, while 01(/3, t)"-- /3, 02(/3, t)-- /)2. As the
payoff

.1

p j x(t) at
0

does not depend on u and/3, these are the only functions required. Thus p q 2,
and Yand Z are connected. We may therefore expect a saddle point over chattering
controls of order 2 (see Remarks 4.2).
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A DRIVABLE METHOD OF FEASIBLE DIRECTIONS*

GERARD G. L. MEYER-

Abstract. This paper presents a feasible directions algorithm for solving a general nonlinear
programming problem. The algorithm is characterized by the fact that it is parametrized by functions.
One may, through proper choice of the parametrizing maps, model the algorithm to optimize its
behavior with respect to classes of problems.

Introduction. This paper presents a feasible directions algorithm for solving
a general nonlinear programming problem. The algorithm is characterized by the
fact that it is parametrized by functions. This allows for a great freedom in the
application of the algorithm. One may, through proper choice of the parametrizing
maps, model the algorithm so as to optimize its behavior with respect to a class
of problems.

The paper’s first part is devoted to preliminaries. The problem under con-
sideration and the notations are defined. A necessary and sufficient condition of
optimality for the problem is also given. The following part of the paper presents
the drivable algorithm together with its proof of convergence. It is shown that the
parametrizing maps need only to satisfy a simple assumption to ensure convergence
of the algorithm. Finally, two examples of parametrizing maps are given and it is
shown that the corresponding algorithms are the Zoutendijk’s and Polak’s
method of feasible directions.

1. Preliminaries. The following nonlinear programming problem will be
considered in this paper.

Problem 1. Given m + continuously differentiable and convex mapsf(. ),
fl(. ),... ,fm(. )from R" into R l, let Tbe the subset of R" defined by T {zlfJ(z)
<= 0,j- 1,2,..., m}. Suppose that T is nonempty, compact and that for any
z in T, the set of vectors {VfJ(z)lfJ(z) O, j 1, 2, m} is linearly independent.
Find a point z* in T, such that f(z*) < f(z) for all z in T.

Notation 2.
(i) Let o0 be the set {1, 2, ..., m}, let 3 be the set o0 CI {0} and let (J)

be the family of all subsets of .
(ii) Let be the family of all compact neighborhoods of the origin in

A set in is closed, bounded and contains an open set around the origin in
An example of this type of set is the set {z R"[ [zil <= 1, 1, 2, ..., n}.

(iii) Let N be the positive integers, let R l+ be the positive real line and let
P,+ be the completed positive real line, i.e., R+ [0, ).

(iv) Given a sequence {zi} and a subset K of N, let {z,)K be the subsequence
defined by {zi]i K}.

(v) Given a set J in o, let J be its complement with respect to o, i.e., let
J {joC[jqJ}.

Received by the editors January 4, 1972.

" Department of Electrical Engineering, The John Hopkins University, Baltimore, Maryland
21218.

113



1 14 GERARD G. L. MEYER

DEFINITIONS 3. Let J(.,. be the map from T i+ into ’(o) and qS(.,-,-)
be the map from T K+ R" into R defined as follows"

J(z, )- {jeolfJ(z) + 1/ O} U {0},
qS(z, , h) max (VfJ(z), h}.

jJ(z,a)

Necessary and sufficient conditions of optimality for Problem 1 are well
known. One of their most convenient forms was given by Zoutendijk [10-].

LEMMA 4. A point z* in T is a solution of Problem 1 if and only if
min qS(z*, oe, h) 0
hS

for any set S in o,
The proofs of the two lemmas below are not difficult and have not been

included,

LEMMA 5. Given z in T, S in - and 6 > O, there exist a neighborhood N(z) of
z and k > O, both of which depend on z, S and fi, such that

49(z’, , h) <= 49(z, oe, h) + (3,

for all z’ in N(z) f-] T, for all > k and for all h in S.
LEMMA 6. Let z in T, h in R", J in (o) and 6 > 0 be such that fJ(z) <=

for all j in J and (VfJ(z), h> <= -6 for all j in J. Then there exist a neighborhood
N(z) ofz, a neighborhood N(h) of h, ,1 > 0 and F,2 > O, all of which depend on z, h, J
and 6, such that for all z’ in N(z) VI T, for all h’ in N(h) and for all j in

fJ(z’ + e2h’) fijfJ(z’) <
with fij 1 ifj J and flj 0 otherwise.

2. A drivable method of feasible directions. The algorithm proposed to solve
Problem 1 uses a point y in T, a compact neighborhood S of the origin in
and two maps #a(. and 2(" from N into RI+.

ALGORITHM 7.
Step O. Set Zo y, setjo 0 and set 0.
Step 1. Compute hi in S such that for all h in S,

(/)(2i, l(Ji), hi) <= dp(zi, #(ji), h).

Step 2. If c/)(zi,l(ji), hi) <= -1/2(Ji), go to Step 3; else, set zi+ zi, set

Ji+a Ji + 1, set + and go to Step 1.
Step 3. Compute 2i in R satisfying

max {2[fk(z + 2hi) =< 0, k 1,2, ..-, m}.
Step 4. Compute gi in [0, 2i] such that for all tt in [0, 2i],

f(z -4- llihi) <= f(z -4- lahi).

Step 5. Set zi+ zi + ttihi, setji+l Ji, set + and go to Step 1.
The assumption below ensures that Algorithm 7 can be used to solve

Problem 1.
Hypothesis 8. Given any m in R+ there exists a k in N depending on m such

that 1(i) => rn and f2(i) => rn for all > k, in N.
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THEOREM 9. Any sequence {ji}, generated by Algorithm 7 when applied to
Problem 1, has the following properties"

(i) The sequence {Ji} is monotonically increasing.
(ii) The set m {il$(zi,#l(ji),hi) > -1/#2(Ji)} contains an infinite number

of elements.
(iii) Given any m in N there exists n in N, depending on m, such that Ji > m,

for all >= n, in N.
Proof. Let {zi, hi, Ji} be a sequence generated by Algorithm 7 when applied

to Problem 1. By construction, Ji+l is equal to either Ji or Ji+l and therefore
Ji+l >= Ji for all in N.

Each set J(zi,(x(ji)) is a subset of J which is finite. It follows that there
exists an infinite subset L of N and a subset I of J such that J(zi, #l(ji)) I for
all in L. The sets T and S are compact and therefore there exist an infinite subset
K of L and two points z* and h* in Tand S respectively, such that the subsequence
{zi} converges to z* and the subsequence {hi} converges to h*.

Suppose that part (ii) of the theorem is false, i.e., suppose that the set

m {ilqb(zi, #(Ji), h,) > 1/2(Ji)}

is a finite subset of N. Then there exist p and m such that Ji m and c/)(zi, (l(m), hi)
=< -1/#2(m) for all _>_ p. Let

min {1/#,(m), 1/#2(m)}.

Then f(zi) <= -( for all k in i and <Vf(zi), hi> < -6 for all k in I, provided
that >= p.

The maps f(.) are continuously differentiable for k in and therefore
f(z*) < -6 for all k in i and <Vf(z*), h*) < -6 for all k in I. Lemma 6 implies
that there exist/7 >__ p, e > 0 and e > 0 so that fk(z + ,2hi) flkfk(zi) -,
for all >__/, in K and for all k in . It follows immediately that e2 is in [0,
for all _>_/5, in K. Step 4 of Algorithm 7 shows that

f(z + lihi) <= f(zi + e2h) _-< f(zi)-

for all i__>/, in K. The set K is infinite and by construction the sequence
{f(zi) is monotonically decreasing. It follows that f0(.)is unbounded from
below on T. This contradicts the assumptions that f0(. is continuous and that
the set T is compact. Therefore the set M is an infinite subset of N.

In view of the determination of Ji in Step 2 of Algorithm 7, part (iii) is an
immediate consequence of part (ii).

It can be noticed that Theorem 9 does not require that Hypothesis 8 be
satisfied.

THEOREM 10. If Hypothesis 8 is satisfied, any sequence {zi}, generated by
Algorithm 7 when applied to Problem 1, has the following properties"

(i) The sequence {zi} has at least one cluster point.
(ii) The sequence {f(zi)} is monotonically decreasing.

(iii) Any cluster point z* of the sequence {zi} is a solution of Problem 1.

Proof. Parts (i) and (ii) of the theorem are clear and only part (iii) will be
proved.
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Let {zi} be an infinite sequence constructed by Algorithm 7 when applied
to Problem 1. Theorem 9 implies that M {i]4)(zi, El(ji),hi)> -1/’2(ji)} is an
infinite subset of N. The sequence {z} is in T which is compact and therefore
there exist an infinite subset K ofM and a point z* in T, such that the subsequence
{zi}: converges to z*.

Let 6 > 0 be given. Lemma 5 implies that there exists kl such that qS(z*, oo, h)
>- dp(zi, z, h) 6/2 for all e >__ ka, for all >= k a, in K, and for all h in S. The maps
1(" and 2(" satisfy Hypothesis 8, and in view of part (iii) of Theorem 9 there
exists k2 such that l(Ji) ->_ ka and ce2(Ji >__ 2/6 for all >__ k2. It follows that

and

dP(Zi, E (Ji), hi) >- 6/2

min dp(z*, oo, h) >= c(z,, {l(J,), hi) 6/2
hsS

for all i_>_ k, in K, with k max(ka,k2). This immediately implies that
minhs qS(z*, oo, h) >= -6. The set S contains the origin of R" and therefore

0>=minb(z*,oo,h)>= -6 for all6>0,
heS

min b(z*, , h) 0
hS

and z* is a solution to Problem 1.
The sequence {f(zi) is monotonically decreasing and therefore if z** is

any cluster point of the sequence {zi}, then f(z**) f(z*). It follows that any
cluster point of a sequence {zi} generated by Algorithm 7 when applied to Problem

is a solution of Problem 1.

3. Classical methods of feasible directions. Algorithm 7 is parametrized by
the two maps #1(" and #2(" ). These maps need only satisfy Hypothesis 8 to ensure
that Algorithm 7 can be used to find solutions of Problem 1. There is therefore
a great deal of freedom in the choice of these maps thus the name drivable method
of feasible directions given to Algorithm 7. One may use maps which not only
satisfy Hypothesis 8 but also ensure that Algorithm 7 behaves in an efficient way
when applied to a given class of problems.

The maps 1(" and E2(" may be chosen a priori or may be determined by
Algorithm 7 itself. An example of each possibility is now presented.

DEFINITION 11. Given c > 0, let 1(’) and 2(’) be the maps defined as
follows"

#a(J) #2(J) e(J + 1) for all j in N.

The maps 1(" and #2(" given by Definition 11 clearly satisfy Hypothesis 8.
Therefore by employing these maps, Algorithm 7 can be used to find the solutions
of Problem 1. One may notice that when the maps given in Definition 11 are used,
Algorithm 7 is parametrized by a scalar.

DEFINITION 12. Given e > 0 and / > 1, let #a(’) and {2(" be the maps
defined as follows"

(i) 1(0)
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(ii) For all >__ 1, in N, let #l(Ji) e ifji j_ and let (l(j) fl#l(j-1),
otherwise.

(iii) g’z(J) #l(Ji) for all/in N.
The maps {01(" and 2(" given by Definition 12 depend on Algorithm 7 and

the problem under consideration. It is easy to show that the maps #1(" and #2("
generated by Algorithm 7 when applied to Problem 1 satisfy Hypothesis 8.
Therefore, by utilizing these maps, Algorithm 7 can be used to find the solutions
of Problem 1. One may notice that when the maps given in Definition 12 are used,
Algorithm 7 is parametrized by two scalars.

There exist many ways of defining the maps {01(" and {02(" either explicitly
as in Definition 11 or implicitly as in Definition 12. The two examples presented
are interesting because they correspond to well-known algorithms. Algorithm 7
which employs the maps given by Definition 11 is called the Zoutendijk’s method
offeasible directions. Algorithm 7 which utilizes the maps given by Definition 12
is called the Polak’s method offeasible directions.

4. Conclusion. The drivable method of feasible directions presented in this
paper has a marked theoretical advantage over the classical methods of feasible
directions. It is parametrized by two functions, {01(" and {02(" ), which need only
satisfy Hypothesis 8 to ensure that the algorithm may be used to solve Problem 1.
It follows that there is no limit on the complexity of the procedures used to obtain
the maps {0(. and {02(" ). Although it is possible to use predetermined maps, it is
the opinion of the author that maps determined implicitly, taking into account the
behavior of the algorithm when solving a particular problem, are preferable.
Definition 12 gives an example of such a map. In this case the determination of
{1(" )and {02(. )during iteration depends on the value ofji- 1. One may synthesize
the maps #1(" and #2(" at iteration by taking into account a greater quantity
of information on the behavior of the algorithm at iteration 1, 2, etc.
For example, one may determine the maps {01(" and {02(" by taking into account
the behavior off(zi), J(zi, {01(Ji)), (])(Zi, {01(ji), hi), Ji and h for 1, 2, etc.

The computational efficiency of such schemes will most likely depend on the
types of problems under consideration. These schemes may be better determined
by dir,ect experimentation on digital computers.
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MINIMUM-ENERGY TERMINAL STATE CONTROL OF
FIRST ORDER LINEAR HYPERBOLIC SYSTEMS IN ONE SPATIAL

VARIABLE USING THE METHOD OF CHARACTERISTICS*

TIMOTHY L. JOHNSON?

Abstract. The initial value problem for a hyperbolic system of (n) linear constant-coefficient
first order partial differential equations is considered, on a finite time interval. Control over the evolu-
tion of the state variables is exercised by (n) forcing functions which are assumed to be distributed in
space and time. These functions are to be determined subject to the hard constraint that the system state
lie in a given target set at the terminal time, and to the soft constraint that a given scalar quadratic
functional termed the "control energy" be minimized. For certain types of target sets, the method of
characteristics is shown to be useful in determination of the optimal controls. Discontinuities in initial
and terminal data are reflected in these controls.

1. Introduction. A first order linear constant-coefficient hyperbolic system of
(n) equations in one spatial variable may be decoupled into (n) first order hyperbolic
equations. The initial value problem for such a system is readily solved by applying
the method of characteristics to the decoupled equations; (n) one-parameter
families of ordinary differential equations are thus obtained. The system to be
considered is nonhomogeneous, each equation being driven by an independent
control function, distributed in space and time. These (n) control functions are
to be determined subject to the hard constraint that the system state lie in a given
set at the terminal time, and to the soft constraint that a given quadratic functional
termed the "control energy" be minimized. Under the conditions described below,
controllability, viz., the existence of one or more control functions satisfying the
hard constraint, is guaranteed.

General theory for solving this type of optimization problem is available
[3, pp. 272-347], [4], [5]. However, the optimal control will in general be specified
by the solution ofa two-point boundary value problem involving partial differential
equations, which would in practice require a large amount of digital computation.
Herein, the terminal target set and the cost functional are chosen in such a way that
the optimal controls are easily computable. Furthermore, insight may be gained
regarding the dependence of optimal controls upon the wave properties of the
original system.

The method of characteristics and solutions of the system equations are
reviewed in the preliminary section. In the following sections, optimal controls
are derived for various combinations of target set and energy functional. Control
to a linear integral manifold, a terminal state value at a single point, and a terminal
state specified on a line segment are discussed. Generalizations and conclusions
are examined in the final section.
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2. Preliminaries. Systems of linear first order partial differential equations in
one spatial variable are considered:

x(z, t)/t Acx(z, t)/z + u(z, t),

where the state x and the control u are n-vectors and the space-time domain of
interest is (z, t)e D (R x [0, T]), and A e R"". The initial and terminal states
will be referred to as

(2.2) x(z, 0) Xo(Z),

(2.3) x(z, T)= xr(z),

where x0(z) CI(R) and xr(z) CI(Zr) is specified only on a subset Z [z-, z +]
of R. There are no other boundary conditions on x and no other explicit constraints
on the control function u. Initial data is actually only required on the domain
of dependence of Zr at time 0. For simplicity of exposition, boundary con-
ditions will not be considered in this discussion; for well-posed initial boundary
value problems, some of the methods below may be adapted by including control
constraints involving the boundary data.

In order that the initial value problem (2.1)-(2.2) be well-posed, the system is
assumed to be strictly hyperbolic, i.e., the constant matrix A is assumed to have
real distinct roots and hence linearly independent eigenvectors

(2.4) VA AV,

where A diag (2, ..., 2,) and V is invertible.
By change of dependent variable, the above system may be decoupled into

a set of (n) independent single-variable subsystems, each governed by a first order
linear partial differential equation. Let

(2.5) y(z, t) Vx(z, t),

(2.6) w(z, t) Vu(z, t).

Then by (2.1), (2.4) derive the decoupled system

(2.7) @(z, t)/c3t A@(z, t)/Oz + w(z, t)

subject to the transformed boundary conditions:

(2.8)

(2.9)

y(z, 0) VXo(Z) -+- yo(z),

y(z, T) Vxr(z) =" yr(z).

Consider the problem of solving the ith equation of (2.7)-(2.9):

Oyi(z, t)/Ot 2iOy(z, t)/z + wi(z, t),

(2.10) yi(z, O) y,o(Z),

y,(z, 73 y,(z).

The solution may be found using the method of characteristics. Introduce a new
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set of (characteristic) coordinates
(2.11) i(z, t)= (z- z-) + 2i(t- T),

(2.12) zi(z, t) T.

Since this transformation is everywhere invertible, y and w may be considered
as functions of (, z) rather than (z, t) via the association

(2.13) 7,(,, z,) y,(,(z, t), r,(z, t)) y,(z, t)

and an ordinary differential equation for y(, z) in the characteristic coordinate
system may be obtained via the chain rule:

i/Z i/i.

Thus (2.10) is converted to a one-parameter family:

,(,, ,)1, ,(,, ,),

(2.14) ;(x,- T)= yo( + z- + 2T),

(, 0)= y( + z-),

where ri [-Z 0] and z [0, z + z-]. If Yo and Yr are prespecified, a family
of integral constraints is defined, namely,

(.15) c(z3 r( + z-)- Yo( + z- + Xr)= (,) dry.
T

This set of constraints is readily expressed in terms of the original variables (z, t)
by defining the Nmily of characteristic lines

(2.16) Fi(zo, t) zo 2t, e [0, r] zo e [z- + 2iT, z + + 2iT].

Then (2.15) may be rewritten as a line integral along F"

(2.17) yir(Zo 2iT) yio(Zo) + wi(zo 2, r)d.

These are the control constraints ordained by the specification of a fixed terminal
state.

Provided xo e C(R), Xr e C(Zr) and e C(D), a unique solution x e C(D)
will exist. These continuity conditions on the initial data and controls may be
relaxed if one considers existence and uniqueness (in the appropriate sense) of
weak solutions. The controls derived below are discontinuous on the boundaries
of {(, )le[0, z + -z-I, e[-T, 0]}, but may be arbitrarily closely
approximated by controls e C(D), and should properly be interpreted as the
limit ofa sequence of such approximate controls, provided C solutions are sought.
The discontinuity of the optimal controls, it should be remarked, is such that the
terminal solution Xr e C(Zr).

3. Ctrl t terminal ler riety. Define a set of admissible controls,
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where x(z, t) is the solution of the initial value problem (2.1)-(2.2), and

(3.2) S {x L"(Z) fz LX(z) dz f

(3.4)

is a terminal linear variety specified by the parameters of L e Rmxn and f e Rm.
The admissible control u e U is sought such that the control energy functional

(3.3) J(u) f/ u’(z, t)Ru(z, t) dz dt

takes its minimum value for u u. In (3.3), R is assumed to be a positive definite
n x n matrix; the domain D may be taken as the entire strip R x [0, T], although
(2.17) shows that each control is constrained by (3.2) only on a subset of this domain
(since ZT is only a subset of R). Only the union of such subsets (i 1, 2, ..., n)
need actually be included in D, since u 0 minimizes (3.3) absolutely in regions
where u is unconstrained.

This control problem may be converted into a constrained minimum norm
problem in L"2(D by expressing the admissible controls (3.1) explicitly and by
converting (3.3) into a norm on this space. The original problem is then solved
by applying the projection theorem [2] to the minimum norm problem.

An explicit expression for the control constraint imposed by (3.2) follows by
integrating (2.17) over Zo:

+ ,r +
yir(Zo 2iT) dzo Jo Yio(Zo) dzo

/ ,iT + AiT

+ 2T T

+ wi(Zo 2c, )dr dzo.

Defining D as the image of in the original coordinate system (i.e., the parallelo-
gram bounded by the lines 0, T, F(z-, t) and F(z/, t)) and by introducing
a characteristic function of D,

1 if (z,t)Di,
(3.5) di(z t)

0 if (z,t)qD,

equation (3.4) may be rewritten as

(3.6) z y,r(z)dz Yio + fodi(z,t)wi(z,t)dzdt, i= 1,2, ..., n,

where Yio (.+- +z’T
/, yio(Z) dz. Augmenting equations (3.6) a more compact form is

obtained:

(3.7) fz Yr(z) Yo + o D(z, t)w(z, t) dz dt,

where D(z, t) diag [dl(z, t), d,(z, t)] and Yo col [Ylo, "’", Y,o]. By left-
multiplying (3.7) by LV- and recalling (2.5)-(2.6), a set of (m) linear integral
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constraints on the (transformed) control w results"

(3.8) fo LV- D(z, t)w(z, t) dz dt LV- lyo f.

The control energy (3.3) takes the form of a norm on L2(D) if R is factored as
R ’R ( invertible), and another transformed control function

(3.9) Ru V-lw
is introduced; then the energy becomes"

(3.10) J(gv) f) v’gv dz dr.

With the natural inner product on L"z(D), J() Ill and

U {uL(D)lu -1"; (i,) J];i 1,2,..., m},(3.11)

where
i(z, t) [[I- I’V’D(z, t)V- I’L’]i (ith column),

y [LV-’Yo f]i.

Applying the projection theorem to the minimization of Ill 2 subject to the con-
straints (i, v) f 1, 2, ..., m, we obtain the following theorem.

THEOREM 3.1. The control u u satisfying (3.1) and minimizing (3.3) exists if
and only if the constraints (3.11) are consistent, (if so) is unique and is given by

(3.12) uO(z, t) -IO(z, t) -1

where {ei} are solutions of the normal equations

(1,1) (m,l)-]
(3.13)

In the general case, the ith optimal control function u(z, t) is given by a
linear combination of the characteristic functions dr(z, t), j 1, 2,..., n, defined
by (3.5).

Example. For L I and m n,

i) 1"’i dZ dt 1" IV-1D(z, t)VR-’V’D(z, t)V’-1]j dZ dt

SO

Ifo(V-1D(z,t)VR-1V’D(z,t)V’-l)dzdt1-1.
4. Control to a terminal state (special cost functional). Define a set of admiss-

ible controls,

(4.1) U (u PC"(D)Ix(z, T)e S},
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where x(z, t) is the solution of the initial value problem (2.1)-(2.2) with Xo PC"(R),
and PC"(X) denotes the space of n-vector-valued piecewise continuous functions
on X. The terminal state target set is

(4.2) S {xr e PC"(Zr)lxr xr(z) a.e.},
where xr(z) is given in PC"(Zr). An admissible (optimal) control u e U is sought
such that the control energy functional (3.3) takes its minimum value for u u.
In (3.3), R is now assumed to have the special form

(4.3) R V’IV,

where V is a solution of the eigenvalue problem (2.4) and I is a positive diagonal
matrix which may be taken as the identity matrix without loss of generality (the
solution is independent of the weightings on the diagonal). In this case, the optimal
control is given by the following.

THEOREM 4.1. The control u u satisfying (4.1) and minimizing (3.3) exists,
is unique (in PC"(D)) and is given by

(4.4) u(z, t) V- lw(z, t),

where the elements ofw(z, t) are given by
0 /f (z,t)O,,

(4.5) w(z, t)=
(2iT)-l[V(xr(z + 2i(T- t))- Xo(Z + 2iT))] if (z, t) 6 D

and Di is the parallelogram defined prior to (3.5), for 1, 2,..., n.

Proof The control constraints (on wi(z,t)) are given by (2.17). Using the
factorization of (3.9)-(3.10) above, conclude that [i V and w, and the cost
may be written

(4.6) J(w)= fow’w dz dr= Ji(wi)
i=1

where

t"
(4.7) J,(w,) Jo w(z, t)dz dt.

Now the constraints (2.17) are also decoupled, and hence w(z, t) may be chosen
to minimize only Ji(w); thus the problem has been reduced to (n) single-variable
optimization problems. Furthermore, the constraints (2.17) apply only in the
regions D, and it is possible to take

(4.8) w?(z, t) O, (z, t) e (D Di)

giving the first part of (4.5); (4.7) is now equivalent to

(4.9) J,(w,) f w(z, t)dz dr.

Alternatively, the characteristic functions (3.5) could be used as above. In the
characteristic coordinates (2.11)-(2.12), the image (i) of D is a rectangle; trans-
forming to these coordinates and partitioning the -axis into N segments of
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length A (z + z-)/N, the constraint equation (2.17) may be written

(4.10) wi(i, "ci) d’rJi EV(XT(Z- -- ;i)- Xo(2- + ,i "3t- 2iT))]i,
-T

where the values i jA.,j O, 1,..., N, are considered in particular, and (4.9)
is approximated by

(4.11) Jm(wi) (l/N)(z+ z-) wZi (jAx, "ci) d’ci.
j=0 -T

Piecewise continuity of initial and final data guarantees piecewise continuity of
the right-hand side of (4.10), and hence

(4.12) lim JiN(wi) Ji(wi).
Noo

But JiN(wi) is minimized by independently minimizing
0

(4.13) J,j(wi) w{(jA, "ci) dry, j O, 1,..., N,
-T

subject to

(4.14) o-T w,(jAx, ri)dr, [V(XT(jAx + z-)- xo(jAx + z- + 2iT))],.

In the limit as N ---, o, the minimum value of (4.9) is seen to be achieved by using
the control generated by the family of solutions to the optimization problem
(4.13)-(4.14) with jAx becoming a continuous variable in the limit. This problem
is readily re-expressed in the original coordinates (z, t) and solved in the inner
product space L2([0 T])with a z asa parameter, viz.,minimize Ilw(z + 2(T t), t)l[ 2

subject to the constraint

(4.15) <Wi(Z -]- 2i(T- t), t), 1> [V(xr(z)- Xo(Z + ,iT))]i

for each z ZT. The solution of this simple problem yields the second part of (4.5).
The resulting control function is evidently piecewise continuous on D, the dis-
continuities occurring on the characteristic lines emanating from (a) the endpoints
of the terminal domain, ZT, (b) points of discontinuity in the initial data, and (c)
points of discontinuity in the terminal data.

A special case of interest occurs when ZT consists of the neighborhood of a
single point, say ZT, in the terminal domain. In this event, nonzero controls are
obtained on the neighborhoods of the (n) characteristic lines intersecting at ZT.
Due to the special form of the cost functional (4.3), such "pointwise" controls
may be linearly superimposed to generate the optimal controls for a discrete set
of terminal points, or for an entire line segment. For more general cost functionals,
however, this convenient additivity property fails to hold because the energy
functional will not decouple along the (n) families of characteristics; this case is
treated in the following section.

As a physical interpretation of pointwise control, consider the case where the
equations (2.1) represent the dynamics of a long flexible beam and it is desired to
control the terminal state of the beam at a certain point. The above solution indi-
cates that control may be achieved by delivering specially contrived impulsive
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forces and moments to the beam at a finite number of points. Such impulses then
travel at the wave speeds of the system and meet with the desired result at the
terminal point.

5. Control to a terminal state (general cost functional). The control problem
is as stated in 4, with the assumption (4.3) replaced by the less restrictive condition
that R be symmetric positive definite. Using the transformations (2.8)-(2.9),
the control set U is still described by (2.17), as a set of linear integral constraints on
each transformed control function wi over the characteristic domain Di. In this
case, however, the energy functional (3.3) cannot be written as a sum ofindependent
functionals on these domains; the controls w, i-1,2, ..., n, must now be
jointly determined.

The following proposition outlines an iterative algorithm utilizing the
characteristic domains for solving the general problem. Alternative algorithms
could be derived by (i) discretizing the original problem and solving the finite-
dimensional approximation to the distributed optimization problem (finite
element method), or (ii) by discretizing the necessary conditions for optimality
derived for the continuous problem. The proposed algorithm differs from (i) and
(ii) in that the special role of the characteristic domains D is preserved (optimal
controls will in general be discontinuous on the boundaries of D, 1, 2, ..., n),
and convergence may be more rapid. It is shown that the proposed algorithm yields
reduction in control energy at each iteration, although this result is short of a
convergence proof.

PROPOSITION 5.1. The following algorithm is proposed for the solution of
(2.1)-(2.2), (4.1)-(4.2), and (3.3) where R is symmetric positive definite:

(i) Select an initial (transformed) control

wo (w O, w O, o,Wn).

(ii) Find w to minimize

(5.1) J(w) J(w, w2, w,).
to minimize (for j 2, 3,... n)(iii) Similarly, find wj

,o.( o .o)(5.2) J w)=J(w ,...,w_,w,wj+,...,w

(iv) Repeat (ii), (iii) for J)(w), J(w), etc. until convergence is obtained.
THEOREM 5.1. Regarding the algorithm given in Proposition 5.1,
(a) The initial control w may be chosen as a solution of Theorem 4.1.
(b) The solution of step (ii) (or (iii)) exists and is unique.

o =(wI,w,... w.) is(c) If w2, ..., w, are optimal, then the control w
optimal, where wl is the solution of step (iii).

(d)

(5.3) jk + (Wk + 1) __< jk(wk).

Proof (a) This point is included mainly as a remark that the rate of con-
vergence in general depends on the initial control estimate w. By choosing the
scale of the individual eigenvectors of A (i.e., the columns of ), it is possible to
find a solution of (2.4) which minimizes IIR V’Vll2; using this value of V in
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Theorem 4.1, a reasonable initial estimate, w (given by (4.5)), of the optimal control
is obtained.

(b) The solution of the optimization problem of (ii) is derived below; the
solution of (iii) follows by rearranging indices. Recalling (3.9), (3.10), the control
energy may be rewritten as

(5.4) J(ff) ;
From (3.9),

(5.5) , jwj, % (,V-)j.
j=l

Referring to (5.1),

(5.6)

o dzdtJOI(W OilW + aijw
i=1 j=2

Oi Oil (ijW_ W
i=1 i=1 j=2

Define for 1,2,-.-, n,

(5.7)

o+ OijW
i=1 j=2 2t dz dt.

(5.8) -- OijW,
j=2

(5.9) 0 ff i//O
i=1 i=1

Using (5.7)-(5.9) in (5.6) and completing the square, obtain

(5.10) Ja(w) (i=1 )fo(w+)2dzdt+J’
0where 3 is a constant depending on the given functions w2, w."

(5.11) 01 Wi 02
D i=1 i=1

The scale factor (’=/) and the additive constant 3 may be ignored in the
minimization of (5.10). Furthermore, w is constrained by (2.17) for 1 only on
D and hence outside this region its optimal value is given explicitly as

(5.2) w(z, t) (z, t), (z, t) .
The integration of (5.10) may then be taken over D: transforming to characteristic
coordinates, an argument precisely analogous to (4.104.15) demonstrates that
the control energy decouples along the characteristics (piecewise continuity of the
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initial and terminal data being used at this point), and hence an equivalent
optimization problem (on L2(0, T)) is"

(5.13) min [w(z + 2x(T- t), t) + k(z + 2x(T- t), 0112,
wW

where

(5.14) W= {wePC(D)l(w(z + 2,(T- t),t), 1) c,(z)}
and cx(z)-" [V(xr(z)-Xo(Z+2T))]x for all ze[z- +2xY, z + +2xT]. The
solution of (5.13)-(5.14) is

(5.15) wl(z, t) w’(z, t) v(z, t), (z, t) D 1,

where w;(z, t) is the unique element of minimum norm in the linear subspace

W* {w* ec(o)l(w*(z + 2a(T- t), t), 1)

cl(z) + (v(z + 21(T- t), t), 1)}.
The solution of this problem is an application of the projection theorem [6, pp.
46-77] in summary

v(z,t) if (z,t)D-

(5.16) w(z, t)
(z, t) + (21T)- cl(z + 21T)

+ (z + 21(T t), t)dt if (z, t) e D1,

where cl and 0 are given by (5.14) and (5.9).
(c) This follows directly from (b). The same result applies at any step of the

algorithm, viz., if all but one of the control functions of is optimal, optimality
is achieved at the next step. Thus in special cases, convergence to the optimal
control may be achieved in a finite number of iterations.

(d) This result also follows directly from (b) and from the construction of the
algorithm. Unfortunately, (5.3) does not preclude a qimit cycle" behavior of the
algorithm, e.g., when equality is achieved but / .

An important distinction between the results of Theorems 4.1 and 5.1 is that
in the former case, the optimal controls are zero in regions where they are un-
constrained by the terminal state objective, whereas in the latter case the optimal
controls are nontrivial throughout the entire domain D, although discontinuities
still occur on the boundaries of the characteristic domains D.

6. Generalizations and conclusions. The above examples, although not devoid
of interest in practical applications ofcontrol, are indeed "concocted" special cases
in which the method ofcharacteristics can be used to advantage in deriving explicit
expressions for optimal controls. Certain (well-posed) initial boundary value
problems may be incorporated in the above framework, but most other generaliza-
tions are not so successful. Decoupling fails in general when the coefficients of A
are functions of z or t. Controllability fails when u in (2.1) is replaced by Bu where
B has rank less than n, unless the terminal set is restricted. The discussion of the
preceding sections indicates that optimal controls for most minimum-energy
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state transfer problems cannot be derived explicitly by solving ordinary differential
equations arising from the method of characteristics.

Nevertheless, the explicit solutions derived above do share certain common
properties with optimal controls for more general problems involving first order
linear hyperbolic systems. The most striking feature of these controls is that they
are discontinuous along characteristics emanating (backward in time) from the
boundary of the terminal surface (endpoints of the line segment Zr, in this case).
It is in fact reasonable to conjecture that this same property holds for the cases
described in the preceding paragraph. Such discontinuities could lead to numerical
difficulties in computer algorithms devised for the solution of these more general
problems. In addition to this insight, the limitations of decoupling and use of the
method of characteristics have been explored in detail, revealing a conflict which
cannot always be resolved between decoupling of the equations and decoupling of
the control energy functional.
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NECESSARY CONDITIONS FOR OPTIMIZATION PROBLEMS WITH
HYPERBOLIC PARTIAL DIFFERENTIAL EQUATIONS*

M. B. SURYANARAYANA"

Abstract. In this paper we consider a Mayer-type optimization problem with side conditions
described by nonlinear hyperbolic partial differential equations and Darboux-type initial data in a
rectangle G. The state variables are assumed to belong to a Sobolev space in G while the controls are
assumed to be only measurable in G with values in a fixed closed subset of a Euclidean space. Using the
results of an earlier paper, we first state existence and uniqueness theorems for the solutions of the
original Darboux problem describing the state equations, as well as existence theorems for the solutions
of the conjugate problem (yielding the multipliers). We derive then an increment formula for the cost
functional and corresponding estimates. Finally we prove, under rather general hypotheses, a necessary
condition of the Pontryagin-type for the minimum of the cost functional. Illustrative examples are
provided.

1. Introduction. In the present paper we consider a system of nonlinear
hyperbolic partial differential equations (state equations) of the form

8zi/c3xc3y fi(x, y, z, z,, zy, v), (x, y) e G,

(1.1) i- 1,...,n, z(x,y)-(z z") v(x y) (v vm)

G=[a<__xNa+h,b<=y<__b+k],

with Darboux-type boundary conditions

(1.2)
z(x,b) q)(x), a <= x <= a + h,

z(a, y) /(y), b<=y<=b+k,

and with constraints

(1.3) v(x, y) U.

We are concerned with the minimum of a functional of the form

(1.4) I[z,v] Aizi(a + h,b + k).
i=1

Here q(x) (q91, 0"), a =< x < a + h, and if(y) =(if 1,.-., if"),
b =< y =< b + k, are given absolutely continuous functions (AC) in the respective
intervals, with q(a) (b). The control space U above is a given fixed set of the
u-space Era. The constants Ai, 1, ..., n, are given.

The minimum of the functional I[z, v] is sought in suitable classes f2 of pairs
z(x, y) (z, z"), v(x, y) (v, vm), (X, y) G, satisfying (1.1), (1.2), (1.3),
the functions z belonging to a Sobolev space W(G) on G, 1 _<_ p < + , and
continuous on G, and the functions v being measurable on G. In the present paper
we give a Pontryagin-type necessary condition for the minimum.

* Received by the editors May 18, 1971.
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First, in 3 we obtain an existence and uniqueness statement for the solution
z(x, y) (zl, z"), (x, y) G, z (W(G))", of the Darboux problem (1.1)-(1.2)
(the original problem) for a given p, 1 =< p <_ + oe, for given qg, , and for a given
measurable function v(x, y)= (vl, vm), (X, y) G. We derive this existence
and uniqueness statement from our previous paper [8] on multidimensional in-
tegral equations of the Volterra type.

The optimization problem (1.1)--(1.4) can be written in the form proposed by
Cesari 2] with state equations ofthe Dieudonn6-Rashevsky type, the Hamiltonian
function H then containing 2n multipliers 2i,/, 1, ..., n. As shown in
these 2n multipliers are expected to satisfy a suitable system of linear partial
differential equations and corresponding boundary conditions (the conjugate
problem).

In 4 we formulate the conjugate problem pertinent to the optimization
problem (1.1)-(1.4), and for the first time we prove, in the present situation,
an existence theorem for the solutions 2, # of the conjugate problem. In other
words, we prove, under hypotheses, that there are multipliers 2,/, 1, ..., n,
in L(G), satisfying in a suitable sense the partial differential equations and bound-
ary conditions pertaining to the conjugate problem of problem (1.1)-(1.4). As in
3, again we derive the existence statement from our previous paper [8] on multi-

dimensional integral equations of the Volterra type.
In 5 we give a new proof of the increment formula of [2], under a set of

hypotheses different from those in [23. In 6 we derive as in [2] the Pontryagin-type
necessary condition for the optimization problem (1.1)-(1.4) with the existence of
suitable multipliers actually proved.

In 7 we make a number of remarks on the results obtained, particularly
in relation to the previous papers by Cesari [23 and A. I. Egorov [3]. In particular,
we show that the present necessary condition yields--under strong smoothness
hypothesesthe necessary condition previously proved by A. I. Egorov 33.
On the other hand we show ( 7, Example 3) that these smoothness hypotheses
under which Egorov’s condition has been proved are not known a priori, while
our necessary condition holds.

2. Notations. If (X, I1" I) denotes any normed linear space, then X", n _> 1,
denotes the Cartesian product of X with itself, n times; for x (x ..., x") X",
we define xll ,"._x IIxl If x E", n-dimensional Euclidean space, then we
take xll --Ixl ,"._alxal. We shall denote by F, a rather arbitrary family of
measurable control functions. Precisely, let F be any set of measurable functions;
v’G U, v (v Vm), with the following property"

(*) For every function v F, any point u U, and any closed subset S = G,
the control function v, defined by v v in G S, and v u in S, belongs to F.
Thus, every constant function v’G --. {u}, u U, belongs to F.

For functions q9 e Lp(G), 1 <= p <_ + oe, we denote by IIqll or [[ollp the usual
Lp-norm; in particular, 011oo ess sup I01. For functions in a Sobolov space
[W(G)]" in G, say, z(x, y)= (za, z"), we shall denote by z, (z,..., z:)
and zy (z, ..., z), the usual generalized first order partial derivatives of z,
and we take Zlw Ilzllwg)- Ilzll / IIzll / Ilz, ll.
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3. The original problem. We shall need the following hypotheses"
(H1). The functions q(x) (q91, q") and if(y) (ff, ..., if") are defined

and absolutely continuous on [a, a + h] and [b, b + k], respectively. The deriv-
atives q9 and y which exist almost everywhere belong to Lp([a, a-k-hi) and
Lp([b, b + k]), respectively, for some p, _< p < + . Furthermore, qg(a) if(b).

(H2). The function f f(x, y, zl, z2, z3, u) (fl, ,f,) is defined on
G E3n U, and each f/ is continuous in u and measurable in (x, y) for fixed
(Z Z2 Z3) E3n.

(H3). For each v F the function So(X, y) f(x, y, O, O, O, v(x, y)) belongs to

Lp(G) with p as in (H 1).
(H4). The functions f are differentiable as functions of (z l, z2, z3) and the

derivatives cf/cz, c3f/c3zJ2, c3f/Oz3, i,j 1,..., n, are continuous in (zl, z2, z3)
for fixed (x, y, u). Clearly they are measurable in (x, y).

(Hs). There are functions Kj(x, y, u), j 1, 2, 3, r 1, ..., n, such that for
all (x, y, u) G U and (z, z2, z3) E3" we have

(3.1) Ifi/Z3(X, y, Z1, Z2, Z3, U)I Kjr(x, y, u)

and such that Kjr(x, y, v(x, y)) L(G) for v e F, j 1, 2, 3, i, r 1, n.

We state below an existence theorem (Theorem 3.1) for the solution z of the
Darboux problem (1.1)(1.2) and a theorem (Theorem 3.2) concerning their
behavior. We refer to [8-1 (or [7]) for proofs of these and other statements. Theorem
3.1 provides norm estimates on the solution z as an element of Wp(G), along with
pointwise estimates on z, z:,, and zy. Theorem 3.2 shows the dependence of the
solution on the data.

THEOREM 3.1. Let v F be given. If (H1)-(H5) hold, then there exists a unique
z e(Wp(G))" (with p as in (Hx)), continuous on G, satisfying (1.2), for which the
generalized partial derivatives z:,, zy, zxr exist and satisfy (1.1) a.e. in G. Furthermore,
there are constants B and B2 depending only on h, k, p and on K {llKij(x, y,
v(x,y))l[oo ;i 1,2, 3;j 1,..., n} such that

(3.2) Ilzllw BxUkl/p(llollp + 1/211ollp) + ha/P(llyllp + 1/2110llp) + (h + k)llso(X, y)llp3,

(3.3)

Iz(x,y)l I1o + II011 + BB2(h + k)

(3.4)

where

and

]zx(x, Y)I < 01(x) + BB2, Izr(x, Y)I <= 02(Y) + BB2,

II oxll.h’/" + II0rll,k’/" + Kh (ll ollc + IIq, l13 + ff.
O(x) eKk Iox(x)l + Kklqg(x)l + So(X,)d

02(Y) eKh [O,(Y)[ + KhlO(y)[ + so(a, y)de
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The existence of the solution and the norm estimate (3.2) follow from [8,
Appendix, Theorem 5, A.2] while pointwise estimates are a consequence of the
absolute continuity (in the sense of Tonelli) of the solution z, and a repeated ap-
plication of Gronwall’s lemma (see [8, Appendix, (A.10)] or [7]).

THEOREM 3.2. For 1, 2, let z denote the solution of(1.1)-(1.2) corresponding
to the data (qgi, i) satisfying (H) and control function vi in F. Let z z z2,
q9 qg 992, d 2 and s(x, y) If(x, y, z, z, Zl, va) -f(x, y, z,
za, zar, v2) I. With this notation, the above inequalities (3.2), (3.3), (3.4) again hold
with so replaced by s and nofurther changes. (See [8, Appendix, (A.10)] or [7].)

Furthermore, , 2 and v v2 outside a square S [ 6,
+ 6] x [-6, + 6] G, then the pointwise estimates become

.z(x, y)l lz(x, y)- 22(x y), B, ffs s(, fl) d dfl,

Iz(x, y)] e s(x, fl) dfl + B2 s(, fl) d

ffsIzr(x, Y)I erb s(, y) d + B2 s(, fl) d dfl,

where B and B2 depend only on h, k, and on K max {[IKij(x,y,v(x,y))ll ,
i= 1,2,3;j= 1,...,n;r= 1,2}.

We shall need in the sequel these particular pointwise estimates.
Remark 1. In view of the uniqueness of the solution z of the Darboux problem

(1.1)1.2) for any given element v F, we shall denote the functional I[z, u] of
(1.4) simply by I[v], or 1" F E x.

Remark 2. By introducing the notation z z z2 z z3 zr, the Darboux
problem (1.1)1.2) can be written in the equivalent Dieudonn6-Rashevsky form"

z z2, Z3x f(x, y, z, z2, z3, v), Zlr z3,
(3.6)

z2 f(x, y, z, z, z3, v)

with boundary conditions,

Zl(X, b) e(x), z2(x, b) ex(X), z(a, y)
(3.7)

Zz(a, Y)

It is to be noted that even though the system (3.6) seems overdetermined (four
equations in three unknowns), it is not actually so, since the second and the fourth
equations are equivalent.

4. The conjugate problem. Cesari [2] has proved Pontryagin-type necessary
conditions for problems of optimization with state equations in the Dieudonn6-
Rashevsky form Zix fi(x, y, Z, !)), Ziy gi(X, y, Z, V), Z (Z1, Zn)

1, 2, ..., n; and taking as Hamiltonian the expression H 2fl + +
+/g + +/,g,. By assuming the z, 2, # to be in suitable Sobolev spaces,
Cesari [2] showed that the multipliers 2,/ should satisfy the "conjugate problem,"
i.e., partial differential equations of the form 2x +/r cH/c3zi, 1, 2, , n,
along with boundary conditions, which are complementary to those for z
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and in relation to the cost functional under consideration. In view of Remark 2
of 3, we use here the same Hamiltonian with the remark that since Zzx and z3y
do not appear in (3.6) we take ,2 #3 0, and the Hamiltonian reduces to

(4.1) H 2xz2 + 23f + PlZ3 + #2f,

where 2g (2, ..., 27), (,..., 7) and the products are inner products
in E,. By taking the cost functional I in (1.4) in the equivalent form (Cesari [2])

l f
a+h l ff +k

(4.2) I Az2(x, b + k) dx + - Aza(a + h, y)dy,

where A (A, ..., A,), the conjugate problem becomes

(4.3)
j=l

(4.4)

2x -p (2 + #1/2)c3z, 1,2,..., n;
j=l

)(a + h,y)= px(x,b + k)= O,

2(X, b + k)= 3(a + h, y)= A/2.

In the present paper, we show first that the conjugate problem (4.3), (4.4)
is equivalent to a system of two-dimensional Volterra-type linear integral equations
of the type we have studied in a previous paper [8]. The results obtained there will
enable us to prove in this paper the existence of multipliers 2i,/xi as solutions of
the conjugate problem in a suitable class of functions, in Lo(G) (not a Sobolev
space).

In order to obtain the equivalent system of integral equations, we treat
2 ix as arbitrary and formally integrate both sides of (4.3) as follows (in conjunction
with boundary conditions in (4.4)):

(4.5)

y) y)a ,
+h

#i (x, y) ,x(X, fl) w
+k +k

+h +k

+ w. (, fl) d dfl w. (, y) d,
+h +k +h

pi(x, y) Ai 2ix(a, fl) da dfl w. (x, fl) dfl,
+k +h +k

where w stands for 23 + 2. It is clear that w satisfies the integral equation w Tw,
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where

(4.6) (Tw)i(x, y) A + w.c3zi + .w
c3zi2

+ w f

THEOREM 4.1. If(H2) (H4) and (Hs) hold, if re F and z is the corresponding
solution of the Darboux problem (1.1), then there exist infinitely many sets of solu-
tions 21,23,pl,p2 in [Lo(G)]", with 21(x, y),23(x, y),(x, y)eG, AC with respect to

xfor almost all y, lzI(X, y), ktz(X, y), (X, y) G G, AC withrespect to yfor almost all x, 21,
’3, ]A1, ]A2 satisfying the boundary conditions (4.4), and having generalized partial
derivatives 21x i3x, Ply, PZy"

Proof As a consequence of [8, 5, Thm. 3], it is seen that there is a unique
w e [Loo(G)" with w Tw, where T is defined by (4.6). The conclusion of the
theorem follows now by defining the functions 2,//1, )3, //2 as in (4.5), in terms
of the unique solution w of (4.6), and an arbitrarily chosen [Loo(G)]"-function

Remarks. (a) Since w 23 + P2 is uniquely determined as the fixed point of
T, for different choices of 2ix, we still get the same 23 + P2.

(b) The solutions of(4.5) need not belong to a Sobolev class since, for example,
and hence 2 as given in (4.5) need not possess derivatives with respect to y.cf/cZ 3

(See 7, Example 3.)
(c) If f does not depend on (zl, z2, z3), then by choosing 2ix 0, it is seen

that a possible set of multipliers is given by the constant functions 2
23 ,12 2 A/2. If cf/c3z, r 1, 2, 3, are continuous in (x, y), as is the case when
they depend on z only, then the multipliers can be chosen to be continuous.
Finally, if f is linear in (Zl,Z2, z3) with coefficients analytic in (x, y), then the
multipliers can be chosen to be analytic in (x, y) (see [8]).

5. The increment formula and an error estimate. Let v0 and v,: be any two
elements of F, the set of control functions. Let z and z be the solutions of (1.1)-(1.2)
corresponding to Vo and v, respectively. Let (2, p) (21,23, Pl, #2) and (2, #)

(21e, 3e,/’tie, #2) be solutions of (4.3)--(4.4) corresponding to (Vo, z) and (v, z)
respectively, (21,43, Pl, P2) L(G)I4" as in Theorem 4.1.

In the sequel, when there is no confusion, the symbol H(u) stands for the
expression

H(u) H(x, y, z(x, y), z(x, y), z,(x, y), u, ,(x, y), U(x,

H(x, y, ZI(X y), Z2(X y), Z3(X y), hi, 2(X, y), #(X, y)),

where z, 2, p are related to Vo and u denotes a point of U. Also, for the sake of
simplicity, we shall denote by the expression

, (Z(X, y), Zx(X fl), Zy(X, y)) (ZI(X y), Z2(X y), Z3(X y)).

In any case, we have Z Z, Z2 Zx, Z 3 Zy.
In order to obtain a necessary condition of the Pontryagin type we express the

increment I[v] I[vo in terms of the integral of H(v(x, y)) over G.
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To this end, let us observe that, by simple calculations involving integration by
parts of the expression

fa+hf+k[21(Zlex-- Zlx)-]- 121(Zler-- ZXy)+ 23(23x-- Z3x)

+ P2(z2y z2r)] dx dy

and the boundary conditions (1.2) and (4.5), we obtain

I[v] I[vo] r + f fa [H(v(x, y)) H(vo(X, y))] dx dy,

where

and

Zo(X, y) z(x, y) + o(x, y)[zj(x, y) zj(x, o <= o(x, y) <__ .
For details we refer to Cesari [2], or the author [7].

Error estimate. It is clear that if f/(in the state equations (1.1)) are linear, i.e.,
of the form Az + Bzx + Czy + D(x, y, u) where A, B, C are matrix-valued functions
on G, then q reduces to zero. For the nonlinear case, we shall now obtain an estimate
on r/, and for this purpose, we need the following hypotheses"

(H6). There exists a function M(x, y, u), (x, y, u) G x U, with M(x, y, v(x, y))
L4(G) for any v e F, such that, for (x, y, zl, Z2, 23 /’/)( G x E3n U and
< p < + oe, wehavelf(x,y, zl,zz,z3,u)l <= M(x,y,u) + B3UIzal / Iz21 / Iz31]

for some constant B3 => 0. For p + oe, we require Ifl _-< M(x, y, u) + qS(IZll
+lzzl +lz3l) for some function qS()>__0, 0__<< +o with qS()__<K for
some K.

(H7). There exist functions K’ij(x, y, u), i= 1, 2, 3;j 1,..., n, such that
K’ij(x, y, v(x, y)) Loo(G) for any v e F, and such that for (x, y, u) e G x U and
z,eE3",i= 1,2,3;j= 1,...,n, wehave

(5.2) f(x,y,Y: r2 3,U)Z1, 22, 23, U) 1’

3

<= K’,.(x, y, u) Izs 5sl.
s=l

Remark. As before, let s(x, y) denote If(x, y, (x, y), Vl(X y)) f(x, y, .(x, y),
v2(x, Y))I, where (z, Zx, zr) and z is the solution of (1.1), (1.2) corresponding to

/)1 and Vl, v2 F. Then it is seen from (H3) (H,,) and (Hs) that st Lp(G); (p as in
(H 1)). Indeed,

If(x, y, (x, y), Ul(X y)) gl(x Y)I + If(x, Y, O, va(x, Y))I,

where K max {llK2r(x, y, Vl(X y))lloo :j 1, 2, 3 r 1, n} (see (Hs)).
Since I1 Lp and If(x, y, 0, vl(x, y))] e Lp (by (H3)), it follows that s e Lp(G).

The assumption (H6) is made only to guarantee that in addition, s L,(G).
The same conclusion can be made under the following hypothesis:

(H,)" There is a function M(x, y) defined on G such that (i) M(x, y)v(x, y)
L4(G for every v e F, and (ii) for (x, y, Z1, Z2, Z3)e G x E3n and ul, U2 ( U, we
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have
If(x, y, zl, z2, Z 3 Ul) f(x, y, Z1, Z2, Z3, U2) M(x, y)lu //21.

Indeed,

s(x, y) If(x, y, e(x, y), Ul(X y)) f(x, y, (x, y), v2(x, Y))I

<= M(x, Y)lUl(X, y) U2(X, y)[ =< M[u 1[ -- M[v2[

and s L4(G).
Further, if (H;) and (H7) hold with M(x, y) Lo(G and F [Lo(G);’, then

statement (3.5) in Theorem 3.2 can be replaced by

(5.3) Iz(x, Y)I + Iz(x, Y)I + Iz(x, Y)I =< B6 V v2 (x, y) G,

where the constant B4 depends only on IIMIIo, h, k and on all K, K’.
We shall denote below by u an arbitrary fixed point u e U. Let Vo be an element

of F, let z(x, y), (x, y) e G, be the corresponding solution of the Darboux problem
(1.1)-(1.2), and let denote the 3n-vector function (x, y) (z, z, zr) (Zl, z2, z3)
as above. Let (, 2) be an interior point of G. Let o > 0 be the minimum distance
of (, 2) from the boundary of G. Let Kin denote the maximum of the 12 n numbers
IIKj(x, y, u)lloo, Kij(x, Y, u)lloo, gij(x, Y, Vo(X, Y)) oo, glj(x, Y, Vo(X, Y)) I, 1, 2, 3
j 1, -.-, n; where the Ki2 are as in (H5) and the K’i2 as in (H7).

By (H6) the function

s(x, y u) If(x, y, e(x, y), u) f(x, y, e(x, y), Vo(X, Y))I

belongs to L4(G). Thus, given > 0 there is a 6 > 0 such that

Is(x, y;u)[ 2 dxdy <= 2 and f fc Is(x, y;u)l 4 dxdy <= 2

for every measurable set C G ofmeasure =< 462. We may well assume 0 __< 6 =< 60
Let S6 denote the square [ff- 6=<x=<ff+ 6, y-6=<y<y+6 and let

C be any closed subset of $6. Let v be the function defined by v Vo in G C, and
v u in C. Then the function

s(x, y) If(x, y, (x, y), v(x, y)) f(x, y, (x, y), Vo(X, Y))I

is zero outside C and equals s(x, y; u) in C. Noting that v e F, we denote by z the
solution of problem (1.1)-(1.2) relative to v, and as usual we write (z, Zx, zy)

(zl, z2, Za). Inequalities (3.5) yield in this case

(5.4)

for all (x, y)e G,j 1, 2, 3, independently of the particular closed set C $6,
and where B depends only on h, k and K. This inequality and the fact that s e L4(G)
under (H6)(or (H)) can now be used to estimate r/.
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The integrand in the expression for r/can be written as

,’ + ’2 (x, , o, vO (x, , ,
(x, y, , Vo)

which yields, using (H T),

,/1 ,/3--t-/2 oo. g. f fG [ZiO--Zi ,Zje--Zj]’x,y’ dx dy
i=1j=1

(5.5)
j=l

(x, y, , vo) dx dy.za
But, since the integrand in the last term in (5.5) is zero outside So, we have
[q] [12a + PzI[" K’(ql + 2q2), where

i,j=

Sdj=I

To obtain an estimate on q, we observe that [z0 z[ ]z- z] and then, by
(5.4), we get

N 36 B2 s(, fl) d dfl + s(x, fl) dfl + s(, y) d dx dy.

Using H61der’s inequality and the Nct that s e L4(G under (H6), it is seen that

(5.6) [, iI M252 $2(, fl) de dfi + s4(, fl) de dfl

for some positive constant M2 Similarly, using (5.4) and H61ders’ inequality, we
get

(5.7)
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Using (5.6) and (5.7), the inequality (5.5) can now be written as

Irtl <= M,SZ [ f s s2(, ) d= d + f s2(, ) d d) /2

(5.8)

where M is a constant depending only on K, B, and [[23 + 211.
Given e > 0, let us now choose a positive number with 0 < 2 < e/6M.

Let 6 > 0 be chosen as before with s,s2 2 and s,S 2. Then I1
M62(2 + + ) M62" 3. (e/6M)= ere/2. In conclusion, if vo e F, u e U,

and e > 0 are given, then there exists a 8 > 0 such that for a function v vo
outside S and v u in a closed subset of S,

(5.9) I(v) I(vo) :. + f f [H(v(x, y)) H(vo(x, y))] dx dy

with I1 2 e/2.

6. A necessary condition for optimality. In this section, we shall state and
prove a necessary condition for optimality, analogous to the one-dimensional
Pontryagin’s necessary condition. We need the concept of "minimum condition"
for the class of problems under consideration, and this is made precise in the
following definition.

DEFINITION 6.1. Let Vo F. Then Vo is said to satisfy the minimum condition
if there is a set B = G with meas B meas G such that for (x, y)e B, we have
H(vo(x, y)) <= H(u) for all u U.

We recall that H(u) stands for H(x, y, z(x, y), z(x, y), z(x, y), u, 2(x, y),
la(x,y)), where z and (2,/1)= (21, 23, #a #2) satisfy (1.1), (1.2) and (4.3), (4.4)
respectively. The following hypothesis is needed in the proof of the necessary
condition"

(H8). The functions f/= f/(x, y, zx, z2, z3, u), 1,-.., n, are continuous on
G x E3’ x U.

Remark. In the proof of the necessary condition, the inequality (3.1) of (H5)
is needed only for (z, za, z3) (z(x, y), z(x, y), zr(x, y)), where z is an optimal
trajectory. Further, the hypothesis (H6)can be replaced by (H;).

THZORM 6.1 (Pontryagain-type necessary condition). Let vo F be optimalfor
I; i.e., I(vo) <__ I(v) for all v F. Let conditions (H1)-(Hs) hold. Then there exists a
unique function z e [Wp(G)" satisfying the Darboux problem (1.1)-(1.2) and oo-
many sets of multipliers (2,23,#,#)e(Loo(G))" satisfying (4.4)-(4.5) with v
replaced by vo With this z and any ofthese sets ofmultipliers, the optimal control vo
necessarily satisfies the minimum condition.

Proof The existence of z and of 2,23,/z,/zz under hypotheses (H1)-(H5)
has been shown in 3 and 4. Before proving the necessary condition, let us note
that throughout this proof, za z, Z2 Zx, Z3 Zy, (1, ) (/]’1,/3,121, 2) have
the same meaning and they correspond to Vo. Further, as in 5, H(u) H(x, y, u)

H(x, y, z(x, y), Zx(X, y), zy(x, y), u, 2(x, y),/l(x, y)).
For each natural number n, let C, be a closed subset of G such that (i)

meas(C,) > (1 -n-)meas G, and (ii) on C, the functions Vo, (z,zz,z3),
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(2, #) (21,23, #1,/22) are all continuous. Let C’, be the set of all points of density
of C, so that meas C’, meas C, and the functions vo, z, 2, # are continuous on
C’, with respect to itself. Now, for any u e U, let R(x, y;u) H(x, y, Vo(X, y))

H(x, y, u). Then, this function is continuous on C’, for each n. Let B (interior
of G) ffl (U,I C’,). Then meas B => meas C’, > (1 n-1) meas G for all n and
hence meas B >__ meas G. Further, since B c G, it follows that meas B meas G.
We shall prove that B is the required set, i.e., for (x, y) e B, we have H(x, y, Vo(X, y))
<= H(x, y, u) for all u e U. Let (Xo, Yo) be an arbitrary point of B. Then there exists
an N such that (Xo, Yo) Cv. Now, let us choose 61, t2 63 64. as follows"

(i) Since (Xo, Yo) Cv, it is a point of density for Cv and hence there is a

61 > 0 such that 0 < 6 < 61 implies

meas (C’ f"l S(xo, Yo)) > 1/2 meas (S(xo, Yo)),

where, as before, S(xo, Yo) is a square of side length 26 with center at (Xo, Yo).
(ii) Let us suppose that the minimum condition does not hold at (Xo, Yo).

Then, there is a u e U with e R(Xo, Yo u) > 0. Using the continuity of R(x, y; u)
we obtain a (2 > 0 such that [R(x, y; u) R(xo, Yo u)[ < e/2 whenever (x, y) CN
and [(x, y) (Xo, Yo)[ < 262. Thus, R(x, y; u) > e/2 for all (x, y) Cu f-) Sa2(Xo, Yo).

(iii) The function s(x, y; u) If(x, y, (x, y), u) f(x, y, ,(x, y), Vo(X, y))[, with
u as in (ii), belongs to L,(G) (by (H6)); and hence there exists a 63 > 0 such that
for 0 < 6 < 63, we have

and

ffS S2(u’ ’ fl) d(z dfl < 2

ffs s(u’ ) d dB < ,0

where is any number with 0 < 2 __< =< e/6M ( as in (ii) and M as in the equality
(5.8)).

(iv) Since (xo. Yo) is in the interior of G. there is a b. > 0 such that
S S(xo, Yo) G for 0 <

Let a > 0 be such that a < min (61,b2, 3,b4) and let v be a function
defined by v(x, y) u if (x, y) CN ("1 S and Vo(X, y) otherwise. Clearly, v is
an element of F. Also, R(x, y; v(x, y)) is zero outside CN ffl S and is > e/2 for all
(x, y) Cu S. Thus

/[v] I[vo] r/+ ( [H(v(x, y)) U(vo(X, y))] dx dy
dd c,

=rI-ffc R(x. y v(x. y)) dx dy

< r/ 1/2e meas (Cn fl S.) < r/ 4-1 e meas S.
0

-2

where ]q[ < o’2/2 from 5. Thus, I[v] -/.[Vo] < -o’2/2 < 0. This is contrary
to the assumption that Vo is optimal. The contradiction arose because of (ii).
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It follows that for any (x, y)e B, we have H(x, y, Vo(X, y))<= H(x, y,u) for all
u e U. This concludes the proof of the theorem.

7. Discussion and examples. In this section we shall discuss the Pontryagin-
type necessary condition given in Theorem 6.1 in relation to the results of Cesari
[2] and A. I. Egorov [3]. We shall first show that our results yield those of A. I.
Egorov under conditions of smoothness. We shall also give examples where our
necessary condition applies. In particular, Example 3 of (D) below will show that
our results are actually more general than those of A. I. Egorov.

(A) The linear case. If the state equations are linear, i.e., of the form Zxy Az
+ Bzx + Czy + D(x, y, u), where A, B, C are matrix-valued functions on G, then
we have seen that the increment formula reduces to

I(v) I(vo) fro [H(v(x, y)) H(vo(x, y))] dx dy.

Now, if a control Vo F satisfies the minimum condition, then in particular
H(vo(x, y)) <= H(v(x, y)) a.e. in G and hence l(vo) <= I(v) for all v in F; i.e., Vo is
optimal for I. Thus, the necessary condition is also sufficient in the linear case.
For the existence of solutions for the Goursat problem (1.1), (1.2) (as well as the
conjugate problem (4.3), (4.4)) in this case, we may require that the matrix-valued
functions A(x, y), B(x, y), C(x, y) be in Loo(G) and that D(x, y, u) be continuous in u.
Further, we shall require D(x, y, v(x, y)) to be in [Lp(G)]" for v F.

(B) Various types of costfunctional.
(B 1) It is clear that the cost functional (1.4) or I[z, v] = Aizi(a + h, b + k)

can be written in the Lagrange form

J z, v] fro fo(x, y, z(x, y), zx(x, y), zy(x, y), v(x, y)) dx dy

with fo -= 1Aif and the f as in (1.1).
However, the Lagrange problem of the minimum of J[z, v] with fo not

necessarily equal to Aif/, and z, v satisfying (1.1)-(1.3), can always be formulated
as the Mayer problem (1.1)-(1.4) by suitable transformations. This is done, as

ousual, by introducing a new variable z with zxr fo(x, y, z, zx, zy, v), z(a, y)
O, z(x, b) 0. Then, the functional J can be written in the form J z(a + h,

b + k) (cf. Cesari [2] or the author [7]).
(B2) The general Mayer problem with cost functional l’[z, v] dp(z(a + h,

b + k)) with z, v satisfying (1.1)-(1.3) and an arbitrary qS(), " E, (twice continuous-
ly differentiable), can be reduced to problem (1.1)-(1.4). As above, this is usually
done by introducing a new variable z satisfying

Zx (zczZZ + f(x y z z z v)
i,j= i=1 zi

and

z(a, y)= ck(O ( y),

where qg(x) (ql, ..., qg"), ,(y) (01
(See A. I. Egorov [3] and the author [7].)

z(x, b)= (/(q)l(x),...,

.., ") are the initial data as in (1.2).
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(B3) The problem of minimizing

J[z, v-] F(x, z(x, b + k), Zx(X, b + k)) dx

can be reduced to that of z(a + h, b + k), where z is defined by

o @ c3F cF
z

i= az z + aZx f(x, y, z, Zx, z, v)

and

z(a, y) O, z(x, b) F(z, q(o), q’(o)) de

(see A. I. Egorov [3]).
(B4) Let 3 denote any linear combination of the functionals mentioned

above in (B1), (B2), (B3). It is clear that the functional J can be reduced to the form
(1.4) by suitable addition of an auxiliary variable z.

(C) Comparison with A. I. Egorov’s results. The optimization problem
(1.1)-(1.4) was studied by A. I. Egorov [3 where he proposed a necessary condition
in terms of the Hamiltonian

H(x, y, z, zx, zy, v, O) Oifi(x, y, z, zx, z, v)
i=1

and multipliers O(x, y) (0, 0") satisfying the Goursat-type problem

OH OH OH
(7.1) 0 (x,y) eG i= 1 ..-,n,xy Z X Z Oy OZ
with boundary conditions

(7.2) 0= -(H/z) fory=b+k, 0= -(H/z) forx=a+h,

(7.3) Oi(a + h, b + k)= A, 1,..., n.

In (7.1) the derivatives are evaluated at (Z, Zx, Z, v, O) and the numbers A
in (7.3) are those in (1.4).

In [3] the control variables v are assumed to be piecewise continuous. In the
present paper the controls v are assumed to be only measurable, and we proved,
under our general assumption (H)H), that the functions z belong to a Sobolev
class W(G) and are continuous in G. In any case, the derivatives (/x)(OH/Oz),
(/y)(OH/z) which appear in (7.1) need not in general exist, as Example 3
below in (D) will show.

On the other hand, under suitable regularity conditions, equations (7.1)7.3)
can be derived from the conjugate problem (4.3)4.4), by defining 0 (0 ..., 0")
in terms of the multipliers 2a, 23, , 2.

We need the following assumptions"
(**) For a given optimal pair (z, v) and corresponding multipliers 2, 23 , P2,

let us assume that the following partial derivatives exist as generalized derivatives"

’ (2+)0z, i= 1,...,n.
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From (4.5) and (**) it follows that 13xy and ]22xy, 1
derivatives, and in view of (4.3) we have

n, exist as generalized

a.e. in G, 1, ..., n. Thus, if 0 23 + ]22, that is, 0 / --[- ]2i2, 1,’’’, n,
then Oxy exists a.e. in G as a generalized derivative and, in view of (4.3), we get
(7.1) with H i 0. Again, from (4.5) we get

(7.4) Oi 2x -]2i (#H/aziy) -(aH/Oz) for y b + k,

and analogously,

(7.5) 0 -(aH/azx) for x a + h, i= 1,.-., n.

Finally,

O(a + h, b + k) (23 -[-- ]22)(a -k- h, b + k) A.

Thus, under assumption (**), the sums 0 2 + ]2, 1,..., n, act as multi-
pliers 0 described by (7.1)-(7.2). It is of interest to note that 0 23 + ]22 is ob-
tained as the fixed point of the contraction operator T (see Remark (a) in 4),
and thus 0 is unique, in harmony with the uniqueness of Egorov’s solution 0 of
(7.1)-(7.2).

(D) Examples.
Example [3, p. 560]. Let G {(x,y)10 =< x =< 1, 0 <_ y =< 1} and consider

the problem of minimizing

(1 2y)z(x y) dx dy

with side condition

and boundary conditions

zxr= -2z- 2z- 2zr-v,

z(x, o) z(O, y) o;

here z is a scalar and v is a control variable with values [0, 1]. To obtain the mul-
tipliers (and use Theorem 6.1), we first introduce a new set of variables zl,

1, ..., 6, defined by z z, z2 Zx, z3 z, z4 (1 2fl)zl(a, fl)da dfl,
z5 Z4x, z6 z4. Then S attains a minimum together with Z4(1 1) and the side
conditions are now

Z2y Z3x Zlxy -2z: 2z2 z3 Z5y Z6x Z4xy (1 2y)z
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The corresponding conjugate problem is

2x + l.tx -aH/az 2(23 q- J22)- (1 2y)(6 -+- ts)

2y--- --H/c3z2 --21 + 2(23 + ]22),

23x -cH/c3z3 -/1 -k- (23 - ]2),

)t4x nt- t4r -(H/cqz4 O,

#sy cH/cz5 24, /t6x cqH/z6 ]14

with boundary conditions

2(1,y)=0=tj(x,1) fori6andj4:5,

26(1 y) ]5(X, 1) 1/2.

Here H 21z2 + lZ3 nt- (23 -1-- pz)(-2zl 2z2 23 /)) nt- /4z5 nt- 426 -t-(26
+/5)(1- 2y)zl. It is seen from the boundary conditions that one can take

24 P4 0, 5 26 1/2 on G.
Further, if 0 /-/2 -t- /3 and 0x 0, then by formal differentiation of the

above equations, we get Oxy Oy + 2(Ox O) + (1 2y) or r 2 + 2y,
(x, 1) 0. Solving for as a function of y, we get (x, y) y e2y- 1). Thus,
0 0 y e2y- 1). Solving for 0 as a function of x, we get O(x, y) (e 1)
(y- eZ(Y-1)). It is clear that for (x,y)6G, ex-1 and hence O(x,y)>= 0 or

=< 0 according as y =< Yo or y => Yo, where Yo e2y-2. But then, H as a function
of v is a minimum for Vo(X, y), where Vo is a function on G defined by" Vo(X, y)
fory=<yo;= -lfory>Yo.

Now, to obtain the value of the functional, we first solve the following for z"

zxy -2z 2z zr Vo with z(x, 0) z(0, y) 0. It is seen that z is given by

-1(1 e-X)(e -2y 1) for y =< Yo,
z(x, y)

2- 1(1 e-X)(1 + e- 2y 2eZYo 2y) for y >= Yo,

and the functional takes the value

S e- 1(y2o + 1/2 e- 2 Yo), where Yo e2y- 2.

This is the optimum value obtained in [33 also.
Example 2 [3, p. 5613. Find the minimum of the functional

S z(x, 1) dx z(1, y) dy,

where the side conditions on z are given by

(7.6) Zxy ; I1 _-< 1; 0 __< x _<_ 1; 0 __< y =< 1; z(x,O) z(0, y) 0.

If zo is a variable satisfying the relations

(7.7) Zor=zr-z and Zo(0,y)=zo(X,0)=0,

then the above optimization problem reduces to the problem of minimizing
Zo(1, 1) with (7.6), (7.7) as side conditions. The conjugate problem is described
in terms of the multipliers 21,]1,23,]2,/].4,]24,26,fl5 21x-]-flly 0; fl2y
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--21 "[-(26 -[" P5);’’3x --/A1 --(26 "[- /A5);’’4x -’[- ,/A4y--" 0;/A5y-- --/4;/6x --P4;
with boundary conditions 2i(1, y) 0; pj(x, 1) 0 for :/: 6, and j :/: 5; 26(1, y)

1/2; #s(x, 1) 1/2.
In order to obtain a set of solutions, we may introduce the auxiliary equations

2 0 and 2 0 on G. Then, we obtain p 0, # 0, p5 1/2 and 26 1/2
on G. Also, p (y 1) and 23 -(x 1). Thus, the Hamiltonian reduces to
H (y x)v + (Zy Zx). It follows that as a function of alone H is a minimum
at Vo(X, y), where Vo is defined on G as follows"

-1 for0__<x<y_< 1,
Vo(X,y)=

for0=<y<x__< 1.

Substituting in (7.6), and integrating we obtain

-xy+4(x) for0__<x <y__< 1,
(7.8) z(x,y)=

xy+O(y) for0__<y<x=< 1,

where 4 and are absolutely continuous functions defined on [0, 1] with
4(0) 0(0) 0. Now q5 and 0 are to be chosen so that the two expressions of
(7.8) coincide for x y. Thus 4(y)- y y + 0(Y), i.e., 0(Y)= 4(Y)- 2Ya-
Hence z(x, y) -xy + qb(x) for 0 =< x < y =< 1; xy 2y2 + (y) for 0 __< y
< x <= 1; where 4) is some arbitrary absolutely continuous function defined on
[0, 1] with 05(0) 0. The corresponding value of the functional is

S z(x, 1) dx z(1, y) dy

| [qS(x)- [(y) + y 2y2] dy 1/3.
d0

This again is in harmony with the optimum obtained in [3].
Example 3 [7, p. 207]. Let G be the rectangle [0, 1] x [0, 1]. Let us consider

the problem of minimizing the functional S z(1, 1) with side conditions and
constraints

(7.9) Zxy=(1 + zx)v, z(x, O) O, z(O, y) O, -1 <= v <= 1.

Let us first observe that for any v(x, y) in LI(G), the solution of (7.9) is given
by

(7.10) z(x, y) + exp v(e, fl) d de.

Now, since v(e, fl) _> for all (e, ),

f v(o, fl dfl 1

and hence

exp v(e,/3) d de => 1/e.
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Thus, S z(1, 1)>__ -1 + (l/e) for any admissible pair (z,v) satisfying (7.9).
It follows that the function Vo(x,y) defined by Vo(x,y)= -1 for almost all
(x, y) G is optimal for S, and vice versa.

In order to verify that v0 satisfies the minimum condition, we formulate the
conjugate problem )x + #ly-- --c3H/OZl O, lAZy -H/z2 --/1 /)(23
+ p2),2ax c?H/c3z -# ;with boundary conditions 21(1, y) ]Al(X, 1) 0,
2(1, y)= #2(x, 1)= 1/2. Here the Hamiltonian H is given by H
+ (2 + P2)f, where z z, zz z,, z zy, f (1 + z,)v. The multipliers
corresponding to Vo are obtained as solutions of the above system of equations
with v replaced by Vo(X, y). Clearly, we may choose 21 Pl 0 and 2 1/2
on G. But then #2y -v0(#2 + 2-1), p2(x, 1) 1/2. A solution of this equation
is given by

p2(X, y) exp

Substituting in the Hamiltonian, we get

1
Vo(X, fl) dfl 2"

H(x, y, z, u, 2, p) u(1 + zx) exp Vo(X, ) d

where z corresponds to Vo. Now, if Vo(X, y) 1 on G, then

H=u(1 +zx) exp(y- 1)=u
u

exp Vo(X, fl) dfl exp (y 1)
e

Clearly, H(u) >_ H(vo(X, y)) for (x, y) e G and u e U [- 1, 1].
Remarks. It is to be observed that in the above example, the optimal solution

Vo(X, y)- -1 happens to be smooth, and as is mentioned in 7(c), Egorov’s
condition also holds. However, Example 3 can be easily modified into another
one for which Egorov’s necessary condition cannot be applied. Indeed, if w(x),
0 _<_ x <__ 1, is a fixed, continuous, positive nowhere differentiable function (such
a function exists), we consider instead of (7.9) the equation zy (1 + z,)v, w
with the same boundary conditions and constraints as above. Then (7.10) is
replaced by

z(x, y) + exp w(a) v(a. fl)dfl da

and the optimal control is still Vo(X, y)= -1 a.e. in G. Here, Egorov’s Hamil-
tonian H (see [3]) is given by 0(1 + z)vw and the second order derivative
required in (7.1) does not exist.

Also of interest, in the above example, is the fact that the multiplier #2(x, y)
need not have a partial derivative with respect to x. Thus, in general, the multi-
pliers need not have partial derivatives with respect to both the variables; as such
they may not belong to a Sobolev class.
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A NEW APPROACH TO THE THEORY OF CANONICAL
DECOMPOSITION OF LINEAR DYNAMICAL SYSTEMS*

P. D’ALESSANDRO,t A. ISIDORIS" AND A. RUBERTI

Abstract. In this paper, a new approach to the structure theory of linear dynamical systems is
developed.

Based on the structural properties of influenceability and invisibility and without introducing
any limiting hypotheses, the existence of a canonical decomposition of the state space into subspaces
of constant dimensions is proved.

Furthermore, the existence of the canonical form of the equations, and also the uniqueness of this
form within an equivalence class are proved, the latter also being determined. The general structure
theory obtained in this way comprises all the hitherto known results and in particular yields a constant
decomposition for time-invariant systems.

1. Introduction. The first contributions to the structure theory of linear
dynamical systems were due to R. E. Kalman [23, [3]. In these works, starting
from the properties of controllability and observability at a given time t, he de-
composed the state space into the direct sum of four linear subspaces and gave the
corresponding canonical form of the state equations for that time t. Further
contributions, regarding both the refinement of the statements of the decomposi-
tion theorems and the proofs of these theorems, were due to Kalman himself and
to L. Weiss [63. In particular, considering also the properties of reachability and
constructibility (at a given time t), many possibilities of decomposition were
indicated [6 nevertheless, formal and complete proofs were not always given.
Still basing himself on the properties of controllability and observability, at a
given time t, L. Weiss returns to the problem in [53, but formulates some restrictive
hypotheses that are substantially equivalent to assuming the dimensions of the
subspaces into which the state space is decomposed to be invariant in time. For
this case he supplies both the proof of the decomposition theorem and the
algorithms for the determination of the canonical forms; the results of this work
comprise the case of the analytical systems and therefore also that of the time-
invariant ones.

D. C. Youla, in [73, approaches the aforementioned problem in a different
manner. He starts from the requirement of constructing all the realizations of a
given realizable weighting pattern, and subsequently shows how the realization
associated with any factorization of a given realizable weighting pattern can be
divided into four subsystems in parallel, of which one corresponds to the minimal
realization. Analyzing the properties of controllability and observability of these
subsystems, he then interprets the division under consideration as a version of
R. E. Kalman’s canonical decomposition. However, one must here point out that
the structural properties considered in the latter are different from those that are
implicitly present in D. C. Youla’s decomposition (cf. 5).
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Two ever-present requirements in the literature about structure theory are the
following:

(a) the need for finding a decomposition of the state space into subspaces of
constant dimension;

(b) developing a theory that comprises the known results for the time-
invariant case and, more particularly, supplies a constant decomposition for this
case (see, for example, the comments in [5] about the results developed in 7).

In the present paper, introducing new structural properties, we develop a
theory that satisfies the abovementioned requirements. Moreover, we also solve
the problem of analyzing all representations of the state equations in canonical
form.

It seems useful here to stress that these new properties, whose introduction is
in itself justified by the fact that it permits the development of a theory of de-
composition that is valid for all linear dynamical systems, are also significant by
virtue of the fact that they characterize in a unique manner the minimal realizations
of a given weighting pattern (cf. 5).

2. Structural properties of influenceability and invisibility. Consider the linear
system described by the equations

c(t) A(t)x(t) + B(t)u(t),
(1)

y(t)

where x(t) R", u(t) Rp, y(t) Rq, and A(. ), B(. ), C(. are matrices of continuous
functions of t; furthermore, let X(- be a fundamental matrix of solutions for the
homogeneous equation associated with (1), and let (t, z)= X(t)X-l(z) be the
corresponding state transition matrix.

At a given time t, the usually considered properties of the state, with reference
to the input, are those of controllability and teachability. For the purposes of
solving the problem of canonical decomposition it seems useful to introduce the
following property.

DEFINITION 1. A state x of the system (1) is influenceable at time if it is
possible to express it as the sum of states, each of which is at least controllable or
reachable at the same time t.

Remark. If the system is such that controllability and reachability imply each
other at each time t, then influenceability coincides with these two properties. In
particular, this happens in some classes of systems, including the time-invariant
ones, the analytical ones, etc. It is therefore clear that a decomposition theory based
on the property of influenceability will yield the already known ones in the above-
mentioned cases.

Let us now consider the Gramian matrix

(2) P(t; r/, ) O(t, )B()BT()oT(t, ) dz.

The need for streamlining the presentation has led the authors, somewhat unwillingly, to in-
troduce two new terms for the structural properties used in the treatment. Indeed, the word "invisible"
used in Definition 2 has already been used by other authors as a synonym for "unobservable."
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When r/= and > t, this coincides with the controllability matrix at time t;
when r/= and < t, it coincides with the reachability matrix at time t.

As is known, the range of the controllability (reachability) matrices, i.e.,
5P(t;t, ), is a nondecreasing function with increasing (decreasing) for each
fixed [5. Analogous properties hold for the range of P(t; rl, ). One can therefore
state the following lemma.

LEMMA 1. If the interval [rl’, ’ contains the interval [q, (], one has

(3) [P(t;r/’, ’)]
_

N?[P(t;r/, )] for all t.

Proof The proof can be done following the lines of a proof given in 5] about
the controllability matrix. P(t; , ) is a Gramian matrix and has the property that,
for each x, 0 <= xrP(t rl, ()x <= xrP(t rl ’, (’)x if [q’, (’] contains It/, (]. Therefore
x VP(t; l’, (’)] x #P(t; , ()]. This implies V[P(t r/’,
and therefore, by orthogonal complementation, also implies equation (3).

Using this lemma, one can state the following condition of influenceability.
THEOREM 1. A state x is influenceable at time if and only if there exist two

values and 2 such that x e [P(t 1, 2);
Proof One can limit oneself to considering the case < t2. As regards

sufficiency, one can first of all note that

(4) x e [P(t tl, t2) => 3X [P(t tl, t)], 3x2 [P(t t, t2)],

where
If < < t2, x is reachable at time and x2 is controllable at time t; x is

therefore influenceable at time t. If __< (t >= t2) X is controllable (reachable) at
time and therefore influenceable at time t.

As regards necessity, if x is controllable (reachable) at t, there exists a

2 > (t2 < t) such that x e [P(t t, t2) the condition is therefore satisfied with
t. If x is the sum of two states, one of which (Xc) is controllable and the other

(xr) is reachable, i.e., if x Xc + x,, there exists a 2 > and a tl < such that

(5) xeEP(t;t, t2)] and xe[P(t;tl,t)].

Since, by virtue of Lemma 1,

(6) [P(t;tl,t2)]
_

[P(t;t, t2)] U [P(t;tl,t)],

it follows that x e [P(t; l, t2)].
For the space (t) of all influenceable states at time one can state the follow-

ing theorem.
THeOReM 2. The space (t) of all influenceable states at each time can be

expressed in theform
(7) (t) [P(t;O, )],
where O, is any pair of values of , for which, at an arbitrary fixed time o,

P(to; r/, ) has maximum rank. Furthermore,

(8) dim (t)- const. np.
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Proof. It follows from Theorem that

(9) (t) (_J [P(t;r/, )].

By virtue of Lemma 1, on the other hand, if 0, is a pair of values of r/, for which
P(to; r/, ’) has maximum rank, one can write

(10) U [P(to r ) l[P(to O,

When :/= o, the relationship

(11) P(t;r/, )= O(t,to)P(to;rl,)ow(t, to)

applies, and it can be seen from this that (10) holds for each to with the same ,
and (7) is thus proved. Since (I)(t, to) is nonsingular, (8) follows from (11) evaluated
fort/ 0and =.

Proceeding now to consider the structural properties of the state at a given
time with reference to the output, it seems useful to introduce the concept of
invisibility. In this connection, referring to the properties of unobservability and
unconstructibility [4], one can give the following definition.

DEFINITION 2. A state x of the system (1) is invisible at time if it is unobservable
and unconstructible at time t.

A remark analogous to the one made in connection with Definition can be
repeated for this case.

The Gramian matrix to be considered in relation with Definition 2 is

(12) Q(t r/, ) or(z,t)cW(z)C(z)(z,t)dz.

By means of considerations analogous to those made in connection with (2),
writing V[Q] for the null space of the matrix Q, one can state the following lemma
and Theorems 3 and 4.

LEMMA 2. /f the interval [rl’, ’] contains the interval [rl, ], one has

(13) Q(t; rt’, ’) c_ V[Q(t; rt, 0] for all t.

THEORFM 3. A state x is invisible at time if and only if
x e U[Q(t; r/, )3 for all rl, .

Proof. One can limit oneself to considering the case r/ < {. As regards
sufficiency, it is derived immediately from

e dV[Q(t t, )] V > t,
(14) x e dff[Q(t; r/, ) Vr/, V" > r/ =>

xeW[Q(t;q,t)] Vq__< t,

in which the conditions on the right-hand side imply the unobservability and
unconstructibility of x at time t. As regards necessity, it is immediately noted that
the implication in (14) also applies in the other direction, since

(15) Q(t; q, ) Q(t; t, ) + Q(t , t).
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THEOREM 4. The space (t) of all the invisible states at each time can be
expressed in the form
(16) (t) dV[Q’(t , ()],
where 77, is any pair of values of rl, for which, at an arbitrarily fixed time o,

Q(to; q, () has maximum rank. Furthermore,

(17) dim _(t) const. & nq.
Remark. The concept of invisible state has a simple physical counterpart; if

the state of a system is invisible at to and the input is zero over (- or, + ), then
the corresponding output is zero over (-, + ). From another point of view,
if the state Xo of a system is invisible at to, then @(t, to)Xo is unobservable
(unconstructible) at >__ to (t __< to). A similar interpretation can be given to the
concept of influenceable state; if the state x0 of a system is influenceable at to,
then @(t, to)Xo is controllable (reachable) at sufficiently small (large).

3. Decomposition of the state space. In the structure theory of linear dynamical
systems it is usual to consider not only the decomposition of the state space
of system (1) into four subspaces whose elements do or do not have two suitable
structural properties (such as controllability and unobservability, for example),
but also the transformation of the equations (1) into the special form that corre-
sponds to this decomposition. In some approaches [2] the starting point is the
decomposition of the state space, while in others [5] it is the transformation of the
equations. In this latter case it seems natural for the transformation to be performed
by means of an admissible change of coordinates, i.e., .one that leaves the trans-
formed equations continuous. It is clear, however, that there will be a corre-
sponding requirement when one starts from the decomposition of the state space.

In fact, if one wants to obtain continuous differential equations when the
union of bases in the individual subspaces is assumed as a basis in the state space,
it is necessary for the decompositions at different instants of time to be related to
each other "in an admissible manner." In other words, one has to guarantee
suitable conditions of consistency, and the authors deem it desirable to formalize
these in a definition.

DEFINITION 3. A decomposition of the state space f of the system (1), i.e.,

(s) r (.) @ (.) @ (. @ (.),
will be said to be canonical with respect to the properties P and P2 if

(i) at every time t,
each state xa ’(t) has properties p and P2;
each state Xb (t) has property p and not property P2;
each state xc cg(t) has property P2 and not property p
each state xa (t) has neither property p nor property P2;

(ii) the direct sum of any two of the considered subspaces maintains the
property that is common to them (first condition of consistency)Z;

This condition is implicitly present in the procedures that are usually proposed for performing a
decomposition in accordance with condition (i). However, the authors wanted to state it explicitly
in order to stress the fact that it constitutes a natural choice that is intended to reduce the degree of
arbitrariness contained in (18).
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(iii) there exists a nonsingular n n matrix T(.,. of C1-functions of two
variables such that, writing 5e(.) for any one of the four subspaces
,(. ), M(. ), c(. ), 9(. ), one has 5(t’) {y T(t’, t)x:x (t)} for all
and t’ (second condition of consistency).

One can immediately verify that condition (iii) implies that the dimensions of
the four subspaces considered are constant with respect to t. It is known that this
is not generally the case when the properties to which reference has been made
are those of controllability and unobservability at time and in general, therefore,
it is not possible to obtain a canonical decomposition in the sense of Definition 3
on the basis of these properties. On the other hand, if one makes reference to the
properties of influenceability and invisibility, it will be shown that one can obtain
a canonical decomposition.

In this connection, having defined the subspaces d(t), (t), cg(t), (t) of the
state space Y" of the system (1) at each time by means of the relationships (in-
troduced by R. E. Kalman in [2])

(19)
(t) (t) (R) (t),

N(t) (R) (t) (R) (t) (R) (t),

one can prove the following theorem.
THEOREM 5. It is always possible, among all the infinite decompositions that

satisfy equations (19), to obtain a decomposition of the state space ofsystem (1) that
is canonical with respect to the properties of influenceability and invisibility.

Proof. Equations (19), by virtue of their construction, define decompositions
of the state space of system (1) that respect condition (i) of Definition 3, referring
to the properties of influenceability and invisibility. Furthermore, one can
immediately note that these decompositions also respect condition (ii). As regards
condition (iii), let us begin by noting on the basis of (7) and (11) that the relationship

(20) (t’) {y (b(t’, t)x:x e (t)}
holds for the subspace (. of all the influenceable states.

Analogously, the relationship

(21) (t’) {y O(t’, t)x:x e (t)}
holds for the subspace .(- of all invisible states.

Consequently, the space 1(.) defined by the first equation of (19) also
satisfies a relationship of the same type, i.e.,

(22) d(t’) {y (c, t) : ’(t)}
and it therefore respects condition (iii) because @(t’, t) is a matrix of Cl-functions
in and t’. For the other subspaces it is now possible to impose respect of condition
(iii) by construction;in fact, if (t), cg(t), (t) are arbitrarily fixed subspaces that
satisfy (19) at time t, the corresponding subspaces (t’), (t’), @(t’) obtained from
these by means of a relationship of the type (22) will still satisfy (19) at time t’.
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Remark. It should be pointed out that, with the exception of ’(.), the
subspaces that satisfy equations (19) are not uniquely identified; furthermore, they
do not generally satisfy the second condition of consistency. This condition can be
satisfied by means of the construction procedure implicitly indicated in the proof
of Theorem 5. It must be stressed, however, that this procedure is not the only
one that can be adopted. In the case of time-invariant systems, for example, the
matrix T(.,.) that appears in the second condition of consistency can be a
constant matrix.

The calculation of the dimensions of the four subspaces that have been intro-
duced can be carried out by starting directly from the Gramian matrices defined
by (2) and (12). In this connection, bearing in mind the definitions of np and nq
given by (8) and (17), one can state the following theorem.

THEOREM 6. 3 The subspaces defined by equations (19) have constant dimensions
equal to

(23)

n np /,20

rl rio,

n nq d- no llp

nd n no nq,

where

(24) no rank [Q(t;l, ()P(t , )].
Proof. (.) has constant dimension n because it has the property (22).

Since the relationship

(25) rank QP rank P dim [P] CI dV[Q]

holds for any two matrices P and Q, bearing in mind equations (19), one obtains

(26) dim (t) rank [Q(t; /, )n(t , )] no.

Equations (23) follow from this equation and, once again, from (19). The con-
stancy of n, n, nn follows from the constancy of n,, np, n and from equations
(23).

4. Canonical form of the equations. In connection with the decompositions of
the state space, as already mentioned, it is usual to consider the possibility of
writing equations (1) in the special form that is known as "canonical." Two
theorems will now be stated with regard to this special form, one concerning
existence and the other uniqueness, both within the framework of the theory
developed up to this point.

THEOREM 7. Assuming as a basis of the state space the union of suitable bases
in the four subspaces (. ), (. ), 7g(. ), (. of any canonical decomposition with
respect to the properties of influenceability and invisibility, the equations (1) take

It is stressed that this theorem is stated quite generally for all decompositions implicitly defined
by (19) and not just for the canonical ones.
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the form

(27)

Ba(t)

x(t)

where[xT,(t) 0 0 0]r,[0 x(t) 0 0]T,[0 0 xf(t) o]T, and[O 0 0 x(t)] T
are coordinates of vectors belonging respectively to (t), (t), (t), (t) and the
coefficient matrices are continuous (canonical forms).

Remark. With reference to equations (27), the term "canonical form" will
henceforth be used both for the equations themselves and for the triplet of
coefficient matrices.

Proof. Let {zi(to)}, 1,.-., n, be a basis in the state space obtained as a
union of bases in the subspaces s(to), (to), (to), (to), and let T(t, to)Zi(to)},
i= 1,...,n, be a basis in the state space at time t, T(t, to) being the matrix
considered in condition (iii) of Definition 3. This basis, by construction, is still a
union of bases in s(t), (t), (t), (t). Consequently, the coordinate transforma-
tion [x,r(t) Xrb(t) xr(t) xr(t)] T T(t)x(t)is defined at each time t, T(t) being a
nonsingular n x n matrix of functions of class C.

The vectors [x,r(t) 0 0 0] r, [0 x{(t) 0 0] r, [0 0 xr(t) 0] r and
[0 0 0 x(t)] r are coordinates of vectors belonging respectively to s(t),
N(t), (t), (t). Since T(t) is a matrix of C-functions, the coefficient matrices of
the representation of equations (1) in the new basis are continuous; it remains to
show that they take the form (27).

As a result of the choice of the new basis in the state space, bearing in mind
(7), (16) and (19), one obtains

0 0

(28) T(t)P(t;O,)TT(t)
Pb, 0 0

1o 0 0 0

and

(29)

0 0 0 0

0 0 0

The matrices on the main diagonals of the right-hand sides of (28) and (29)
are respectively n, x ha, nb x n, nc x no, and na x ha. Moreover, by virtue of
Theorems 2 and 4, equations (28) and (29) also hold if one considers any pair
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ofvalues r/, # in place of 0, (in place of f/, (), such that [r/,
Starting from (28) and (29) expanded in this way, it is quite easy to deduce

that the coefficient matrices of the representation of equations (1) in the new basis
take the form (27). For this purpose one can follow, for example, the procedure
adopted in [5].

Proceeding now to deal with the problem of the uniqueness of the canonical
form (27), it should first ofall be pointed out that the uniqueness is to be understood
with reference to a suitable equivalence relation. The starting point here lies in
the fact that for the system defined by equations (1) one usually considers as
equivalent representations all the equations corresponding to the triplets of
coefficient matrices that are "algebraically equivalent" to the given one
[A(. ), B(. ), C(. )] [3], [7]. Algebraic equivalence between triplets of matrices is
performed by means of transformations belonging to a group;the latter may
conveniently be formalized by [1]

(30)

where T(. is a nonsingular n x n matrix of Cl-functions.
Let be the set of all triplets of matrices that are algebraically equivalent

to the triplet [A(. ), B(-), C(-)] of equations (1), and let c be the subset of
made up of the triplets of matrices that take the canonical form (27). One can
state the following theorem.

THEOREM 8. The set c of all triplets of matrices that assume the canonical

form (27) is an equivalence class with respect to the subgroup -, of all algebraic
equivalence transformations that satisfy the condition

(31) T(t)

/T.o(t) To(t) T(t)

0 T(t) 0 T.(t)

0 0 Tc(t) Ta(t

o o o T(t)

where the matrices on the main diagonal are respectively n, x n,, n no, nc n,
nd X nd (in other words, the canonicalform ofthe (1) is unique modulo the equivalence
defined by ).

Proof. Given a triplet of matrices in the canonical form (27), one can
immediately observe that the triplet of matrices obtained from it by means of a
transformation of the type defined by (30) with condition (31), is still canonical.

It remains to demonstrate that the transformation from a triplet of matrices in
canonical form to any other algebraically equivalent triplet, still in canonical form,
satisfies (31). Let these triplets be [A(. ),B(. ), C(. ) and [(-),B(-), (. ); the
corresponding Gramian matrices P(t; O, ) and P(t; O, ) have the form (28), and,
since the two triplets are algebraically equivalent, are related by

(32) P(t; O, ) T(t)P(t; O, )TT(t).
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Partitioning T(t) in the form

(33) T(t)
IT(t)],, [T(t)]2],
[T(t)]21 [T(t)]22

where [T()Jl is (n + n) (n -F n/), and performing the transformations
indicated in (32), one obtains conditions that can only be satisfied by putting

[T(t)J21 0 for all t.

With this result, and others that can be deduced by applying analogous arguments
to the Gramian matrices (t; /, ) and (t /, ), the structure of (31) is justified.

Remark. As regards the case of time-invariant systems, it should be pointed
out that the equivalence class considered in Theorem 8 comprises both the
constant and nonconstant canonical forms; by virtue of the very definition of an
equivalence class, one can pass from the constant to the nonconstant forms, and
vice versa, by means of a transformation of the type (30). It is also easy to note
that the constant canonical forms, in turn, constitute an equivalence class with
respect to a constant transformation with a structure analogous to (31).

5. Conclusions. Starting from the structural properties of influenceability and
invisibility, a general theory of canonical decomposition has been developed. This
theory supplies subspaces of constant dimensions in all cases, i.e., it does not call
for any limiting hypotheses. Furthermore, the theory yields all the previously
obtained results. This is due to the fact that, in all cases in which it had hitherto
proved possible to effect a decomposition into subspaces with constant dimen-
sions, or at least in those known to the authors, the structural properties assumed
for the purposes of these decompositions were such as to be implied by th two
properties, influenceability and invisibility, on which the authors based the theory
presented in this paper. In the framework of this theory the authors have proved
the existence of the canonical decomposition, the existence of the canonical form
of the equations, and also the uniqueness of this form within an equivalence class,
the latter having likewise been determined.

As regards the type of treatment adopted, it should be pointed out that account
was taken of the conceptually important distinction between the problems of
existence of the canonical forms and the algorithmic problems related to the
construction of these forms. In tackling the problems of existence, in fact, one does
not have to worry about algorithmic problems, and this makes it possible to give
compact proofs as in the case examined in this paper. On the other hand, once the
existence of the decompositions is proved, one can choose the mos suitable
algorithm in each case; in the time-invariant case, for example, since the existence
of a constant canonical form is known from the general theory, it can be sought
with one of the many available algorithms. It should also be stressed that it is not
dicult to show that the theorem of existence (Theorem 7) can be proved with
the help of Dolezal’s theorem, just as is done by L. Weiss in the case of the problem
he treats in [5. In this manner, therefore, it is quite clear that none of the advan-
tages outlined by Weiss would be lost.

It seems interesting to make a few remarks regarding the correlation between
the problem of decomposition treated in this paper and the important problem
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of the minimal realization of a given weighting pattern. It is obvious that the
weighting pattern of the system depends only on the "b" part of the canonical
form of the equations. On the other hand, starting from D. C. Youla’s fundamental
work 7], it is easy to prove the more interesting result that the realizations of a
given weighting pattern are minimal if and only if all the elements of the state
space are influenceable and visible at every instant of time (i.e., if and only if they
are "completely influenceable" and "completely visible").
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SUR UN PROCEDE D'OPTIMISATION UTILISANT
SIMULTANEMENT LES METHODES DE PENALISATION E T

DES VARIATIONS LOCALES . I*

PIERRE LORIDAN t

Abstract. We consider a strictly convex, continuous functional J defined on a real reflexive Banac h
space V, and we wish to minimize J on the closed, convex set K defined b y

K = {v e VI G(v) _< 01 ,

where G denotes a convex, continuous functional on V .
To arrive at the solution u e K of this problem, we suppose that there exists a sequence of finite-

dimensional spaces V" whose union is dense in V, and we consider the functiona l

J(v ")

	

if G(vh) < 0 ,

4(4) =
J(vh)

+ G2 (vh)
if G(v h) > 0 ,

r(h)

where r(h) is an increasing function of h such that lim" o r(h) = 0 . Then J" is obtained by simultaneously
using penalty and discretization techniques .

By applying to J" the method of local variations described in [3] with a step p = p(h), we obtain a
"stationary " point uh, and we show that uh —> u strongly as h — 0, when J is strongly convex. When the
strong convexity does not hold, we apply the procedure to the " regularized" functional J" , and we then
demonstrate the weak convergence of the method.

What is of interest in this procedure is that one gives a direct approximation of u, using a singl e
parameter h .

Introduction. L'objet de ce travail est l'étude d'un procédé d'approximatio n
utilisant simultanément plusieurs méthodes d ' optimisation de telle sorte qu e
l'approximation soit obtenue par la variation d 'un seul paramètre .

Cette étude étant assez longue nous avons jugé utile de diviser notre travail
en deux parties . Seule la première partie fait l'objet de cet article, suivant le plan :

1. Hypothèses .
2. Le problème (P) .
3. Description du procédé d 'approximation .
4. Résultats préliminaires .
5. Convergence du procédé.
6. Applications .
7. Cas des fonctionnelles régularisées.
La deuxième partie fera l 'objet d 'une publication ultérieure. Elle comportera

notamment l'extension des résultats précédents au cas de plusieurs contrainte s
ainsi qu'une étude plus particulière dans le cadre des fonctions de n variables
où certaines estimations d'erreur seront fournies .

1 . Hypothèses . 1 . On considère une fonctionnelle J définie sur V espace d e
Banach réflexif, vérifiant :

(J1) J admet une dérivée-Fréchet notée J'(u) pour tout u V :

J(v)--J(u)=(J'(u),v--u)+wl(u,v—u)

* Received by the editors May 12, 1971, and in revised form March 15, 1972 .
t Laboratoire de Bio-mathematiques, La Salpêtrière—L .E .NA ., 47 Boulevard de l ' Hôpital ,

75—Paris (13 ème), France .
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avec cv 1 (u, v — u) < k 1 (u) Il v — u I I a > 1, k 1 transformant les suites bornées en
bornés. (• , • ) désigne le produit scalaire mettant en dualité V et V' dual topologique
de V. Il . Il désigne la norme sur l'espace de Banach V.

(J2) J est foretement convexe, c 'est à dire : il existe une constante C > 0 tell e
que :

J(v) — J(u)

	

(J'(u), v — u) + C II v — u II 2 , pour tout v e V, pour tout u e V.

(J3) J(v) >_ 0 pour tout v e V.
(J4) L 'optimum global de J sur V est atteint en dehors du convexe K défini

ci-après .
2 . D'autre part, soit G une fonctionnelle définie sur V, vérifiant :
(G1) G est continue et convexe .
(G2) lim

Il v
Il _, + 00 G(v) = + oo .

(G3) G admet une dérivée-Fréchet G'(u) pour tout u e V avec G(v) — G(u )
= (G'(u), v — u) + w 2 (u, v — u) et w 2(u, v — u) k 2 (u) Il v — u II 0 , /3 > 1, k2 trans-
formant les suites bornées en bornés .

(G4) Sur tout borné B, il existe une constante MB > 0, telle que i G(v) — G(u) I

M B II v — u (I pour tout (u, v) E B x B.
3 . Le convexe K est défini par :

K = {v E VI G(v) < 0} .

On suppose vérifiée l'hypothèse :

(K1) Il existe au moins un élément vo e K vérifiant G(vo) < 0 .
Remarque 1 .1 . D'après les propriétés de G, K est un convexe formé et borné .
Remarque 1 .2 . L'hypothèse (J3) n'est pas une restriction car on peut toujour s

s 'y ramener en ajoutant à J une constante convenable .
L'hypothèse (J4) est raisonnable sinon le problème (P) ci-après se ramènerai t

à un problème sans contrainte.

2. Le problème (P) . Il s 'agit de trouver u e K tel que J(u) = inf„EK J(v )
Remarque 2.1 . D'après (J1) et (J2), J est continue et strictement convexe

donc, en particulier semi-continue inférieurement pour la topologie faible de V .
Le convexe K fermé et borné étant faiblement compact, J atteint donc son mini -
mum sur K en un point u, unique en raison de la stricte convexité de J .

Le problème (P) admet donc une solution et une seule. De plus, grâce à (J4) ,
on peut montrer que G(u) = 0 .

3. Description du procédé d'approximation. On suppose qu' il existe une suite
de sous-espaces { Vh } de dimension finie N(h) contenus dans V et dont la réunion
est dense dans V (avec h paramètre positif destiné à tendre vers zéro) .

Si {e 1 , e 2 , • • • , e N(h) } désigne une base de Vh , tout vecteur Vh E Vh s'écrira :

N(h)

v h =

	

ocl ei ,

i = 1

a i ER .

On pose 0(h) = sup (Il e 1 II , II e 2 II , . . , II e N(h) II) . Soit d'autre part {VO , p > 0,

une suite d'ensembles dont la réunion est dense dans Vh . Plus précisément, n
désigne l'ensemble des vecteurs de Vh s'écrivant vh = ENi=(h )l m ipe i avec m i E Z.
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Dans la suite, p sera pris fonction de h et on posera pn = p(hn) pour h = h n ,
n E N ; limh _ o p(h) = 0 .

On considère alors le problème ( Ph ) associé à la première discrétisation :
(Ph ) trouver uh e Vh tel que J h(uh) = inf„hEVh J h(v h ) avec :

J(v h) si G(vh) < 0 ,

G2 ( v h)
J(vh ) +	 h

	

si G(vh ) > 0,r
( )

avec r(h) fonction croissante de h et limh+ o r(h) = O . Dans la suite on posera
rn = r(hn ) pour h = hn , n e N .

On sait que (P h ) "approche" (P) au sens donné dans [16] .
En considérant alors le deuxième réseau de discrétisation, on applique l a

méthode des variations locales décrite par Y. Cherruault dans [7], pour approche r
(P h), mais, de plus, pour calculer le point de stationnarité upn correspondant à
h = hn , on part du point de stationnarité

ur - 1
pn_1 précédemment obtenu pour

h = h n _ 1 (hn < hn _ 1 ; hn --4 0 quand n --f + oc) . On se propose alors de montrer
que les points upn , n e N, "approchent" la solution u du problème (P) en un sens
à préciser .

Comme p et r sont pris fonction de h, le procédé qui vient d'être d'écrit con-
stitue bien une approximation de (P) en une seule étape .

Remarque 3 .1 . D ' après ce qui précède pour calculer le point de stationnarité
correspondant à h = h n , on part du point de stationnarité uprn--11 précédemment
obtenu pour h = h n _ 1 . En pratique, il faudra d 'abord interpoler à partir du poin t
upn - 1 pour obtenir un point à N(h n ) coordonnées. Ceci est en particulier justifié

rn - 1

si l'on choisit une suite {h n} de terme général hn = ho/2 n, n E N, ho > 0 fixé, car
on peut alors affirmer que le réseau de discrétisation de pas h n _ 1 est inclus dans
le réseau de pas hn , autrement dit Vhn

_ 1 C Vhn .
Remarque 3 .2 . La démonstration de la convergence du procédé exige l a

connaissance d'un certain nombre de résultats préliminaires que nous présentons
sous forme de lemmes et de corollaires .

Dans ce qui suit nous poserons :

0 si G(v)5. 0 ,
H(v) =

G(v) si G(v) > O .

4 . Résultats préliminaires. Avec les notations précédentes, posons, pou r
simplifier l'écriture, upn = un .

LEMME 4 .1 . La suite rnJ rn (u n) est décroissante .
En effet, soit deux valeurs successives de r : rk et rk _ 1 avec rk < rk _ 1 et soi t

H(v) = sup (0, G(v)) . D'après le choix du processus on a :

Jrk(uk) 5- Jr k(u k _ 1 ) ,

d 'où :

(4 .1)

	

r kJ rk (u k )

	

rkJrk(uk _ 1) .
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Mais

rkJ r k( u k — 1) = r kJ(uk — 1) + H2 ( u k — 1) .

D' après l'hypothèse (J3), on a :

r kJ(uk — 1) < rk — 1 J(u k — 1 )

et la relation (4 .2) devient

rkJ nk(uk — 1) < rk J( u k — 1) + H2 (uk 1) •

Comme le second membre de (4 .3) n'est autre que rk_ 1 Jrk _ 1 (uk— 1), la comparaison
de (4 .1) et de (4 .3) donne le résultat annoncé rkJ r k ( u k) < rk _ 1Jrk - , (uk _ 1) .

COROLLAIRE 4 .1 . Quand n -- oo (i .e ., r n -+ 0) la suite rnJrn(u n) converge et est
en particulier bornée supérieurement.

Ce résultat est évident car la suite est décroissante d'après le lemme 4 .1 et es t
bornée inférieurement par 0 (conséquence de l'hypothèse (J3)) .

COROLLAIRE 4.2 . La suite H 2 (u n ) est bornée .
En effet, d'après (J3) on a r nJ rn (u n) > H 2 (u n) et cette inégalité montre que

H 2 (u n) est bornée d'après le corollaire 4 .1 .
COROLLAIRE 4.3. L'ensemble des éléments un = uPn, n E N, est borné .
Preuve . En effet, si u n E K la propriété est évidente puisque K est borné .

Si un O K, alors d'après le corollaire 4.2 et l 'hypothèse (G2), on a Il u n il C (car
dans le cas contraire on aurait G 2 (u n) --~ + oo ce qui est contraire à la propriét é
H2(un ) est bornée, H coïncidant avec G si u n K) .

En particulier, comme V est réflexif, on pourra extraire de la suite u n , une
sous-suite faiblement convergente.

LEMME 4 .2. Si une suite {u n } converge faiblement vers s, si G(u n) est borné
supérieurement par M > 0, pour tout n, alors sur tout borné B, il existe une constant e
CB telle que

H2(v) — H2(un) < 2H ( u n) (G/(un) , v — un) + C B I I v — u n I I
Q °

avec /3 0 = inf (/3, 2), pour tout v e B (/3 correspondant à l'hypothèse (G3)) .
Nous distinguerons plusieurs cas pour la démonstration et utiliseron s

l'hypothèse (G4) .
1 ° cas . (v, un ) E CK x CK ou bien (v, un) E K x CK on a alors soit H2 (v) — H 2 (u n )

= G 2 (v) — G 2 (u n ) pour la première éventualité, soit H2 (v) — H 2 (u n) < G 2 (v)
— G2 (un) dans la deuxième éventualité (puisqu'alors H(v) = 0 et H(un) = G(un )) .

Dans ce 1 er cas, nous avons donc

H2(v) — H2(un) <. G2 ( v ) — G2(un)

Pour majorer G 2 (v) — G 2 (u n) nous utiliserons l'hypothèse (G3) :

G2 ( v) — G2 ( u n) = [G(v ) + G( u n)] [ G(v) — G ( u n)]

= [2G(un) + (G'(un), v - - un) + w 2(un , v — un)] [(G'(un), v — u n) + w 2(un , v — un)]

= 2G(un ) ( G' ( u n) , v -- un) + 2G(un)w2( u n, v — u n) + [( G' ( u n), v — u n )

+ CV 2(un , v — un)] ;

(4.2)

(4.3)
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d'où puisque G(u n) = H(u n) dans les deux éventualités :

G2 (v ) — G2 ( u n) = 2H(un)(G'(un), v — u n) + 2G(u n )w 2 (u n , v — u n)
(4.4)

+ [G(v) — G(un)] 2 .

On a supposé G(un) < M ; de plus G étant convexe, w 2 (u, v — u) est positif. D'où :
2G(u n)w2(u n , v — u n) < 2Mw 2 (u n , v — u n ) . D'autre part, en utilisant l 'hypothès e
(G4) on a :

(G(v ) — G(un))2 ~ MB I I v — u n i' 2 .

Ces deux majorations jointes à l'égalité (4.4) permettent d'en déduire une majora-
tion de G 2 (v) — G 2 (u n) et donc de H2(v) H2 (u n), en notant que k 2 (un) <— C :

H2 ( v) — H2(un) < 2H(un) (G '(un) , v — un) + 2MC II v — un II + Ms II v — u n e ,
inégalité que nous laissons provisoirement sous cette forme .

2° cas. (v, u n) E CK x K, c 'est à dire H(v) = G(v) > 0, G(u n) 0, H(un) = 0 .

Alors

H2 ( v) — H2(un) _ (H( v) + H( u n)) (H( v) — H( u n) )

< (H(v) + H(u n)) (G(v) — G(u n)) ,

et d 'autre part H(v) + H(un) < G(v) — G(u n) d'où

H2 ( v) — H2(un) < ( G ( v) — G ( u n)) 2

soit, en utilisant l 'hypothèse (G4) ,

(4.5)

	

H2 ( v) — H2(un) < M B II v

	

un II 2 .

D'autre part, puisque H(u n) = 0 on ne change pas l ' inégalité (4.5) en écrivant :

H2(v ) — H2(un) < 2H (u n) ( G/ ( u n), v — un) + MB II v — u n II 2

et, d'autre part, comme toutes les constantes qui apparaissent sont positives, on
peut aussi majorer le 2d membre en y ajoutant 2MC II v — u n I ce qui conduit à
une écriture identique à celle du 1° cas .

3° cas. (v, u n) E K x K. Alors H 2 (v) — H2(un) = 0 et l'on peut évidemmen t
majorer H2 (v) — H2(un) par une expression identique à celle obtenue dans le 1 °
et le 2° cas . En résumé pour tout (v, un ) vérifiant les conditions du lemme 4.2 on
peut écrire :

H2 ( v ) — H2 ( u n) 2H ( u n) (G ' (un), v — u n ) + 2MC II v — u n il + MB II v — un II 2 .

En posant f3 0 = inf (fi, 2) on peut écrire :

2MC Ii v — u n I I + MB II v — u n 1I 2

	

Ii v — un ll 0° [2MC(A + C 1 )° —f0

+ MB(A + CO2-00] ,

d 'où, en notant C B le coefficient qui apparaît dans la dernière inégalité, on a bien :

(4 .6)

	

H2 ( v) — H2(un)

	

2H(un) (G ' ( u n), v — un) + CB II v — u n II °
°

avec /30 = inf (/3, 2) .

En pratique, dans les exemples rencontrés, on a )60 = /3 = 2.



164

	

PIERRE LORIDAN

5. Convergence du procédé . Sur Vh on définit deux normes : d'une par t

I I vh I I h = I I v h.I I et, d'autre part, en notant a i la ième coordonnée de Vh dans Vh (par
rapport à une base {e}, i = 1, 2, • • • , N(h)) :

I vhI h = max 14 ,
1 i < N (h )

Vh étant de dimension finie, ces deux normes sont équivalentes et en particulier ,
il existe une constante Si (h) telle que

S1( h)I v hlh

	

II v hI I

A ce sujet nous renvoyons à la remarque figurant à la fin de ce travail .
HYPOTHÈSES 5 .1 . Nous supposons que toutes les hypothèses du paragraphe 1

sont vérifiées et que de plus :

N(h)[0(h)]a[p(h)]a-1 _
(a)

	

hô

	

S h
	 =0,

	

a>1 ,
1( )

N(h)[e(h)]f°[p(h)]f°-
1Iim

	

S hrh

	

0 ,
1( ) ( )

(c) 0(h)p(h) est borné quand h -* 0 (en pratique cette condition sera souvent
réalisée par le choix : lim h _ o 0(h) p(h) = 0) . 0(h) a la signification donnée a u
paragraphe 3 .

Comme nous serons amenés à majorer H 2 (un + pe i) — H 2 (un ) et H 2 (un — pe i)
— H 2 (un) dans les démonstrations qui suivent (pour une sous-suite u n extraite de
la suite un = ur'n définie au paragraphe 3), nous allons d'abord montrer que l'o n
peut appliquer les résultats du lemme 4 .2 .

LEMME 5 .1 . Il un + pei II et II un — pe i II sont bornées pour tous les e i vecteurs de
base Vh .

En effet :

II un + pei Ii

	

Il un II + Ilp ei II

	

II unII + p(h)o(h) .

Or : d'après la condition (c), p(h)0(h) < M et comme IIunII est bornée, on en dédui t
que IIun + pe i II est bornée . Même remarque pour II un — pei I I

Remarque 5 .1 . On sait que G(un) est borné d'après le corollaire 4 .2 . D'après
le lemme 5 .1, un + pe i et un — pe i sont dans un borné : on pourra donc applique r
le lemme 4 .2 en faisant successivement v = u,, + pei et v = un — pe i chaque foi s
que la sous-suite un est faiblement convergente .

THÉORÈME 5 .1 . La solution u h du problème (P h) défini au paragraphe 3 converge
fortement vers u et Jh(u h) -~ J(u) quand h -~ 0 .

Ce théorème est une simple adaptation d 'un résultat que nous avons donné
dans [16] . Nous en donnons brièvement la démonstration pour la commodité d u
lecteur.

Soit ah le point réalisant le minimum de J sur le convexe K h = K (1 Vh . En
utilisant la continuité de J et de G et le fait que l'intérieur de K n'est pas vide (en
vertu de l 'hypothèse (K1)) on montre facilement avec l'hypothèse de densité de
U h > 0 Vh dans V que : J(û h) -~ J(u) et que ah -* u fortement quand h -+ 0 (l a
convergence forte venant de la forte convexité de J) .

(b)
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En considérant ensuite la fonctionnelle Jh (paragraphe 3) on a d 'une part
J(û h) = J h(û h) et d'autre part d 'après la définition de uh : Jh(uh) Jh(h), ce qu i
donne encore J(u h) J(ûh) . Comme J(û h ) est bornée, il en est de même de J(uh) e t
puisque lim II v II _ + 00 J(v) = + oo (en raison de la forte convexité de J), on dédui t
par un raisonnement classique que II u h II est bornée et donc que l'on peut extraire
une sous-suite uh , convergeant faiblement vers un élément s quand h' —f 0 . On
montre ensuite que s e K (cf. [16]) et l'on a : J(u)

	

J(s)

	

limh - _ o infJ(u h -)

limh , _ o J(ûh) = J(u) . Il en résulte que J(u h ,) —> J(u) et que s = u . Reprenant
alors le même raisonnement pour n'importe quelle sous-suite faiblement con-
vergente, on montre que la suite Uh elle-même converge vers u (fortement, en raiso n
de la forte convexité de J) .

Enfin pour montrer que J h(u h) --- J(u) quand h —> 0, on utilise l'inégalité :

J( u h)

	

Jh(u h)

	

J(uh) ,

ce qui achève la démonstration .
Remarque 5 .2 . Nous utiliserons ce théorème dans la démonstration suivante .

D'autre part, lorsque la forte convexité de J n'est pas vérifiée, mais en supposan t
lim II v II -+ + J(v) = + oo, on a la convergence faible de uh vers u : ce résultat inter -
viendra dans l'étude du cas des fonctionnelles régularisées (paragraphe 7) .

THÉORÈME 5 .2 . Si toutes les hypothèses 5 .1 sont vérifiées, alors la suite de s
points de stationnarité urn converge fortement vers u solution du problème (P) quand
n —k + oo .

Démonstration . Posons un = uPn pour simplifier l'écriture . En un point de
stationnarité un , on a par définition :

0

	

Jrn( un + Pei) - Jr n(un)
i=1,2,•••,N(h) ,

0 < Jrn(un — pe i) - Jrn(un ) .

Notons que Jr(v) = J'(v) + (2/r) H(v)G'(v) . Alors, en utilisant la remarque 5 . 1
(autrement dit le lemme 4 .2 et l'hypothèse (J1)), on a :

<

	

<

	

CBIIPeiII~
°

0

	

J rn (u n + pei) — J rn( un) = p(J
,
rn(un ) , ei) = w1( un , pe i) +

	

rn

~

	

C BIPe i 	 II ~ °
0 = Jrn(un - pei) - Jrn(un)

	

- P(Jrn( u n), e i) + w1(un, - pe i) +

	

'
r n

On en déduit :

w 1( un ,pe i) - C B peiIflo <

(J'r

	

< CU 1 (u n , pei)
+

C B IIpe i II
fi o

P

	

IP rn

	

!

	

" (un)' e`)

	

P

	

Prn

soit, en tenant compte de l'hypothèse (J 1) et de l'écriture de Jr(v) :

pfi° -

(

	

1

5 .1)

	

J'(un), e l) +?H( u n) ( G' ( u n), e
L~)

	

+ C B(

	

r

	

-

	

1 P

	

II l I I

	

r

	

I I l I I

	

,
n

= 1,2,•••, N(h) ,

où l'on a posé p = p n = p(hn ) .
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Soit u h la solution du problème (P h ) défini au paragraphe 3 . Pour h = h n nous
noterons encore u h la solution pour simplifier l'écriture . Cet élément est caractéris é
par :

(J'(uh), v+
2H(uh)

(G'(u v= 0 pour tout v h V .h)

	

r(h)
h)~ h)

	

h

	

h

Si nous retranchons cette expression du 1er membre de (5 .1) avec v h = ei , nous
obtenons :

J' ( u n) — J' (uh), e t•) +? [(

	

H(u n) (G'(un), e
L
• ) — H(uh) (G' ( uh), e •i) ]

r n

pI0- 1

<C 1 pa-l lleil a +CB 	 IIeiII`l

	

i= 1,2, . . .,N(h) ,
r n

que nous pouvons encore noter de manière plus condensée :

p /30 - 1

(5 .3)

	

(J r(un)

	

J r(uh), ei) Ç C 1Ipa — 1 II e i II a + CB	 II e i II
/1° ,

rn

et en utilisant 0(h) :

h0 — 1

(5 .4)

	

(Jr(u n)

	

Jr( u h) , e i)

	

C 1 pa-1 [0(h)] a + CB
p	

[ 0( h )] f ° .
r n

Considérons maintenant l'élément un — u h ; cet élément appartenant à Vh on
peut trouver des nombres réels 2i, i = 1, 2, • • • , N(h), tels que :

N(h )

(5 .5)

	

u n – uh =

	

/li ei .
i = 1

La fonctionnelle J r étant fortement convexe, on remarque que :

(5 .6)

	

2C II u,, — uh 2 < (J '(u n) — J r( uh), un — Uh )

et en utilisant (5 .5) :

N(h )

(5 .7)

	

2C II un

	

uh II Ç
(Jr(u n)

	

Jr(uh), 1 2 i e i) •

On peut majorer le second membre de (5 .7) grâce à la relation (5 .4), ce qui donne :

N(h)

	

N(h )

(J r(un) — Jr( uh), 1 2 i e i) 5. 1 2 i(Jr( u n)

	

J r( u h), e i )
1

	

1
(5 .8 )

Mais, par définition,

sU /l = u – U

	

< Ilun	 uh II
ipI

lI

	

I n

	

hIh —

	

S,
h1( )

En reportant dans (5 .8), puis revenant à (5 .7) on obtient après division par

IjO — 1
~ N(h) sup I 2 ii [CI P°` -1 (e(h))°` + CB P	 -(8(h))" .

r
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Il un —u hll

N(h)

	

Pfio -

(5 .9)

	

2C II u n

	

u h II

	

[Ci Pa -1(0(h))Œ + CB	 (e(h))f 0 .
S 1 (h)

	

r

En utilisant alors les conditions (a) et (b) figurant dans les hypothèses 5 .1, on
remarque que le second membre de (5 .9) tend vers zéro et donc

Il un — uh ll --4 0 quand h n -4 0 .

D'autre part, d'après le théorème 5 .1 on a Il uh — u ll -~ 0 quand h --p 0 . Alors
puisque Il u n — ull

	

Il u n — u h ll + I I u h — u I I on en déduit la convergence forte d e
u n vers u quand n --~ + oo (c'est à dire, quand h n -4 0) ce qui achève la démonstra-
tion .

COROLLAIRE 5 .1 . J(u n ) -4 J(u) et H(u n) --~ 0 quand n --* + oo .

C 'est une conséquence de la continuité de J et de H.
Remarque 5 .3 . Ce qui précède montre l'importance des fonctionnelles forte -

ment convexes pour la démonstration de la convergence du procédé .
Lorsque la forte convexité n'est pas réalisée, on modifie le procédé en

régularisant la fonctionnelle pénalisée, le terme de régularisation dépendan t
lui-même du paramètre de discrétisation : avant d'en faire l'étude, nous présenton s
des applications des résultats précédents .

6. Applications. Parmi les applications du procédé à la résolution de prob-
lèmes d 'optimisation convexe nous pouvons signaler plus particulièremen t
l'approximation de la solution de certaines inéquations variationnelles .

Plus précisément, soit V un espace de Hilbert réel, de norme notée II • Il , soi t
V' son dual topologique, le produit scalaire mettant V et V' en dualité étant noté

( .

	

•)
Soit a(u, v) une forme bilinéaire sur V, continue, symétrique et coercive, la

coercivité se traduisant par : "Il existe une constante C > 0 telle que a(v, v )
>_ C II v II 2 pour tout v e V." Soit K un convexe fermé borné défini par une fonc-
tionnelle G vérifiant les hypothèses du paragraphe 1 (l'exemple le plus simple es t
fourni par K = {v e Vl IIvII 2

	

M, M > 0}) .
Le problème est le suivant : f étant donné dans V', résoudre l'inéquation

variationnelle a(u, v — u) (f, v — u) pour tout v e K .
Il est bien connu que ce problème équivaut à la minimisation de la fonc-

tionnelle J(v) = a(v, v) — 2(f,, v) sur K .
On vérifie facilement que J est dérivable et fortement convexe . De plus ,

suivant la remarque 1 .2, on peut toujours se ramener au cas J(v) 0. Enfin, s i
le problème est bien posé, il est sous-entendu que l'hypothèse (J4) est vérifiée :
en effet, dans le cas contraire, l'inéquation variationnelle se ramènerait à l'équatio n
a(u, v) = ( f, v) pour tout v E V et le problème serait sans contraintes .

Les conditions de convergence du procédé sont donc remplies (avec d'ailleur s
=2) .

7. Cas des fonctionnelles régularisées .
HYPOTHÈSES 7 .1 . Nous supposons vérifiées toutes les hypothèses du para -

graphe 1 sauf l'hypothèse (J2) de forte convexité que nous remplaçons par les
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conditions :
(J5) lim II v II _ J(v) = + oo ,
(J6) J est strictement convexe .
De plus on suppose que l'on peut approcher V comme au paragraphe 3, e t

que V est un Hilbert .
Description du procédé . Au lieu d'appliquer la méthode des variations locale s

à la fonctionnelle J h définie au paragraphe 3, on va l 'appliquer à la fonctionnell e
régularisée :

Jh,E( v h) = Jh(u h) + e(h) Il vh II 2 ,

où c(h) est une fonction positive croissante de h vérifiant lim h _o r(h) = 0 .
On vérifie facilement que J h,E (v h) est dérivable et fortement convexe sur Vh

pour tout h donné. De plus, cette fonctionnelle admet un minimum unique su r
Vh et nous écrirons :

Jh,E(uE) = inf Jh,E(v h )v h eV h

où, pour simplifier l'écriture, nous avons posé E = e(h) . Nous noterons up le poin t
de stationnarité de la fonctionnelle Jh ;E obtenu par application de la méthode de s
variations locales pour p = p(h) et nous nous proposons de montrer la convergenc e
faible de up vers u quand h -4 0 .

Cette démonstration utilisera le résultat intermédiaire suivant .
THÉORÈME 7 .1 . Quand h --> 0 :

(a) Jh( u E)

	

J(u) ,

(b) Jh,E( uE) –* J(u ) ,
(c) ti c -4 u faiblement .
Démonstration . Rappelons d'abord que la solution uh du problème (P h) :

Jh(uh) = inf Jh(v h)
v h EVh

vérifie :

Jh (uh ) --* J(u) quand h --4 0 ,

u h --* u faiblement

(cf. la remarque 5 .2 faisant suite au théorème 5.1) . Alors, par définition, on a :

Jh(uh) -5-, Jh( u E)

	

Jh,E(uE) ~ Jh,E(uh) ,

la dernière inégalité provenant du fait que u E réalise le minimum de J h, , ( vh ) . Comme
u h -* u faiblement, la suite u,, est faiblement bornée, donc fortement bornée et ,
d'après le choix de e(h), il en résulte que r(h) Il u h II 2 --~ 0 quand h -4 0 .

D 'autre part, Jh (u h ) -4 J(u) quand h -4 0 et, puisque Jh,E( uh) = Jh( uh) + c(h)Il uh Il
2 ,

il en résulte que : Jh,E (u h ) -4 J(u) quand h --> 0 .
Ayant vu précédemment que : J h(u h) <_ Jh (uE) _<_ Jh,E (uE ) Jh,E(uh) on en dédui t

facilement les résultats (a) et (b) du théorème .
De l'inégalité Jh,E (u e)

	

Jh,E (uh ) on tire :

E(h ) I I uE 11 2 Jh(uh) + e(h)II u h 11
2

Jh( u E)
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et puisque J h(uh) — Jh (u E) < 0, on en déduit :

£(h) Il uE112 ~ E(h )I l uhll
2

,

d'où 1114,11 2

	

II uh 11 2 .

Il en résulte que 111,1,11 est aussi bornée et puisque V est réflexif, on peut extraire
de la suite uE une sous-suite u E , convergeant faiblement vers s quand h' -+ 0 (on a
posé e' = e(h')) .

Montrons d'abord que s E K : en effet dans le cas contraire, il existerai t
2 > 0 tel que H2 (u E ,) >_ 2 quand h' -- 0 et en conséquence on aurait H 2 (uE j)/r(h')

+ oo quand h' -+ 0 et J h ,(uE-) tendrait vers + oo ce qui contradirait l'assertion (b) .
Par conséquent on doit avoir s e K. Montrons maintenant que s = u : J

convexe et continue est aussi semi-continue inférieurement pour la topologie faibl e
de V donc :

lim inf J(uE,) >— J(s) >_ J(u) .
h -'0

	

-

Mais, d'autre part limh , _ o sup J(u,,) < limh , _ 0 Jh'(uE ,) = J(u) . Par conséquent ,
lim h , ,0 J(u,,) = J(u) et J(s) = Au) . Comme u est unique, l 'égalité J(s) = J(u)
entraîne s = u puisque l'on a déjà montré que s e K .

On peut alors reprendre le même raisonnement pour n'importe quelle sous -
suite faiblement convergente extraite de la suite uE ; il en résulte, suivant un
raisonnement classique que la suite u E elle-même converge faiblement vers u
quand h -+ 0, ce qui achève la démonstration .

COROLLAIRE 7 .1 . Quand h --3 0 ,

(a) J(u,) -~ J(u) ,

(b) H2(u E)/r( h ) -3 0,

(c) H(uE) --+ 0 .

La première partie (a) vient de la démonstration du théorème précédent .
Le résultat (b) est une conséquence de (a) et de la convergence de Jh(u E ) vers J(u) .
Enfin, le résultat (c) vient de (b) et du fait que r(h) -3 0 . Démontrons maintenant
la convergence du procédé utilisant la méthode des variations locales . Dans ce
qui suit, rappelons que up désigne un point de stationnarité et que les notation s
sont celles rencontrées dans les paragraphes précédents .

THÉORÈME 7 .2 . Si en plus des hypothèses 7 .1, on suppose 0(h)p(h) borné et :

. N(h)p(h) [9(h)] 2 _

hlź

	

0h

	

'S,( )
(a)

•

	

N( h ) [p ( h )]°`	
- 1

	 [ e ( h)]°`

0hl ô

	

SI(h)e(h) '
(b) a>1 ,

i N( h ) [p(h)] fi° 	 1[e(h)] fi°

	

,

(c)
	 	 =

S hhh

	

0, 130 = min (~3, 2),

	

> 1
hô

	

,
~() E()r( )

alors la suite up -f u faiblement quand h -3 0 .
Remarque 7 .1 . Les conditions précédentes se simplifient lorsque a = fi = 2 :



170

	

PIERRE LORIDA N

Il suffit alors de réaliser la condition (c) qui s'écrit :

Iim. N(h)p(h) [0(h)] 2 _

0S hEhrh

	

'

en effet, comme r(h) -* 0, on en déduit qu e

N(h)p(h)[O(h)] 2

S1( h)e( h )

doit tendre vers zéro ("plus vite" que r(h)), ce qui réalise la condition (b) o ù
a = 2 . De même la condition (b) étant réalisée avec e(h) --+ 0 on en déduit la réalisa -
tion de la condition (a) .

Nous reviendrons donc qu'habituellement la condition (c) est la plus im-
portante .

Démonstration du théorème 7 .2 . Nous suivrons les calculs faits dans l a
démonstration du théorème 5 .2 . En désignant par < , > le produit scalaire su r
l'espace de Hilbert V, on peut écrire :

u,11 2

	

II u':11 2 = 2<u E , uE

	

u E > + Il u E

	

411 2

et par conséquent :

(Jh .E(u~) ut: — u E) = (Jh( uÉ), uP — uE) + 2E(h)<4, uÉ — u E > .

De plus le point u E minimisant J h,E (vh ) sur Vh vérifie

(J h,E( u 3), uP — u E) = 0

et

(J h,E(u ), u£

	

u E) = (J h,E( u £) - J h,E( u E) , u£

	

uE) .

On peut minorer le second membre de cette dernière égalité par 2g ( h )Il uÉ — 14, 11 2

car la fonctionnelle Jh,E(v h) est fortement convexe en raison de la présence d e
terme de régularisation . D'après ce qui précède on a donc :

	

2E ( h) Il uÉ — u,11 2

	

(J h,E(uP), uÉ — u E) •

On montre ensuite, en suivant exactement le type de calculs développés dans l a
démonstration du théorème 5 .2 que :

(J h,E( uP) , uP — u E )

N(h)

	

pI3 ° - 1
(CIp°` -1 ( e ( h ))Œ + CB 	 (O(h))" + E(h)p ( h ) (O(h)) 2 I I u~' — u E

Si (h)

	

r

Puis en comparant les deux inégalités on obtient finalement après division par
2E(h)II u t: — uEll

	 N(h )

1( )
Cip

	

( )
( o( h))")hSh

	

«- 1 (9(h))«
+ GB'

r~oh

- 1

—

	

2E()

	

+
N( h )p ( h )

( )1 hS

( e(h)) 2
I I uP

	

uE I I ~

et en utilisant les conditions (a), (b), (c) du théorème, on a :

II uP — u EII -~
0 quand h --~ 0 .
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Enfin, pour achever la démonstration, on utilise le théorème 7 .1 assurant la
convergence faible de u E vers u.

Comme II uP — u £ Il —> 0 on en déduit que u t,' -* u faiblement quand h -÷ 0 .
Remarque 7 .2 . Toutes les démonstrations précédentes demeurent valables si ,

à l'espace V, on associe une suite d 'espaces Vh de dimension finie N(h) ainsi qu'un e
suite d 'opérateurs linéaires continus injectifs ph tels que U h> o phVh soit dense
dans V (voir [1]) .

Outre la norme I V hI h déjà définie sur Vh , on peut prendre II vh II h = II p h Vh II • Sur
Vh ces deux normes sont équivalentes et il existe deux constantes S 1 (h) et S2 (h)
telles que :

S1( h )I v hl h

	

Il VhII h< S2(h)I vhl h .

Dans les conditions de convergence (a), (b), (c) des hypothèses 5 .1, il suffit alor s
de remplacer 0(h) par S 2 (h) et la convergence de un = rpn vers u est alors à prendre
au sens : phnu n u quand n -* + oo .

Remarque 7 .3 . Tout ce qui précède complète l'étude que nous avons fait e
dans [17] .

Remarque 7 .4. Au paragraphe 4, nous avons utilisé la propriété lim II u II -► + G(v)
+ oo pour démontrer que la suite des points de stationnarité est bornée . Lorsqu e

cette condition n'est pas vérifiée, il y a lieu de modifier la fonctionnelle pénalisée :
cette étude sera présentée dans la deuxième partie .

Pour d 'autres résultats nous renvoyons à [18] .
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SUR UN PROCEDE D'OPTIMISATION UTILISANT
SIMULTANEMENT LES METHODES DE PENALISATION E T

DES VARIATIONS LOCALES. II *

PIERRE LORIDAN t

Abstract. This paper completes the study made in a preceding article [18] . Here, we consider
optimization problems with several constraints, i .e., we seek to minimize a functional J on a closed ,
convex set K in a real, reflexive Banach space, K being defined in terms of q functionals G,, i = 1, • • • , q :

K = {v e VI G 1(v) < 0, i = 1, 2, • • • , q} .

To arrive at the solution u, we consider

1

	

q
Jr(h)(vh) = J (v h) + r(h) 1 ~1

where

10

	

if G.(vh)

	

0 ,
H i (vh)

	

i = 1 , . . . , q

Gt(vh) if G.(vh) > 0 ,

and v h e Vh , a finite-dimensional space satisfying U h> O Vh is dense in V. By applying the method of local
variations to J r(h)(vh), we demonstrate the strong convergence of the procedure as in [18] . Finally, i n
the case of functions of N variables, we give error estimates and show that the convergence can be of th e
order of r.

Introduction . Dans un précédent article (cf. [18]) nous avons étudié u n
procédé d'approximation de problèmes d'optimisation convexe avec une seul e
contrainte. Nous montrons, dans cette deuxième partie, qu'il est possible d'étendr e
les résultats au cas de plusieurs contraintes . Puis nous nous plaçons dans le cadr e
des fonctions n variables où il est facile de présenter des estimations d'erreurs
concernant l'utilisation du procédé .

Le plan d'étude de cette seconde partie est le suivant :
1. Hypothèses .
2. Le problème (P) .
3. Description du procédé d'approximation .
4. Résultats préliminaires .
5. Convergence du procédé.
6. Cas des fonctionnelles régularisées .
7. Cas des fonctions de N variables .
8. Estimations d'erreur .

1 . Hypothèses. Soit K un convexe fermé dans un espace de Banach réflexif
V dont la norme est notée • .

1 . On considère une fonctionnelle J définie sur V et vérifiant les hypothèse s
(déjà données dans [18] et que nous rappelons ici pour la commodité du lecteur) :

(J1) J admet une dérivée-Fréchet notée J ' (u) pour tout u e V:

J(v) -- J(u) = (J'(u), v — u) + w 1 (u , v — u )

* Received by the editors May 12, 1971, and in revised form March 15, 1972.
t Laboratoire de Bio-mathematiques, La Salpêtrière—L .E .N.A ., 47 Boulevard de l'Hôpital,

75—Paris (13 ème), France.
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avec w 1 (u, v — u) < k 1 (u) I I v — u, a > 1, k 1 transformant les suites bornées en
bornés . (• , •) désigne le produit scalaire mettant en dualité V et V' dual topolo-
gique de V. Il . Il désigne la norme sur l'espace de Banach V.

(J2) J est fortement convexe, c'est à dire : il existe une constante C > 0 telle
que :

J(v) — J(u) >_ (J'(u), v — u) + C II v — 1411 2 , pour tout v e V, pour tout u e V.

(J3) J(v) >_ 0 pour tout v e V.
(J4) L'optimum global de J sur V est atteint en dehors du convexe K .
2 . Soient q fonctionnelles G i , i = 1, 2, • • • , q, définies sur V vérifiant :

(G 1) G i est continue, convexe (i = 1, 2, • • • , q) .
(G2) Il existe au moins un indice i pour lequel lim I I v i l I -* + G i(v) = + oo .
(G3) G i admet une dérivée de Fréchet G;(u) pour tout u e V avec G i(v) — G i(u)

= (G'i(u), v — u) + w i(u, v — u) et w i(u, v — u) <= k i(u) Il v —

	

> 1, k i (u) trans -
formant les suites bornées en bornés, i = 1, 2, • • • , q .

(G4) Sur tout borné B il existe une constante MB,i , i = 1, 2, • • • , q, telle que
1 G i( v ) — Gi( u)I

	

MB,i II v — u II , i = 1, 2, . . . , q .

3 . Ces fonctionnelles définissent le convexe K de la manière suivante :

K = { vE V I G 1(v ) ~ O, I = 1,2,•••,q} ;

nous supposerons K ~ 0.

2. Le problème (P) . Il s'agit de trouver u e K tel que J(u) J(v) pour tou t
v e K . Comme le convexe K est fermé et borné en raison des hypothèses (G 1) e t
(G2), l 'hypothèse (J1) assure l'existence de u (continuité de J) tandis que l'hypothèse
(J2) assure l'unicité .

De plus, en utilisant l'hypothèse (J4) on montre que u appartient à la frontière
du convexe K .

On se propose d'approcher la solution u du problème (P) par un procéd é
dont la description faite au paragraphe suivant est une extension au cas d e
plusieurs contraintes de ce que nous avons déjà présenté dans [18] .

3. Description du procédé d 'approximation . On suppose qu'il existe une suite
de sous-espaces { Vh } de dimension finie N(h), contenus dans V et dont la réunion
est dense dans V (avec h paramètre positif destiné à tendre vers zéro) . S i
{e, , e 2 , • • • , eN(h) } désigne une base de Vh , tout vecteur v h E Vh s'écrira :

N(h )

vh = E a i e i ,

	

a i ER .

i = 1

On pose 0(h) = sup (II e 1 II , Il e2 11 , • • • , Il e N(h) II) . Soit d'autre part {V}, p > 0, une
suite d'ensembles dont la réunion est dense dans Vh . Plus précisément, V h désigne
l'ensemble des vecteurs de Vh s'écrivant vh = ENi=( hl mip e i , avec mi e Z. Dans la
suite p sera pris fonction de h et on posera p n = p(hn), pn + 1 < p,, si hn + 1 < ti n

limh--, o p(h) = O .

On considère le problème (P h) associé à la première discrétisation :
(P h) trouver u h e V,, tel que Jr(h) (uh ) = infvhEVh Jr(h)(vh), où la fonctionnelle
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Jr(h) est définie par :

1

	

q

Jr(h)(vh) = J(v h) +

	

H?(v h)
r(h) i = 1

avec :

10

	

si G .(vh )

	

0 ,

1 G i(v h) si Gi( v h) > 0,

où r(h) est une fonction croissante de h telle que limh _o r(h) = 0. Dans la suite on
posera rn = r(hn), n e N .

On sait que (Ph) "approche" (P) au sens suivant (cf. [16]) :

u h --' u faiblement
quand h-+0 .

J(uh ) --~ J(u)

De plus uh - ' u fortement en raison de la forte convexité de J .
En considérant alors le deuxième réseau de discrétisation relatif au paramètr e

p = p(h), on applique la méthode des variations locales décrite par Y . Cherruault
dans [7] pour approcher la solution Uh de (P h) . De plus, pour calculer le point d e
stationnarité u n correspondant à h = hn , on part du point de stationnarité u n _ 1
précédemment obtenu pour h = hn _ 1 . En pratique il faudra interpoler à parti r
du point u n _ 1 pour obtenir un point à N(hn) coordonnées. Ceci est en particulier
justifié si l'on choisit une suite {h n } de terme général h n = ho/2 n , n E N, car on peut
alors affirmer que le réseau de discrétisation de pas hn _ 1 est inclus dans le résea u
de pas hn . Comme dans [18], on se propose de montrer que les points de station-
narité u n , ne N, "approchent " la solution u quand n --~ + co, le procédé décri t
réalisant ainsi une approximation de (P) en une seule étape .

4 . Résultats préliminaires .
LEMME 4 .1 . La suite rnJrn(u n) est décroissante .
(Démonstration analogue à celle du lemme 4 .1 de [18], en posant H 2 (v )

_ El= H2 (v) . )

LEMME 4.2 . La suite H2 (un) est bornée .
En effet, d'après l'hypothèse (J3), on a r nJ rn (u n)

	

H 2 (un) et le résultat se
déduit alors du lemme 4 .1 .

COROLLAIRE 4 .1 . L ' ensemble des un est borné.
En effet si u n e K la propriété est évidente puisque K est borné . Si u n K ,

alors le résultat est une conséquence du lemme 4.2 car lim II v II _+
oo, vK H2(v)

_ + co (d'après (G2)) .
Remarque 4 .1 . En particulier, comme V est un Banach réflexif, on pourra

extraire de la suite un une sous-suite faiblement convergente que nous noteron s
encore un .

LEMME 4 .3 . Si la suite {un } converge faiblement, alors sur tout borné B i , il existe
une constante CBi telle que :

H?(v) — H?(un) < 2Hi( u n) ( Gi(un),
v — u n) + CBi l v — u n ir '

pour tout v e B i , a i = inf (/3i , 2), f3 . correspondant à l'hypothèse (G3), i = 1, 2, • • • , q

(adaptation du lemme 4.2 présenté dans [18]) .

Hi(v h) = i=

	

q,
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5. Convergence du procédé . Sur Vh on définit deux normes : d 'une part

ll v h II h = II vh Il et, d'autre part, en notant y i la ième coordonnée de V h dans Vh (par
rapport à une base { e i}, i = 1, 2, • • • , N(h)) :

I vhlh = max lyi l
i < i < N(h)

Vh étant de dimension finie, ces deux normes sont équivalentes et en particulier ,
il existe une constante Si (h) telle qu e

S l ( h )I vhl h~ I I vh II •

HYPOTHÈSES 5 .1 . Nous supposons vérifiées les hypothèses du paragraphe 1 e t
de plus :

• N( h ) [8(h)]°`[p(h)]a-1 = 0

	

> 1 ,
h-+0

	

S i (h)
,

	

a

	

,

(b) hl

• N(h) [8(h)]ai[p(h)]ai-1 = 0,

	

= 12 . . .
S I (h)r(h)

ai > 1,

	

i

	

, ,

	

, q .

(c) 0(h)p(h) est borné quand h -4 0 .
Rappelons que 0(h) = sup (Il e 1 I I , I l e 2 11 , • • • , I I e N( h) I l) .
THÉORÈME 5.1 . Avec les hypothèses précédentes la suite des points de station-

narité un converge fortement vers u quand n -4 + oo .
La démonstration est analogue à celle développée au paragraphe 5 de [18] .

En suivant le même type de calculs on montre d'une part que l'on a :

J' un), un - u h) <-
N(

(u-u (C1PŒ -1 8h "+ 1

	

C•1loh « i
(

	

h l

	

(( ))

	

B, t, (( ))

	

~

S1(h)

	

r
n t— 1

où u h est la solution du problème (P h) .
Utilisant d'autre part la caractérisation de u h et la forte convexité de Jr(h)(v h)

on montre que :

2 C I I un

	

uh l l 2

	

(J rn( u n) , un

	

uh )

En comparant les deux inégalités précédentes on obtient après division pa r

llun — uhll

2C 11 un - uhI I
<

N(h)
(CiP«-1 (

8
(
h

))a+ 1

	

CB, t
.pa1 (-1 8(h))

î
—

S 1 ( h )

	

r n i = 1

En utilisant alors les conditions (a) et (b) des hypothèses 5 .1, on en déduit
que : ll un - u hll 0 quand n -~ + oo (c'est à dire, quand h = h n --4 0) . Ayant pa r
ailleurs rappelé au paragraphe 3 que u h -~ u fortement on en déduit que Il u n - u II
-+ 0 quand n -~ + oo .

Remarque 5 .1 . Grâce au théorème précédent, on est désormais en mesure de
démontrer la convergence du procédé dans le cas d 'une seule contrainte G(v)
lorsque la condition lim II vil _ +00 G(v) = + oo n'est pas réalisée .

(a)
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Il suffit en effet de faire l'hypothèse supplémentaire : sur tout borné B, i l
existe une constante MB > 0 telle que

IJ(v) — J(u)I

	

MB Il v - u II pour tout (u, v) e B x B

et d'appliquer le procédé décrit au paragraphe 3 à la fonctionnell e

J

	

H2(v)

	

S2 ( v )
J r(v) = J(v) +	 +	

r

	

r

avec :

JO

	

si G(v) <= 0 ,

G(v) si G(v) > 0 ,

JO

	

si J(v) — J(vo)

	

0 ,

1 J(v) — J(vo) si J(v) > J(vo) ,

où vo est un élément fixé arbitrairement dans K = {v e VI G(v) 0} . En posan t
G 1 (v) = G(v), G 2 (v) = J(v) — J(vo) on voit que le problème ainsi défini est un prob-
lème à deux contraintes G i , i = 1, 2, les G . vérifiant alors toutes les hypothèse s
(G1) à (G4) (paragraphe 1) .

Il en résulte que l'on peut se passer de l'hypothèse lim II v II -~ + oc, G(v) = + oc
dans l 'étude que nous avons présentée dans [18] .

Remarque 5 .2. Dans le cas où J n 'est pas fortement convexe on peut régularise r
le problème d 'optimisation comme dans [18] : nous en rappelons brièvement le
principe au paragraphe suivant ainsi que les conditions de convergence .

6 . Cas des fonctionnelles régularisées .
HYPOTHÈSES 6 .1 . Nous supposons vérifiées toutes les hypothèses du paragraph e

1 sauf l'hypothèse de forte convexité que nous remplaçons par les conditions :
(J5) lim Il v ll -+ J(v) _ + oo ,
(J6) J est strictement convexe .
De plus, on suppose que l'on peut approcher V comme au paragraphe 3 e t

on se place dans le cas où V est un Hilbert .
Description du procédé. Au lieu d'appliquer la méthode des variations locale s

à la fonctionnelle J r(h)(v h ) définie au paragraphe 3, on va l'appliquer à la fonction-
nelle régularisée :

Jh,E(vh) = J r(h)( v h) + r(h) Il vh 11 2 ,

où r(h) est une fonction positive, croissante de h vérifiant lim h _o r(h) = 0 . Comme
dans [18] , on sera amené à utiliser l 'élément u £ e Vh vérifiant

Jh,£(uE) = inf Jh,E(v h) •
VhEVh

On a un théorème analogue au théorème 7 .1 de [18] :
THÉORÈME 6 .1 . Quand h -~ 0 :
(a) Jh(u,) -+ J(u) ,

(b) Jh,,(u ,) —+ J(u) ,
(c) uE --> u faiblement.

H(v) =

S(v) =
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Nous renvoyons à [18] pour une démonstration précise .
THÉORÈME 6 .2. Si en plus des hypothèses 6 .1, on suppose 0(h)p(h) borné et :

N(h)p(h) [0(h)] 2

(a)

_
0 ,

niô

	

S i (h )

N( h ) [p(h)] a	
-

1	 [ e ( h)r
(b)

hm

	

S1( h ) E(h)
	 -0,

	

a>1 ,

N( h ) [p(h)] Œi	
-

1	 [ 0 ( h )] ai

(c) hl

	

S hEhrh

	

— 0 '1( ) ( ) ( )

a i = min
(f3i,

2), > 1, i = 1, 2, . . . , q ,

alors la suite uE' --~ u faiblement quand h --* 0 (où uP désigne le point de stationnarité
de J h, ,(vh) obtenu par application de la méthode des variations locales pour p = p(h)) .

La démonstration est analogue à celle développée dans [18] . De plus, comm e
dans [18], on peut simplifier les conditions précédentes dans le cas a = (3 i = 2 ,
i = 1, 2, • • • , q : il suffit alors de poser

lim
N(h)p(h)[0(h)]2

= 0 .
h-+0 S1(h)E(h)r(h )

Remarque 6 .1 . Ce qui précède est encore valable si à l'espace Von associe un e
suite d'espaces Vh de dimension finie N(h) ainsi qu'une suite d'opérateurs linéaire s
continus injectifs Ph tels que U h, o PhVh soit dense dans V (voir [1]) .

Outre la norme I v h I h déjà définie sur Vh , on peut prendre II Vh II h = 111900

Sur Vh ces deux normes sont équivalentes et il existe deux constantes S 1 (h) et S2 (h)
telles que :

S l ( h)i v hI h

	

Il v h II h

	

S2( h )I vhI h

Dans les conditions de convergence qui précédent il suffit alors de remplace r
0(h) par S 2 (h) et les résultats de convergence sont à prendre au sens ph u n --+ u

quand n —* oo .

7. Cas des fonctions de N variables.
HYPOTHÈSES 7 .1 .
(J1) Soit J une fonction de N variables : J : RN R, continue, strictement

convexe .
(J2) L'optimum global de J est en dehors de K (convexe défini plus loin) .
(J3) J(v) 0 pour tout v e RN .
(J4) J est continuement différentiable avec : J(v) — J(u) = J'(u) • (v — u )

+ co 1 (u, v — u), J'(u) . (v — u) désignant le produit scalaire des vecteurs v — u et
J'(u) (RN étant identifié à son dual) . De plus, on suppose qu'il existe a > 1 tel que
co 1( u , v—u )/ IIv — °` --~ 0 quand II v -- u II -* 0 .

Soit G une fonction de N variables sur R N , vérifiant :
(G1) G : R N -+ R, continue, convexe .
(G2) lim Il v i l

00 G(v) = + co .
(G3) G est continuement différentiable (donc aussi G 2 ) et l'on suppose qu e

l'on peut écrire : G 2(v) — G 2 (u) = 2G(u)G'(u) • (v — u) + w2 (u, v — u) avec l'exist -
ence d'un nombre [3 > 1 tel que co 2 (u, v — u)/IIv — u II

a
—f 0 quand II v — uII --~ 0.
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Remarquons qu'une telle écriture peut s'obtenir à partir d'une hypothès e
analogue faite sur G : il suffit de reprendre les calculs faits dans le cadre des fonc -
tionnelles, au paragraphe 4 (cf. [18]) .

Le convexe K est défini par :
(K1) K = {v e RNI G(v) < 0} et on suppose qu ' il existe au moins un élémen t

vo vérifiant G(v 0 ) < 0. On cherche toujours à approcher la solution u du problèm e
(P) : trouver u e K tel que J(u) J(v) pour tout v e K .

Approximation de (P) . L 'approximation décrite ici est plus simple que dans
le cas des fonctionnelles puisqu 'il n'y a qu'une seule discrétisation, provenant d e
l'utilisation de la méthode des variations locales :

On considère la fonction :

Jr(v) = Jv + ![sup

	

Gv 2( )

	

(0,

	

( ))] ~

et on cherche une approximation de l'optimum de J r par la méthode des varia-
tions locales en prenant p = p(r), p(r) -f 0 quand r -+ 0 . De plus, comme dans l e
cas des fonctionnelles, pour minimiser Jrk (v) on part du point de stationnarit é
précédemment obtenu, soit u,_ 1 = upk _ ,' . Les lemmes et corollaires du para -
graphe 4 se transposent aisément et on peut donc montrer que la suite {uk } de s
points de stationnarité est bornée, c'est à dire que l'on peut extraire une sous-suit e
encore notée uk qui converge vers s dans R N (nous supposerons par exemple R N
muni de la norme euclidienne) . Posons p n = p(rn ) et un = upn . On a alors l e
théorème suivant .

THÉORÈME DE CONVERGENCE . Si les hypothèses 7 .1 sont vérifiées et si :

17 9

r > 0 ,

limrn 1 0,
n --~ oo Pn

~ ER* ,

alors

u n -+ u solution de (P) .

Preuve . Soit {e}, i = 1, 2, • • • , N, une base de RN . En un point de stationnarité
u n , des calculs analogues à ceux faits pour les fonctionnelles, donnent :

J' u • e . Ç I w 1( un, Pne i)I + I w2(un,Pei))(7 .1)

	

I r n( n)

	

LI
...=

	

Pr,

	

Pn rn

et pour v e R N , on peut trouver des vi e R, I viI <_ C tels que v =

	

v i e i . Alors e n
utilisant l'inégalité (7 .1) :

N

I J rn(un) vI < E v iI Jrn(un)
. eiI

	

.

<
= CN sup I w1(u n, p n ei)I

	

Iw2( u n, P.ei)I
+

P.

	

Pn r n

Alors d'après (J4), I cv 1 (un , p n e i)I /Pn -+ 0 pour tout i ; de même, pour tout i, on aura

	

I w2(un, p,, e i)I /Pnrn --f 0 car (0 2 /p r = (v 2 /p P • p' — 1 /r ; or (v2 /pfl

	

0 d'après (G3) e t
pP-1/r -~ 1/2 e R d'après l'hypothèse faite dans l'énoncé du théorème . Il en résulte
que le dernier membre de l'inégalité (7 .2) tend vers zéro et donc IJrn(un) . vI -4 O.
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Nous allons maintenant expliciter cette propriété, pour vérifier les condition s
d'optimalité sur K .

Montrons d'abord que H(u n)/rn admet une limite finie, (avec H(v )
= sup (0, G(v))) . Montrons que l'approximation obtenue est externe, c'est à dire
que u n E CK au moins à partir d 'un certain rang : en effet, dans le cas contraire ,
si u n appartenait à K pour tout n assez grand on aurait H(un) = 0 et on aurait :

Jr(un) = J' (u n)

et d'après ce qui précède i J'(un ) • vi tendrait vers zéro pour tout v quand n —> + oo .
A la limite on aurait donc J'(s) • v = 0 pour tout v et s serait l 'optimum global de J.
Comme d'autre part K est fermé on devrait aussi avoir s e K, ce qui contredirait
l'hypothèse (J4) donc on a bien u n e CK quand n -~ + oo .

D'où : H(un ) = G(u n) > 0 et, comme G est continu, G(un) -4 G(s) 0 . D'autre
part, l'hypothèse (K 1) permet d'affirmer que l'optimum global de G est à l'intérieur
de K en raison de la convexité de G . Comme s ne vérifie pas G(s) < 0, s ne peu t
être l'optimum de G et donc G ' (s) 0 (0 désigne le vecteur nul dans R N ) . En
conséquence, il existe au moins un élément v e R N , tel que G'(s) • v 0. Con -
sidérons alors l ' inégalité :

J'(u n ) • v
2

- -
H ( u n)

rn

G'(un) v < ~Jr n (u n) • v~ .

On a déjà vu que le second membre --* 0 .
D'autre part, d'après les hypothèses (J4) et (G3), la continuité des gradient s

donne :

J'(un) • v -* J' ( s) • v,

G'(un ) • v --* G'(s) • v

	

0

d'après ce qui précède . Grâce à (7 .3), on en déduit alors que (2/rn)H(un ) -4 /Io > 0 ,

2 0 fini . Cette limite est d'ailleurs indépendante de v puisque u n ne dépend pas de v .
Donc, on peut affirmer que pour tout v e R N , il existe 20 > 0 tel que :

J'(s) • v + .10G'(s) • v = 0 pour tout v .

Comme (2/rn)H(u n ) -4 Ao et que r n --~ 0, on peut affirmer que G(u n) -- f 0 (puisque
H(un ) = G(u n)) . Comme G(u n) -4 G(s) il en résulte que G(s) = 0 . Donc s vérifie le s
conditions suffisantes d'optimalité sur K et par conséquent s = u . On en dédui t
alors que la suite u n elle-même converge vers u ce qui achève la démonstration du
théorème .

COROLLAIRE 7 .1 .
(a) J(u n ) -~ J(u) ,

(b) G2 (un)/rn -+ 0 ,
(c) J r n(un) -4 Au) .
La première partie (a) résulte de la continuité de J . Pour le résultat (b), on

remarque que G 2 (u n)/rn = G(u n) • G(u n)/rn or G(u n ) - 4 0 et G(un )/rn --* 2 0/2 E R+ ,
d 'où le résultat . Enfin le résultat (c) est une conséquence des deux précédents et
de la définition de J r .
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Nous nous proposons maintenant de donner des estimations de l'erreu r
commise en remplaçant le calcul de u par u n . Nous allons nous placer dans le ca s
où G est fortement convexe. Démontrons au préalable le lemme suivant .

LEMME 7.1 . Si G est fortement convexe sur CK, c ' est à dire s i

G(v) — G(u)

	

G ' (u) • (v — u) + a II v — 1411 2 ,

	

a > 0 ,

alors :

G 2 (v) — G 2 (u) > 2G(u)G '(u) • (v — u) + 2G(u)all v — 1111 2

pour tout (u, v) E CK x CK.

Preuve. (u, v) E CK x CK G(v) + G(u) > 0 et

G2 ( v) — G2 ( u ) > [ G ( v ) + G ( u)] [G' ( u) • ( v — u) + ail v — u II 2]

>_ [2G(u) + G'(u) . (v — u) + a II v — 0 2 ]2 ] [G'(u) • (v — u) + a II v — u II 2 ]

2G(u)G'(u) • (v — u) + 2G(u)a II v -- u11 2 + [G'(u) . (v — u) + a II v -- u II 2 ] 2

et comme le dernier terme est positif on en dédui t

(7 .4)

	

G 2 (v) — G 2 (u) >= 2G(u)G'(u) • (v — u) + 2G(u)a II v — u Il 2 .

8 . Estimations d'erreur. Pour effectuer de telles estimations nous passons pa r
l'intermédiaire de ur , optimum global de Jr , c'est à dire :

J r(ur) = inf Jr(v) .
veR N

Nous avons donné dans [17] des propriétés de ur et celles-ci s'adaptent aisément
au cas des fonctions de N variables . En particulier, on sait que ur E CK ainsi que
un . Appliquons, l'inégalité (7 .4) pour de tels éléments, en faisant successivement
v= un , u=ur ,puis v=ur ,u=un :

G2(u,,) - G2 ( ur) ? 2G(ur )G '(ur ) . (un - 1.1r) + 2aG ( u r) Il u n - u r Il
2 ,

G2(u r) — G 2 (u,,) ? 2G(u n)G'(un ) • (u r — un) + 2aG(u n) I l un — u ,. 1 1 2 .

En faisant la somme on obtient :

(8 .1) 0 > [2G(u,,)G'(u,,) - 2G ( u n) G'(un)] . (un - ur) + 2a Il un - ur II 2[G(ur) + G(un)] ,

d'où :

(8 .2)

	

[G(un)G'(un) - G(ur)G'(ur)] . ( un - tir) > ail un - u r 11 2 [G(ur) + G ( u n)] .

D'autre part, J étant convexe strictement, J' est strictement monotone, c'est à dire :

(8 .3)

	

[J' ( u n) — J'(ur)] • (u n — ur) > 0 .

Multiplions l'inégalité (8 .2) par 2/r et ajoutons à (8 .3) : nous faisons alors apparaître
le gradient de Jr :

J' v) = J' ( v ) +? G ( v ) G'(v )r(

	

r

et, compte-tenu du fait que Jr(u r) = 0, les inégalités (8 .2) et (8 .3) ainsi combinées,
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conduisent à :

J'r(un) (un —u r)

	

2a 11 un —u r11 2 [ G ( u r) + G( u n)] .
r

Or, on sait que Jr(u n) • v -~ 0 pour tout v E R N donc 11 J r(un)11 --~ 0 et en majorant le

1 er membre de l'inégalité précédente par 11 J r(un) Il • Il un — u r 11 , on obtient

8 .4)

	

I1 rJ' ( u n) ? 2a(

	

u n —u r 1l [G(un) + G ( u r)] .I I —

	

11
r

Comme

hm G(ur) = lim G(un)
_

/1
> 0 ,

r—► 0 r

	

r,t-0 r n

	

2

cette inégalité jointe à la propriété II Jr(un) Il -* 0 montre que ((u n u r Il --+ 0 e t
comme u r u (cf. [17]) on en déduit une autre démonstration de convergence d u
procédé .

Mais de plus, on peut fournir, grâce à cette inégalité, une estimation de l ' erreu r

1 1 un — u 11 : l'inégalité (8 .4) donne en effet :

u

	

u

	

< r	 II Jr(u n) Il	 r	 IIJr( u n) Il
(8 .5)

	

11 n

	

r11
- 2aGun +Gu r

	

2a G(un)( )

	

(

) D'autre part, on a montré dans[17] que :

(8 .6)

	

Ilur— u ll <

Comme 11 u n — u II < l'un — ur II + IIu r — u II , on en déduit, d'après (8 .5) et (8 .6) :

u

	

u< rn l l Jr(un)11

	

lG ( u r)
(8 .7)

	

IIn
—

II — 2a G(un)

	

av

Remarque importante . Le deuxième membre de (8 .7) dépendant de ur qui es t
inconnu, cette estimation peut paraître illusoire à première vue, c'est à dir e
inutilisable en pratique . En fait, il n'en est rien car dans [17], nous avons montré
qu'il est possible de déterminer r pour que G(ur)/a soit < 10-P , p e N, ce qu i
montre l'intérêt particulier de la formule (8 .7) . En pratique, il suffira de faire
décroître r jusqu'à la valeur désirée, on en déduira la valeur de p correspondante
ainsi que le point de stationnarité un .

On peut, si on le désire, fournir une estimation d 'erreur sur J dans le cas où
on suppose :

1J(v) — J(u)I < I J'(u) • (v — u)I + C II v— u II a ,

	

a> 1 .

Cette inégalité appliquée à v = u et u = u n donne :

1J(u) J(un)l I I J ' ( u n l i ' I I u — uni) + C 1l u — un ir

et on se sert alors de l'évaluation (8 .7) .
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Estimation d'erreur dans le cas où G 2 est fortement convexe sur CK. On suppos e
donc qu'il existe a > 0 tel que :

[G(v)G'(v) — G(u)G'(u)] • (v — u) > 2a II v — u Il 2

pour tout (u, v) E CK x CK. Alors en reprenant ce qui précéde, on obtient :
IIJr'(un) II >—_ (2a/r) Ilun -- ur II et comme II J r'(un ) Il -* 0 on en déduira que Il un — u r I I
= o(r) ce qui donne une indication sur la rapidité de convergence car d'autre
part, on peut montrer que l'on a : G 2 (ur) ail u r — u 11 2 (car G(u) = 0), et comm e

G2(ur)/r2 --~ (4/2) 2 , Ilur — u II = 0(r), d ' où II un — u Il = 0(r) .
On trouvera d'autres résultats dans [19] .
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FURTHER COMMENTS ON THE PAPER, "OPTIMAL CONTROL
OF PROCESSES DESCRIBED BY INTEGRAL EQUATIONS. I"

BY V. R. VINOKUROV*

V. R. VINOKUROVf

The remarks in [1 on the sufficiency of the maximum principle were brought
forth by an inaccurate translation of my paper. In the original article [2], the
following definition is given on page 23"

We shall say that x(t), u(t) satisfy the maximum principle if there exist a
constant vector # (#1, #2, "’", #t) and a piecewise-smooth scalar function 2(0
such that, for an optimal trajectory x(t) and a control u(t) for which the functionals
(1.4) vanish, relations (2.1)-(2.6) are satisfied, and, for almost all [0, T],

(2.7) H(x, z, u, t) min H(x, z, v, t),
vo(x)

(2.8) d2(t)/dt <_ O.

In the translation of my article [3], on page 327, line 1, the words "optimal
trajectory x(t)and a control u(t)" were mistranslated as "optimal trajectory x(t)
and optimal control u(t)." Thus the word "optimal" in the translation modifies
both "trajectory" and "control," whereas, in the original, it modified only trajec-
tory. For this reason, the sufficiency result makes no sense.

Actually, an optimal trajectory can be realized by a nonoptimal control. The
sufficiency part of the maximum principle is stated as follows: If the maximum
principle is satisfied, and if the trajectory is optimal, then the control is optimal too
(see [3, Theorem 2.1, p. 327]). Therefore, it is sufficient to prove that the inequality
lo(x, Uo) <-_ lo(x, u) holds, and it is not necessary to show that Io(xo, Uo) <= Io(x, u).

Relation (2.2) implies that the Jacobian (2.13) does not vanish.
There are two other errors in translation (as well as the typographical mistake

which was corrected in [4) in [3. Namely, on p. 327, line 17, "in" should be
replaced by "outside of," and on p. 336, line 10 from the bottom, "optimal control"
should be replaced by "control."
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ERRATUM" GLOBAL CONTROLLABILITY OF
NONLINEAR SYSTEMS*

D. L. LUKES"

Theorem 2.1 is true and the method of proof is orrectly based upon showing
the existence of a solution to equations (2.5)-(2.7). The shortcoming of the alleged
fixed point x(t), u(t), yOO obtained on p. 116 by extraction of a uniformly con-
vergent subsequence is that it will in general not satisfy (2.5)-(2.7) since it arises
as a limit as k oo and not as k

The corrected fixed-point argument proceeds as follows: Substitute (2.7)
into (2.5)-(2.6) so that the relevant equations can be dealt with in the form

tu, x)tt) Stu, x)(t)

in which N is a nonlinear operator on the Banach space E of continuous maps
(u, x)(t) from [0, T] into Rr+" with the sup-norm. A preliminary translation of

the origin in E allows N to be taken of the form

N(u, x)(t) [C(t).(u, x)(T), .(u, x)(t) + D(t)(u, x)(T)]

in which the matrices C(t), D(t) are continuously differentiable in t,

l(u, x)(t) ea{’-’)/(u(co), x(co), o9) do9

and/ is the induced translation of h (inheriting the continuity and boundedness
properties of h). The following facts can now be verified"

(i) N(u, x)[I is bounded on E.
(ii) N’E -, E is continuous.

(iii) For all c, sufficiently large, N maps E into the subset of E,

E [(u, x) e E: (u, x)(t + A) (u, x) (t) =< clAI; all t, A].

(iv) Ec is a compact and convex subset of the Banach space E.
The proof of (i) follows from the continuity of C(t), D(t) on [0, T] and the

boundedness of]/] on Rr+"+ 1. Statement (ii) is based upon the continuity and hence
uniform continuity of h on compact subsets of R+"+ 1. The invariance of Ec
under N for c sufficiently large can be shown by writing C(t) and D(t) as integrals
of their derivatives in the formula for N(u, x) and then once again applying the
boundedness of 1/1. Showing E closed and convex is a simple exercise. Since Ec
is a bounded subset of E, once its closed character has been established, then by
noting that it is an equi-uniformly-continuous family the Arzela-Ascoli theorem
can be invoked to conclude its compactness.

A direct consequence of (i)-(iv) is that for all sufficiently large c the restriction
of N to Ec provides a continuous map of a compact and convex subset of a Banach
space into itself. Hence the Schauder theorem applies, establishing the existence
of the required fixed point. This in turn determines a solution to (2.5)-(2.7) and
concludes the proof.

* This Journal, 10 (1972), pp. 112-126. Received by the editors March 29, 1972.

f Department of Applied Mathematics and Computer Science, University of Virginia, Charlottes-
ville, Virginia 22901.
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NECESSARY AND SUFFICIENT CONDITIONS FOR OPTIMAL
CONTROL OF SEMI-MARKOV JUMP PROCESSES*

LAWRENCE D. STONE’

Abstract. A class of controlled semi-Markov jump processes is defined in this paper. Conditions
are found which guarantee that satisfaction of the dynamic programming equations for stochastic
control is necessary and sufficient for the minimization of the expected discounted cost of a controlled
semi-Markov process over a random time. Terminal costs are included, and the controls are allowed
to depend on both the present state of the process and the length of time the process has been in that
state.

1. Introduction. The problem under consideration in this paper is that of
finding necessary and sufficient conditions for a control to minimize the expected
discounted cost of a controlled semi-Markov process over a random time. The
setting ofour results is more general than is usually considered for control problems
involving semi-Markov processes in that we allow the control to depend on the
present state of the process and the length of time the process has been in that
state. Moreover, we allow terminal costs and do not restrict ourselves to finite
state spaces.

Our approach is to consider a semi-Markov process as a two-dimensional
Markov process and to find an equation (i.e., (4.9)) involving the infinitesimal
generator of this two-dimensional process. Under specified conditions, we show
that satisfaction of this equation is a necessary and sufficient condition for a
control to be optimal (i.e., to minimize cost). Equation (4.9) is a form ofthe dynamic
programming conditions for stochastic control problems. In order to obtain our
result, we define the notion ofa controlled semi-Markov process in 2 and compute
its infinitesimal generator in 3. Section 4 contains the results on necessity and
sufficiency. These results are also specialized to the case of undiscounted cost and
to Markov jump process.

The principle of dynamic programming has been applied to the optimal
control of discrete time Markov processes by many authors, e.g., Howard 9],
Derman [4] and [5], Blackwell [2], Astrom [1] and Ross 15]. In the case of
continuous time Markov processes, most ofthe work on optimal stochastic control
has dealt with diffusion processes. A review of the literature on optimal control
of diffusion processes is given in [7] where there is a discussion of the dynamic
programming conditions for optimal control of diffusion processes. These condi-
tions involve the infinitesimal generator of the diffusion and are the analogue,
for stochastic control, of Bellman’s principle of optimality. Although there are
results showing that these equations are necessary or sufficient for the optimal
control of certain classes of diffusion processes, very few results of this type exist
for continuous time Markov processes which are not diffusions or for non-
Markovian processes. Some exceptions to this are to be found in [14] and in a
remark on page 527 of [12]. Theorem 4.5 of this paper extends the results on the
necessity and sufficiency of the dynamic programming conditions for optimal
control to semi-Markov jump processes.

Received by the editors October 19, 1971, and in revised form May 18, 1972.

? Daniel H. Wagner, Associates, Paoli, Pennsylvania 19301. This work was supported by the
Office of Naval Research under Contract N00014-70-C-0232.
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Optimal control of semi-Markov processes has been studied in [3], [10],
[11, [13 and [16]. However, these references deal with a more restricted class
of processes and a more restricted class of controls than considered here. In
particular, all of these references except [16] restrict their attention to processes
which have only a finite number of states, and all except [3] restrict the class of
controls to those which depend only on the state of the process and not on the
length of time the process has remained in that state. In addition the control
problem which we consider involves terminal conditions while the references
mentioned in this paragraph deal with stationary problems, for the most part.

2. Controlled semi-Markov jump processes. Let {Xt’O =< < } be a semi-
Markov jump process (see [17] for definition) defined on the probability space
(fL /’, P). In this paper we make the slight generalization that we allow the state
space Z of {Xt} to be an arbitrary set with a topology ,. Let be the Borel a-field
formed from . We assume that 5# contains all singleton subsets of E. (The need
for 5#1 to contain all singletons will be made clear later.) Let R + be the nonnegative
real numbers and2 the usual topology on R +. Let 5#2 be the set of Borel sets ofR +.
Let Yo be a nonnegative random variable defined on (,,, P) and for >= 0,
define

vt inf{s > t’Xt+s 4: Xt},

Y0 + for < v0,
Y’= t-sup[s’0__<s__<tandXs4: X,] fort_>_ v0.

For convenience of notation, we denote Vo by v and let Zt (X,, Y) for => 0.
In [17], v is required to be finite with probability one. In this paper we do not
make that requirement.

We use Px, and Ex, to denote, respectively, probability and expectation
conditioned on (Xo, Yo) (x, s). Define

t(x, s) P,,,o[V <= s] for x E and s R +,
/(x,s,F)=P,0[X,,FIv= s] for(x,s)E x R + andF.

Then and give the jump time and after jump distributions of the semi-Markov
process. Moreover,

P,o[X e F3 (x, s, Fla(x, dsl.

One may think of the functions and as specifying the semi-Markov process.
This is the point of view we adopt for control problems.

We suppose that for each x e 2; there is a family of measures on ,
{k(x,b,.)’beB},

where B is some index set. We assume that B is endowed with a topology and that
is the corresponding Borel -field. A control u is an ordered pair of functions

(7, ) with

and fi’Z R + B
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such that:
(i) V and/ are Borel measurable (i.e., 5 2 measurable where 5 ’2

denotes the product a-field generated by 5 and 52),
(ii) for x e E, there exists t(x) > 0 such that ytx) V(x, s) ds <0

(iii) k(.,//, F) is Borel measurable for each F e 51.

Let U be the class of controls which satisfy (i)-(iii). A control u (V,/3) e U
determines a semi-Markov process X’} in the following manner. Let

at(x, t) exp /(x, s) ds for (x, t) e E R +.

Suppose that (X, Y) (x, s). Then.at time 0, the process starts in state x and
remains there a random time 1, such that

Px,o{l t} at(x s q- t) at(x ,S)
(1 a(x, s))

By (ii) we may define the sample paths of {X’} to be right continuous. That is at
time 1 > 0, the process transitions to the state X,, where

Px,o{ X, e F} k(x, fl(x, ,), F).

The process stays in state X, for a random time 2 > 0 such that Px,o{2 -<- t}
a(X"l, t) and at time 1 + 2 transitions to X", +2, where

Px,0{ X",+ r} ,(x, /(x,, ) r)

The process X’} continues in this way transitioning to a new state after remaining
a random time in the present state.

For co e f and u e U, let ’(co) be the first cluster point of the jump times of
the sample path .{X’()’t >__ 0}. If there is no cluster point, we let
We call the terminal time of the process {X’}. The process {Z’} {X’, Y’}
with the terminal time is a two-dimensional Markov process with stationary
Borel measurable transition probabilities.

THEOREM 2.1. (flue U, then {X’} is a semi-Markovjump process, and {Z’} is

a strongly measurable strong Markov process.
Proof In order to satisfy the definition of a semi-Markov process, we must

show that {Z’} is a strong Markov process with right-continuous sample paths.
Having shown this, it follows automatically that {Z’} is strongly measurable
(see [6, vol. I, p. 98]). By our definition of {X’}, the sample paths of {Z’} are right
continuous in the x ,2 topology regardless of the topology on E. In
particular, one may choose 9, the discrete topology on E.

Since 5e contains all the singleton subsets of E, it follows that {Z’} is a right-
continuous Markov process on the topological measurable space (E x R +,
@ x .2, x 52) (see [6, vol. II, p. 222] for the definition of the topological
measurable space).

For _>_ 0, let

p(x, s, F, r) Px,[XeF;Y’=<r] forl-’e and r__>0.
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Let F be the set of bounded measurable (with respect to x 6) functions
f: 2; x R + R, where R is the real numbers. Forfe F, define

f sup If(x,s)l,
(x,s)Y, R

Tf(x, s) f f(y, r)p(x, s, dy, dr).
xR

In order to use Theorem 3.10 of [6] to prove our theorem, we show that for
each e R /, T’ maps functionsf e F which are continuous in the x . topology
into continuous functions. To prove this, it is sufficient to show that for each
(x,s)E x R+andt>0,

lim Tf(x, s) T[f(x, s + h) 0
O

wheneverf(x, is continuous in the , topology. Let > 0 and fix (x, s). Consider
the case in which (Xo, Yo) (x, s). Then with probability

[1 a(x, s + h)]/[1 a(x, s)

(X,, Y,) (x, s + h), where h > 0. Thus for h > 0,

a(x ,F,r)
1 a(x,s+ h)

p,+ s p(x, s + h, F, r)
1 a(x, s)

+ a(x, s + h) a(x, s)
Ga(F r),

1 a(x, s)

where Ga(F, r) gives the probability that Xt e F and Y _< r given that a jump
Xoccurred in the interval [0, h]. Solving the above equation for pt( s + h, F, r),

it follows that

Tf(x s + h) a(x, s)
T’+f(x, s)

1- a(x,s + h)

a(x, s + h) a(x, s) fz f(y, r)aa(dy, dr)

T’[+af(x,s)+ w(h),

where w(h) -, 0 as h 0 +. Hence, for h > 0,

IT’f(x, s) T’f(x, s / h)l _-< ITI’f(x, s) T,"+ f(x, s)l / o(1)
(2.1)

X"< IE,,[f( ,, Y[)-f(X’+a, Y,+a)]l + o(1)

X"By the right continuity of {( ,, Y’)} and the continuity of f(x,.) for x e E, it
follows that lima_,o+ f( ,+a, Y,+a) f( ,, Y’) a.s Thus, the dominated conver-
gence theorem and (2.1) yield that lima_.o+ ]T’f(x, s) T’;f(x, s 4- h)] 0.

To show that lima_o+ IT’f(x, s)- T’/f(x, s h)l 0 for s > 0, one observes
that

a(x, s)
p(x, s h, F, r) p-a(x, s, F, r)

1- a(x,s- h)

+ a(x, s) a(x, s h)
Gh(F r),

1 a(x,s- h)
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and that

IT’/f(x,s)- TTf(x,s- h)l _-< IEx,s[f(X/, YT)--f(X’[_h, Y’-h)]l + o(1).

Note that

(2.2) lim (X_h(CO), Y_h(CO)) (Xt(co), Yt(o))
hO+

unless there is a jump at time . Sine the probability of having a jump at time
is O, (2.2) holds for a.e. . For each for which (2.2) holds, we have X_()
X() for Y() s t. Since f(x,. is continuous for x Z, it follows

Xthat f(Xt_n, Yt_n) f( t, Y) a.s. As before, we use the dominated convergence
theorem to conclude that limno+ ]Tf(x, s) Tf(x, s h)] 0. It follows that
Tfis continuous in the x topology.

By what we have just shown, {Z} is a Feller process on the topological
measure space (Z x R +, x , x ), and by Theorem 3.10 of [6], it is
strong Markov. This proves the theorem.

We call {X} a controlled semi-Markov jump process.
We suppose there is a cost rate c(x, s, u(x, s)) associated with being in state x

for time s when using control u(x, s). When convenient, we shall use the variable z
to represent a point (x, s)e X x R +. Thus, c(z, u(z)) will often be used in place of
c(x, s, u(x, s)). In addition we suppose there is a function C’Z x R + R such
that C(z) gives the cost of stopping the process in state z. Let be a stopping
time of {X}. Fix 2 > 0 and define for u e U,

(2.3) O,(z) E [f] e- ’e(Zr, u(Zr))dt+ e-XC(Z)], z eXxR+.

For the case of undiscounted cost, we define for u e U,

(2.4) O,(z) E c(Z, u(Z)) dt + C(Z) z e Z x R +.

In order that the above integrals be well-defined, we assume that c and C are Borel
measurable. To allow for the possibility that z(m) ((m) for some m we adjoin a
state Zo to X x R + and define Z Zo. The function C is assumed to be defined
on this extended state space.

The dependence of z on u will be suppressed. Let U’ be a specified set of
controls. We are interested in controls u* e U’ such that

(2.5) q),,(x, s) min q),(x, s), (x, s) e X x R +.
uO’

Such a control is called optimal in U’. In order to find necessary and sufficient
conditions for a function (p,, to satisfy (2.5), we discuss the infinitesimal operator
of a semi-Markov jump process.

3. Infinitesimal operator of a semi-Markov jump process. If {X} is a controlled
semi-Markov jump process, then the process {(X’, Y’)} is a two-dimensional,
right-continuous Markov process with stationary transition probabilities. Thus,
we may define A", the weak infinitesimal operator for this process, in the manner
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given in [6]. Let be the set of allf F such that

lim Tf(x, s) f(x, s) for (x, s) 2; R+.
t--0 +

The weak infinitesimal operator is defined by

AUf-- lim (T’/- f)/t,
tO+

whenever the limit of the right side exists in the weak sense and is a member of .
We say that lim,_ f, fin the weak sense if:

(a) lim,_. f,(x, s) f(x, s) for each (x, s) 6 2; x R +, and
(b) f.ll, n 1, 2,..., are bounded.
Let f+(x,. denote the right-hand derivative of f(x,.). If 7(x," is right

continuous at s, then

7(x,s)= a-(x,s)
1 a(x, s)"

In this case 7(x, s) is the jump rate of the process {X’} given that it has been in
state x for a time s. Recall that k(x, (x, s), F) gives the probability, when using
control fl(x, s), that the transition from x will be into the set F given that the
transition takes place after being in x for a time s. Thus if 7(x,. is right continuous,
it follows from [8, 411] that

and

a(x, t) a(x, s) ds

P,o{X e r and v __< t} k(x, fl(x, s), r)7(x, s) exp 7(x, r) dr ds.

We now compute AUf for a particular class of functions f and controlled semi-
Markov jump processes.

LEMMA 3.1. Let u (7, ) U be such that for x E:
(i) 7(x,-) is right continuous and 7 <= M R +,

(ii) (x,. is piecewise constant, right continuous, and has only a finite number
of discontinuities.

Supposef6 F is such thatf + exists and is bounded, andf + (x,. is right continuous

for all x E. Then

(3.1) A"f(x, s)=f+(x, s)+(x, s)[fy, f(y,O)k(x, fl(x,s), dy)-f(x, s)]
for (x, s) 6 E x R+.

Proof Since 7(x, s) a(x, s)/[1 a(x, s)], it follows that 7 =< M implies
a(x, h) <= Mh and

(3.2) a (x,s + r) <_ a(x,s + r) <_ M.
1 a(x,s) 1- a(x,s +r)-
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Thus,

Px,s [more than one jump in [0, hi]

flf aY(x’s+r)1 -a-( s)
ay(y, h r)k(x, fl(x, s + r), dy) dr

<= M2(h r)dr < M2h2,

and the probability of having more than one jump in [0, hi is o(h) as h ---, 0. For r
small enough, fl(x, s + r) fl(x, s). Thus for small h > 0,

T’f(x, s) f(x, s)

1-a(x,s+h) fi’f 1- ar(x,s)
f(x,s + h) + f(y,h r)(1- a(y,h- r))

a] (x, s + r)
k(x, fl(x, s), dy) dr f(x, s) + o(h)

1 ar(x, s)

(1 a,(x, s + h))f(x, s + h) (1 a,(x s))f(x s)
1 a(x, s)

+ f(y h r)(1 a,(y h- r))a(x’ s + r)
i -a(x s)

dr k(x, fl(x, s), dy) + o(h).

By the dominated convergence theorem,

lim -1 (T/(x, s)- f(x, s))
h-*o+ h

a (x, s) f a (x, S)s)f(yf + (x, s)
1 a,(x, s)

f(x’ s) +
1 -(fc O)k(x, fl(x, s), dy)

f+(x, s)+y(x, s)[f f(y, O)k(x, fl(x, s), dy)-f(x, s)].
The boundedness offand guarantee that ]]Tf-fll/h is uniformly bounded as
h --* 0. Thus the above limit holds in the weak sense. Observe that any function
g e F such that g(x,. is right continuous for all x e I2 is contained in F. Thus the
right-hand side of (3.1) is in/, and the lemma is proved.

4. Necessary and sufficient conditions for optimal control of semi-Markov
jump processes. In this section we prove the main result of the paper, Theorem 4.5,
which gives conditions under which (4.9) is necessary and sufficient for optimality
of a control u* within a specified class of controls. Throughout this section, we let
A be a subset ofE x R + such that S(x) {s :(x, s) A} is a closed right half-line
for x e 2. Moreover, we define

rt(A) {x :(x, s) e A for some s e R + },
: min {,inf[t’t >__ 0 and Z’
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We suppress the dependence of z on u. Note that z is a Markov or stopping time
of

THEOREM 4.1. Let U’ U. Suppose that there exists f F such that f is in the
domain ofA for u U’ and

(4.1) 2f(z) inf {A"f(z) + c(z, u(z))} for z e , x R + A,
ffU’

(4.2) f(z) C(z) for z e A.

Then

(4.3) f(z)=< infq),(z) for z e Y R+.
U’

Proof. Forf in the domain of A, Theorem 1.7 of [6] yields that

f= R(f- Af),

where

R,f(z) e- Z’Ttf(z dt

Thus, by Theorem 5.1 of [6],

for zeZ x R +.

(4.4) EzEe-Zf(Z)]-f(z)= EzEf e-X’EAf(Z’) 2f(Z’)-] d.
For z e A, (4.3) follows trivially from the fact that q"(z) C(z) for z e A and

u e U. Let u e U’. By (4.1),

(4.5) c(z,u(z))+A’f(z)-2f(z)>__O forzeZ x R + -A.

Integrating the left-hand side of (4.5), we obtain

E e- Xrc(Z, u(Z)) dr + e- rEA"f(Z) 2f(Z)] d _>_ 0

By (4.4) and (4.2), we obtain

Ell ’ u(Z"))dr+e-X*C(Z)l>f(zgz e- ctLr,

forzeZ x R+- A.

Since u is an arbitrary member of U’, we have q),(z)__> f(z) for u e U’ and
z e 2: x R + A. The theorem follows.

For the undiscounted case we prove the following corollary.
COROLLARY 4.2. Let U’ U. Suppose there exists f e F such that f is in the

domain of A" for u U’ and

0= inf{A"f(z)+c(z,u(z))} for z e Z x R A,
IU’

f(z) C(z) for z e A.

for zeZ x R + -A.
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IfEzr] < for z E x R +,then

f(z) <= infq3,(z) for z 6 E R +

ttU’

Proof The corollary follows in the same manner as Theorem 4.1 by the use
of the corollary to Theorem 5.1 of [6].

In Theorem 4.3 below, we find a necessary condition for optimality which
we shall use in the proof of our main theorem. The operator Q used in the proof
of Theorem 4.3 is a generalization to continuous time processes of the operator T
used by Blackwell in 2] for discrete time processes.

Fix h such that 0 < h =< o and define the following stopping times"

O’I(X S) min {h, 61

where 1 gives the waiting time for the first jump of the process {X,} given
(Xo, Yo) (x,s). Although al and 61 depend on the control u, we shall not in-
dicate this dependence. In a similar fashion, we define

a,(Z,._,) min {h, 6,, r} for n => 2,

where 6, is the waiting time for the first jump of the process after a,_ 1. For
convenience of notation, we shall write a, for a,(Z,._ ,) and let

o=0, ,=a + +a, forn 1.

Define

W(x,s,u)= E, e-c(x,s + t,u(x,s + t))dt forueU,(x,s)e2 x R +.

In addition, we let

g(x, s, A, r) P,[Z e A and r],

where (x,s) e2 x R + A is a measurable subset ofE x R + r>0, and ueU
Let U’ U and let u* be optimal in U’. Define

for(x,s)e2 x R +,
where an integral without an indicated range is understood to run over
2 x R + x R +.

We say that U’ c U is closed under one point exchanges if u, u U’ imply

fory=xandr>s,
u(y, r)

U2(Y, r), otherwise,

is a member of U’, where (x, s) 2; x R + is arbitrary. Since singleton subsets of 2
are measurable, U is closed under one point exchanges. Similarly, the following
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sets are closed under one point exchanges:

Ua {u:u (7, fl) U, y(x,. is right continuous for x E and y =< m},
U2 {u:u U and c(x,.,u(x,. ))is right continuous for xE},
U [’] U2,

where M is a real number and c(x,., u(x,. )) is understood to be a function defined
on R +.

THEOREM 4.3. Suppose U’ U is closed under one point exchanges. Let C and
c be bounded, and let z(co) < (co)for a.e. co such that (co) < . Ifu* is optimal
in U’, then

(4.6) q),,(z) q(z, U’) for z R+.

Proof We observe that for (x, s) Z R +,

s) W(x, s, u*) + f e-rq),,(z)H,,(x, s, dz,q)u,(x dr),

and thus q,,(x, s) >__ (x, s, U’).
Suppose that for some (x’, s’) Z R +, q),,(x’,s’) > @(x’, s’, U’). Then let

v U’ be such that

(4.7) q),,(x’, s’) > W(x’ s’ v) + e- rq).,(z)Hv(x’ S dz, dr).
d

Define

(y, r)= v(y, r) for y x’ and r __> s’,
u*(y, r), otherwise.

Since U’ is closed under one point exchanges, fi e U’. Forfe F, define the operator
Q’F F as follows"

Qf(z) W(z, ) + e "f(z )Ha(z, dz’, dr) for z e Z x R +

Let Q1 Q, and define Q"+ if Q(Q,f) for n 1. Then we have

s) W(x, s, ) + f e- XQo,,(z)Ha(x, s, dz, dr)Q2o,,(x,

W(x, s, ) + Ex,[e- z, W(Z,, fi)] + Ex,[e-
and

j=l

(4.)

Note that Q"p,, gives the cost of using fi up to time , plus the terminal cost
given by the second term on the right of (4.8). Observe that as n , the first
term on the right-hand side of (4.8) approaches

f z’"-’’ (Z)) dt.Ex, e ctz.,
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If z(co) < , then there exists N(co) such that for n >_ N(co), ,(o9) z(co), by
virtue of the assumption that z(og) < (co) whenever (co) < . This combined
with the boundedness of C and c gives

lim e- "’)q,,(Z,(co))
e-’’)C(Z(og)) for a.e. co f such that z(co) <

(0 for (o9) .
It now follows that

lim Q"qg,,(x, s) qg(x, s) for (x, s) e Z R+.

From (4.7) it follows that

q).,(x’, s’) > Qqg.,(x’, s’).

Sincef <= g implies Off <= Qg, we have

qg,,(x, s’) > Qqg,,(x, s’) => lim Q qu,(x, s’) qg(x, s’)

which contradicts the optimality of u* in U’. Hence qgu,(x, s)=< ,(x, s, U’) for
(x, s)e x R +, and the theorem is proved.

Let be the function obtained by setting 2 0 in the definition ft. Then
one may prove the following corollary which gives a necessary condition for an
optimal control in the undiscounted case.

COROLLARY 4.4. Let the conditions of Theorem 4.3 be satisfied. In addition,
assume that (oo) < oo for a.e. o9 ). Ifu* U’ and

b,,(z) inf b(z) for z Z R +,
uU’

then

,,(z) (z, U’) for z e x R+.

Proof Since (09) < oo for a.e. 09 e f, one may use the same method of proof
as given for Theorem 4.3 with 2 0. This proves the corollary.

For u (7, fl) e U, define the operator V" on functionsf e F such thatf+ (x,.)
exists for x e as follows"

VUf(x, s)=f + (x, s)+ 7(x, s)If f(y, 0)k(x, fl(x, s), dy)-f(x, s
for (x, s)e x R +. Note that A" given in Lemma 3.1 is a restriction of V".

The following theorem gives the main result of this paper. This theorem
shows that under the stated conditions, the dynamic programming conditions
for control of a stochastic process are necessary and sufficient for the optimality
of u*. An analogue of this theorem for undiscounted cost is given in the corollary
below.

THEOREM 4.5. Let U’ c U be the set ofcontrols u (, fl) such that < M R +

andfor each x E,
(i) y(x,. is right continuous,

(ii) fl(x,. is piecewise constant, right continuous, and has only afinite number
of discontinuities.
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Suppose that:
(iii) C and c are bounded,
(iv) c(x,. u(x, )) is right continuousfor u U’ and x Z,
(v) for x 7(A), C + (x,. exists, is bounded, and is right continuous.

Then u* is optimal in U’ if and only ifu* U’ and

(4.9) 2(p,,(z) min {c(z, u(z)) + A"cp,,(z)} for z e E x R + A.
tU’

Proof Suppose u* is optimal in U’ and that (x,s)eZ x R + -A. Since
{s:(x,s)e A} is closed, we may choose h so small that

cr min {h,61}.
Observe that U’ is closed under one point exchanges and that since 7 _-< M,
((co) oo for a.e. co fL One may check that the remaining hypotheses ofTheorem
4.3 are satisfied. Let u (7,/3) U’. By Theorem 4.3, we have for (x, s) e E x R + A,

(p.,(x, s) < W(x, s, u) + f e- aq).,(z)H.(x, s, dz, dr)
d

+ e-Xrfq),,(y,O)k(x,fl(x,s+ r),dy)] dr.

Hence, for positive h small enough,

q)..(x, s) e- Xhq),.(X. S + h)
h

1 av(x,s + h)<= i ---- -(]c[ s) - e-Xrc(x’ s + r. u(x, s + r)) dr

(4.1 O) + i --) s)
e- aWc(x, s + w, u(x, s + w)) dw

+ + r), ax)- + h)]
Since c and C are bounded, so is ,,. This combined with the boundedness of 7
gives that the right-hand side of (4.10) is bounded by a positive number, say K.
Then for h small enough, O,,(x, s) e-aho.,(X, S + h) hK, and

lim e-aho,,(X, S + h) O,,(x, s).
h0+

Note that assumption (ii) of the theorem guarantees that for h small enough,
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fl(x, s + r, fl(x, s, for O __< r _-< h so that

lim,+o ft. q),,(y, O)k(x, fl(x, s + r), dy) ft. q),,(y,O)k(x, fl(x,s), dy).

If q),+, exists, then by taking the limit as h 0+ in (4.10), we obtain

-qG(x, s) + ,q..(x, s)

(4.11) <__c(x, s, u(x, s))+y(x, s) Ifxq),,(y, O)k(x, fl(x, s), dy)-q),,(x, s)].
Since the u chosen above is an arbitrary member of U’, we have

(4.12) 2q,,(x, s) <_ inf {c(x, s, u(x, s)) + V"(p,,(x, s)} for (x, s) e E x R + A

provided p,+, exists.
We have already shown that q,(x,.) is right continuous at (x,s) for

(x, s) X R + A. Thus, from (4.11) (taking u u* and observing that equality
holds), we obtain that q+,(x, s) exists and is bounded for (x, s) X R + A and
furthermore that q,+,(x,-) is right continuous at s. Since p,(x, s)= C(x, s) for
(x, s) A, we have that q, satisfies the conditions on f in Lemma 3.1. Thus, for
u U’, Lemma 3.1 yields that q, is in the domain of A and that Ap, Vq,.
Making this substitution in (4.12) we find that (4.9) is necessary for u* to be optimal
in U’.

Suppose u* U’ and that p, satisfies (4.9). Clearly, q,(z) C(2) for z A.
By the preceding paragraph q, is in the domain of A for u U’. Thus Theorem
4.1 yields that u* is optimal in U’. This proves the theorem.

COROLLARY 4.6. Let U’ be a class of controls u which satisfy the conditions
(i)-(v) of Theorem 4.5 andfor which

(4.13) Ez[ < forzsY x R +.
Suppose u* U’. Then

q3,,(z) inf ),(z) for z e Z x R +

uEU’

if and only if

(4.14) 0 min {c(z, u(z)) + A"q3,,(z)} for z e X x R + A.
tlEU’

Proof Since (4.13) holds, we have z(co)< oe for a.e. co ef. Thus we may
follow the proof of Theorem 4.5 with 2 0 and apply Corollary 4.4 to show that
(4.14) is necessary for the optimality of u*. The boundedness of C and c combined
with (4.13) imply that b,, is bounded. An argument essentially identical to that
given in the proof of Theorem 4.1 shows that bu, is in the domain of A for u U’.
The sufficiency of (4.14) then follows from Corollary 4.2.

Remark 4.7. Let be the class of controls u (),, fl) such that

7"2R+, fl’B,
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where 7 and/3 are Borel measurable, and k(.,/3, F) is Borel measurable for each
Fe.

In this case the jump time distributions for { X’} become negative exponential
and the after jump distributions, k(x, (x),. ), do not depend on the length of time
the process {X’} spends in state x. Thus the process is Markovian.

Suppose, in addition, that A 22’ x [0, o] for some 22’ c 2; and that for
uU,

qu(x) Exll e-Zt(Xt,u(X,))dt+ e-’((X)/ for xe

qb.(x) Ex[f] ?.(X,, u(X,))dr+ (X,)1 for x e 2;,

where g- and ( are bounded Borel functions. For u e O, let u be the weak
infinitesimal operator of {X’}. Then

"f(x) (x)[fr f(y)k(x, fl(x), dy)-f(x)]
for any bounded Borel measurable functionf: E --, R. A straightforward modifica-
tion of the proof of Theorem 4.5 shows that if is bounded, u* is optimal (n U
if and only if

(4.15) in[ {g(x, u(x)) + "cp,,(x)} for x e 2;.
uU

For the above situation, Kushner [12 p. 527] has observed that (4.15) is
sufficient for optimality.

Similarly, for the undiscounted case, one may show that < M e R + and
E[r] < oo implies that u* is optimal in 0 if and only if

0 inf {(x, u(x)) + A %,(x)} for x 2;.
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STABILITY CONSIDERATIONS FOR A VOLTERRA INTEGRAL
EQUATION WITH DISCONTINUOUS NONLINEARITY*

HAJIME MAEDAf

Abstract. The asymptotic behavior of the solutions of a Volterra integral equation with discon-
tinuous nonlinearity is investigated. The global existence of solutions is proved and some sufficient
conditions for local and/or global stability are obtained by means of the Popov-type method. The
sufficient conditions obtained here are the same ones obtained for finite-dimensional systems. Also
the linearization problem for relay feedback systems is discussed.

1. Introduction. The equation governing a feedback system containing a
relay element gives an ordinary differential equation with discontinuous right-
hand side and/or a Volterra integral equation with discontinuous operator.
When considering the stability problem of such a feedback system, one generally
encounters the difficulty of whether or not a solution exists. For this reason,
little attention has been focused on the stability problems of relay feedback sys-
tems. However, the well-known Lyapunov method and the Popov-like method,
both of which are based on the qualitative estimates of the solutions, could be
used to investigate the asymptotic behavior of solutions, supposing the solutions
of the equations do exist and possess a "good property." By assuming the existence
of solutions, some stability criteria for relay feedback systems have been obtained
[1]-[3] which are concerned with the global stability problems.

Concerning the local stability problems of the feedback systems containing
an ideal relay, which is characterized by the sign function, Tsypkin’s conjecture is
famous [4]. It states that if the linearized system of the original relay feedback
system is asymptotically stable for large gains including infinity, the original relay
system is locally asymptotically stable. The intuitive reasoning for his conjecture
is due to the fact that the saturating nonlinearity, which is linear near the origin,
approaches the ideal relay characteristic as the linear gain increases without bound.
D. V. Anosov proved, by using the fact that the solutions of the linear differential
equations decay exponentially or equivalently that there exists a quadratic
Lyapunov function for the linearized system, that the conjecture is affirmative
for finite-dimensional systems [5]. It would seem likely that the conjecture is also
true for Volterra integral equations, provided the solutions of the equations
exist. The linearization problem of Volterra integral equations with differentiable
nonlinearities has been investigated in [6]. But the problem for discontinuous
nonlinearities has not been treated up to now, partially because the solutions of a
Volterra integral equation, though it is linear, need not decay exponentially.

In this paper we investigate the asymptotic behavior of the solutions of a
Volterra integral equation with discontinuous nonlinearity having discontinuity
at the origin, and we give several sufficient conditions for stability.

In 3 the main results are given. We shall consider a Volterra integral equation
with discontinuous nonlinearity and give a sufficient condition for local stability

* Received by the editors September 23, 1971, and in revised form March 20, 1972.

" Department of Mechanical Engineering, Osaka University, Toyonaka, Osaka, Japan.
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under very general assumptions on the integral kernel. The method is the well-
known Popov-type technique.

In 4 we investigate the stability criterion obtained in 3 and derive the well-
known Tsypkin’s conditions for stability under somewhat restrictive assumptions
on the integral kernel.

In 5 we give a sufficient condition for global stability which is an extension
of the results of [1]-[3].

In the Appendix we give a detailed proof for the global existence of the solu-
tions to an integral equation with discontinuous nonlinearity considered here.

2. Mathematical preliminaries and assumptions. In the sequel we consider a
Volterra integral equation of the form

(1) x(t)-- z(t)- h(t- s)ck(x(s))ds, > O,

where h(t) and z(t) are measurable functions defined on (0, oe), and 4(x) is a locally
integrable function on (-, ) and has discontinuity of the first kind at x 0.

Following [7], we define the concept of the solutions of (1) as follows.
DEFINITION. For (1), a function x(t) defined on (0, oe) is said to be a solution

(2)

(i) x(t)is continuous on (0,
(ii) x(t) satisfies

x(t) z(t)- h(t- s)u(s) as, > O,

for some function u(t) defined almost everywhere in (0, o) and satisfying

(3) mx{dp(x(t))} <_ u(t) <= M{dp(x(t))}

for almost all 0 < < o, where

mx{dp(x)} lim ess inf b(z),
6-,o Iz-xl <_6

Mx{ck(x)} lim esssup b(z).
6o Iz-xl <-,

This concept of solutions of the integral equation with discontinuous non-
linearity is similar to Filippov’s [8] which is defined for ordinary differential
equations with discontinuous right-hand side. It should be noted that the concept
defined above coincides with the usual one, provided the nonlinearity is con-
tinuous.

A sufficient condition guaranteeing the global existence (but not uniqueness)
of a solution of (1) is given by

(a) z(t) is a continuous function on (0, oe) and
(b) Ih(s)l ds < ov for each e (0, or).

The existence of a solution to a perturbed integral equation such as (1) is not
considered in [7]; therefore, in the Appendix, we give a detailed proof for the
existence of a solution, which is done in an analogous way to that for ordinary
differential equations [8].
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In the sequel we shall need the following notation. Let Lp denote the space of
pth power integrable functions on (0, oe) with norm

Xllp Ix(t)lp dt p 1,2,...,

and let Loo denote the space of essentially bounded functions defined on (0,
with norm

[x ess sup Ix(t)[.
t>o

We define

(4) G(x) ess sup [4)(z)[, G(0) max {14(0 +)l, Ib(0 -)l}.

Observe that G(x) is nondecreasing for x >__ 0.
Concerning (1) we assume"

Al(a). G(x)< for each 0 =< x =< p, 0<p<
Al(b). xck(x) >= ylx[, y > 0, a.e. in Ix[ < p.

A2. h(t) is an absolutely continuous function on (0, oe) such that (a) h L1,
(b) h e L1.

A3. z(t) is an absolutely continuous function on (0,
Here /)(t) is the time derivative of h(t), which exists for almost all > 0 since
h(t) is assumed to be absolutely continuous. Note that A2(b) implies h e Lo. In view
of A2(a) and A3, a solution of (1) exists and is absolutely continuous on (0, oe).

Consider the linear integral equation of the form

(5) (t) z(t)- k h(t- s)(s) ds, > O.

It is well known that the unique absolutely continuous solution of (5) has the
form

(6) (t) z(t)- k g(t- s)z(s) ds, > O,

where g(t) is the resolvent kernel determined by

(7) g(t) h(t) k h(t s)g(s)as, > o.

We assume that"
A4. For some k _>_ 0 the solution g(t) determined by (7) exists for all > 0 and

geL1.
Note that if assumption A2 is satisfied, a necessary and sufficient condition for
g(t) to be in L1 is that infRes>_o I1/k + H(s)I > 0 (see [6], [9]).

3. A general sufficient condition for local stability. In this section we investigate
the asymptotic behavior of solutions of (1) with "small" z(t) and give a sufficient
condition under which the solution must be "small" as long as the perturbation
term is "small" enough. The main result of the present paper is the following
theorem.
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THEOREM 1. Let assumptions A1-A3 be satisfied. If the assumption A4 and

A5. Re + jooq)
1 + kn(jeg)J >= O,

are fulfilled for some k >= 0 and some 0 < q < , where H(jco) is the Fourier

transform of h(t), then for any 0 < e < el min (p, /k) there exist
> 0(61(e)O,eO)and6= 6(e)> O(6(e)O,eO)suchthat IIz+
and [z(0+)[ <=6 imply Ix(t)[ <e for t> O, x <=e(llxll2 =<e, if k> O) and
x(t) 0 as .

Before proving the theorem we need the following lemma.
LEMMA 1. Let + q <= c and q(j’t+)qS(a)da -(k/2)lz(O+)l 2) =< c2.

If assumptions A1-A5 are satisfied, then the solution of (1) exists and satisfies the
following relation as long as Ix(t)l =< p, 0 < =< T"

(Tlx(t)l- klx(t)l 2) dt + q mylx(r)l Ix(r)l 2

8)

cl G( sup ]x(t)]) + k sup Ix(t)l] + C2,
O<t<=T O<t<=T

forO<m< l.

Proof of Lemma 1. As a notational convenience let <a, b>r a(t)b(t)dr,
(a * b)(t) o a(t s)b(s) ds and at(t) be a truncated function ofa(t), i.e., at(t) a(t)
for 0 < <= T, at(t) 0 for > T. It should be noted that, by means of the resol-
vent kernel g(t) determined by (7) and (t) by (6), the solution x(t) of (1) can be
represented as follows"

(9) x(t) (t)- g * (u kx)(t), > O.

Hence, it satisfies

(10) (t) -(t)- g(0+)(u(t)- kx(t)) , * (u kx)(t)

for almost all > 0. Now observe that the assumptions A2(b) and A4 imply [1
=< hi1 + k{[h(0+)[ + [h I1} g < and so (t)is Fourier transformable and
it is given by [] jco,(jco) g(0 +) where ,(jco) [g] (n(jog)/1 + kH(jco)).

By virtue of equations (9), (10), the Parseval formula, assumption A5 and the
well-known inequality I(a, b)l _-< [lallo lib[ , we estimate

(x, u- kX)T + q(+/-,u- kX)T

(2 + q, u- kX)T- ((g + q(g(0+)+ ))* (u- kx), u- kX)T

(11)
(2 + q, u kX)T - (1 + jcoq),(jco)lflT(jOo kiT(jco)l 2 dco

<=2+ qT {G O<t<=TSUp Ix(t), + [kl
O<t<-_

[x(t)lt
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where fiT(jCo) and T(jo9) are the Fourier transforms of uT(t) and xT(t) respectively.
On the other hand, by using the assumption A1 and the fact x(0 +)= z(0 +),

we estimate

(x, u kX)T + q(Sc,u kX)T > fv
(12) + q b da lx(r)l 2

(lxl klxl =) dt

ztO+) k
d lz(0+)l

.0

> (ylxl- klxl2)dt + q ylx(T)l- lx(T)l2
c2.

Combining (11) and (12), we obtain, in view of m __< 1, the desired form (8). Thus
Lemma 1 is established.

Proof of Theorem 1. We first prove Theorem for k
min (p, y/k). Choose numbers 0 < m < 1, C C l(g > 0 and c2 C2( > 0

so as to satisfy

(13a) 7m/k <

k 7mk(13b) q mlxl lxl2 >= cl[G(lxl) + klxl] + c2 for Ixl

(13c)
c[G(Tm/k) + k(Tm/k)] + c2 <

(1 m)7

It is clear that c cl(e) 0 and c2 c2(e)--* 0 as e 0 since G(0) >__ 7 > 0.
For each c2(e) we can find a 0 < 60 60(e) < 7m/k such that

(14) 0 __< q 4fro) d -lxl __< c. for any Ixl _-< o,

Since Iz(0 +)1 _-< o implies Ix(0+)l _-< o < 7m/k, and the solution x(t) is con-
tinuous, it follows that Ix(t)l < 7m/k for sufficiently small > 0. Now suppose
there exists a t* > 0 such that supo<_, Ix(t)l- Ix(t*)l- /m/k. Then from (13b)
and Lemma 1, i.e., (8), we get

O> ca[G(lx(t*)l)+klx(t*),]+c2-q(ymlx(t*)[- ,x(t*), 2)
>-_ (/Ixl- klxl 2) dt >= 0,

o

which contradicts the fact that x(t) is a continuous function with Ix(0+)l < m/k
and Ix(t*)l Tm/k. Hence there is no such t*, i.e., Ix(t)l < Tm/k <= c for all > 0.
In view of the fact that Ix(t)l < vm/k for all > 0, we get from (8) and (13c),
.fGwlx(s)l ds <= k.olX(s)l 2 ds + (1 m)7c <= Tmf.’olx(s)l ds + (1 m)c, which implies
x __< e and x I _-< (m/k) x __< e 2 by (13a). We have thus proved that for any

0 < e < e there exist c > 0 (c(e) ---, 0, e 0) and 6o > 0 (fide) -, 0, e -, 0) such
that I1 / qll =< c and Iz(0+)l _-< o imply x p __<



STABILITY CONSIDERATIONS FOP, A VOLTERP,A INTEGRAL EQUATION 207

In order to complete the proof for k > 0 we have to show the existence of
61 > 0 and 6 > 0 stated in Theorem 1. Let 61 > 0 be a constant satisfying
61 < Cl/(1 + kllgllx). Then there exists 6’ > 0 such that 11 + q7tll _<- cl for
Iz(0/)l-<_ ’, which is easily shown by the relation I1 / qllx <= (1 / kllgllx)llz
/ q[[1 / klz(0/)llgl[1. Let 6 min (6o, 6’). Then the constants 61 and 6 deter-
mined as above are the desired constants. 61(e) --. 0 and 6(e) 0 as e --, 0 is clear.
Note that z + q e L1, q > 0, implies that z, e L1, hence limt-.oo z(t) 0. There-
fore, 2 z -h * u e L1 since x e L1 and z e Lt, and (h u)(t) is uniformly con-
tinuous since h e L1 and lu(t)l =< G(ym/k) < or(see [10]). Therefore, (h * u)(t) 0
as --* oe, which implies x(t) z(t) (h * u)(t) --, 0 as oe (see [10]). Thus the
theorem has been proved for k > 0.

We shall next prove the theorem for k 0. Lemma 1 holds for k 0, i.e.,
letting k 0 and m in (8) leads to

(15) ylx(t)ldt / qTlx(T)l =< clG sup Ix(t)l / c2,
O<t<=T

as long as Ix(t)l < p, 0 < < T, where ct > IIz / q It, C2 > J0rz(O+) b(a) da. Given
0 < e =< p, choose cl cl(e) and c2 c2(e) so as to satisfy

(16a) qylxl >= cG(lxl) + cz, for Ixl ,
(16b) (c 1G(e) + c2)/7 <= e.

It is easily shown that cl(e) - 0 and c2(e) 0 as e 0. For each c2 c2(e) deter-
mined above we can find a 0 < 6 6(e) < e such that

(17) q b() dr =< c for any Ixl-<_ o

Note that Ix(t)l < e for sufficiently small > 0 if Iz(0+)l < . Now suppose there
exists a t* > 0 such that supo<,lx(t)l Ix(t*)l . Then from (16a) and (15) we
get 0 >= cx[G(Ix(t*)l)] + C2 qylx(t*)l >= j’*lx(t)l dt >= O, which is a contradiction.
Hence Ix(t)l < for all > 0. From (15) and (16b) we obtain Ixllx =<
+ c2)/ <- . cl 61(e) and 6 6(e) are desired constants. The property x(t) --, O,

ov can be shown in the way stated above. Thus the theorem is completely
proved.

We remark that the result of Theorem 1 is local (not necessarily global) in the
sense that if the perturbation term z(t) is "small" enough, more precisely
IIll and Iz(0/)l are small enough, then the solution is "small", i.e., Ilxllo and
IIx Ix(llx 2) are small. In order to extend the results to assure the global stability,
which means that for any z(t) satisfying z e L1 and e L1 the solution is bounded
and integrable, i.e., x e Loo and x e L1, we need the assumption k 0. This is clear
from the proof of Theorem 1. However, the proof of the theorem suggests that we
can estimate a region of asymptotic stability, i.e., we can estimate quantities
x >_- Ilzlll, 2 _>- I1 I and 6 >= Iz(0+)l by which the asymptotic stability of the
null solution is guaranteed.

Before considering the global asymptotic stability, we shall investigate the
local stability conditions obtained here in the following section.

4. Tsypkin’s conditions for local asymptotic stability. In this section we shall
show that Tsypkin’s conditions for stability obtained for finite-dimensional systems
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are also applicable for Volterra integral equations. In order to investigate the
stability conditions of Theorem 1, we need the following additional condition"

A6. If h(0+)= 0, then h(t) and h(t) are absolutely continuous functions
defined on (0, oe) such that i(t), "]/(t) L1.

THEOREM 2. Let assumptions A1-A3 and A6 be satisfied. Let H(s)be the Laplace
transform of h(t). If the following conditions hold, then the conclusion of Theorem
is valid"

A7. inf IH(s)l > 0,
Res>0

A8.
h(O+)>O /f h(O+)4:O,

h(O + >0 and t(O + <0 if h(0+) 0.

This result shows that Tsypkin’s conditions for stability are applicable not
only for finite-dimensional systems but also for distributed parameter systems.

Before we prove the theorem the following remarks are needed: Since H(s)
considered here need not be holomorphic in the annulus Isl > R for sufficiently
large R, the Laurent expansion used in [4] is, in general, not applicable. However,
the properties h(i) L1, O, 1, ..., n, and Ihti)(04-)l < , 0, 1, ..., n 1,
admit the following expansion:

(18) H(s) hk-1)(O+)s -k + Hi(s), Res >= 0, s 4: 0,
k=l

Is"Hl(S)l o(Isl- 1), Re s >= 0, s ,
which can be shown by the formula for the Laplace transform of the nth derivative,
that is by setting Hi(s) s-"[h")(t)] in the formula.

Proof of Theorem 2. Let ai and o9i be nonnegative numbers such that
Re [H(jooi)] -ai and Im [H(jogi)] 0. If such an ai does not exist, define

ai + . In the formula (1 8), setting s jo9 and n 1, 2, we get Im H(jo9)] < 0
for large 09 since h(0+) > 0 or h(0+) > 0. Therefore, infai a, 0 < a =<
exists but A7 implies a > 0. Note that for each # (0, a) there exists R0 > 0 such
that

In(s)l < for all s 6 {s; larg sl =< 7t/2, Isl > Ro}.

Let CR denote the contour of Fig. 1 consisting of a semicircle Isl R, larg sl < n/2,
joined by the line segment (-jR, jR) of the imaginary axis. Let R => R o. Then the
image H(CR) in the H-plane does not pass through the point (-#,j0) and also
does not encircle the point, since the image H(Cn) does not encircle and pass
through the origin in the H-plane (by A7 and the principle of the argument [1 1]).
Therefore, for the function defined by f(s) t + H(s), the increment of the argu-
ment of f(s) is equal to zero, namely Ac, arg f(s) 0 for R >_ Ro. Since the func-
tion f(s) is meromorphic in Re s >= 0 and has neither zeros nor poles on Cn it
follows by the principle of argument, that

2ztZy=Ac,,argf(s)=0 forR=>Ro,
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Im s

jRo

0

-jR0

-jR

s -plane

CR

CR

Re s

where ZI is the numbers of zeros off(s) in the interior of CR. Thus we get

inf I / H(s)l > 0, 0 </z < a.
Res>__0

This and the well-known Paley-Wiener theorem [9] imply that the assumption
A4 is satisfied for k’ > 1/a.

Next let X(o9)=ReH(jo9) and Y(o9)=ImH(jog), -or <o9< . It is
clear from (18) and assumptions A6, A8 that

X(og)- o9qY(o9)= qh(0+) + o([oo[- 1), (/) 0(3,

if h(0 +) -: 0, or

X(o9)- o9qY(o9) {-h(0+) + ql(O/)l/o(lo9l-x)}/o92, 09 ,
if h(0 + 0. Therefore let q > 0 (h(0+ - 0) or let q > h(0 +)/Ih(0 +)1 (h(0 + 0).
Then there exists an o9o such that X(og) ogq Y(og) >= 0 for o90 _< Icol < . Let
k"_> supolX- ogqYI/inf,,,IH(jog)l 2 (the right-hand side is finite by virtue of
A2 and A7). Then it follows, by direct calculation, that Re [(1 + jogq)H(jog)/(1
+ k"H(jog))] >= O, for all - < 09 < . It is clear that the assumptions A4, A5
of Theorem 1 are satisfied for k > max {k’, k"}. Thus the proof of Theorem 2 is
established.

Note that the sufficient conditions A7, A8 for stability are the same ones
suggested by Tsypkin, which were proved by D. V. Anosov for finite-dimensional
systems.

Now we prove that the stability conditions A7, A8 can be deduced from the
stability conditions for linear systems.
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THEOREM 3. Let the assumptions A1-A3 and A6 be satisfied. If the following
conditions hold, then the conclusion of Theorem is valid"

A9. h(O + :/: O or h(O + )(O + # O (h(O + O),

A10. inf IP + H(s)l > 0, 0 < Po, o > 0.
Res>_O

_Proof of Theorem 3. We only show that the assumption A8 can be deduced
from A9, A10. First note that H(0.) > 0 for real 0. _>_ 0. This can be shown as
follows. From A10, the function t + H(s) has the constant sign for real s 0. > 0
and 0 __< # _< Po. Let/ > 0 and 0. oz. It follows that # + H(0.)- p > 0, 0. .
Thus t + H(0.)> 0 for 0. >= 0, where / is an arbitrary number belonging to
[0, #o]. Therefore the statement given above is obtained. From A9 and the fact
that lim_ 0.H(0.)= h(0+), it follows that h(0+)> 0 if h(0+)- 0. Similarly,
when h(0+) 0, lim0.2H(0.) h(0+) implies h(0+) > 0. Finally, let n 3
and s=0.+jo, 0.>0, in (18). Then we get ReH(0.+rio)= I-h(0+)-- O([(D[-1)]/032 < 0, [(D[-"+ (Y3, and

Im H(0. + jo)
093((0+) 2ah(0+)) (3a2(0+) + 20.3h(0+) + o(11- ’))

(0.2 -- 092)3

Suppose h(0 +) > 0. It is clear by the above equation that there exists Oo such that
Im/-/(0. + joo) 0, and COo ov as 0. (0 +)/2/(0+) > 0. Therefore Re H(0.
+ joo) 0 as 0. h(0+)/2/(0+). This implies that for sufficiently small t > 0,
infRe>_olP + H(s)l 0, which contradicts A10. Thus the proof of Theorem 3 is
established.

We remark that the stability conditions A7, A8 are equivalent to A10 if the
assumption A9 is satisfied. The fact that A7, A8 implies A10 is clear by the proof of
Theorem 2.

We also remark that under the constraint h L1, the assumption A10 with
0 < p < #o is a necessary and sufficient condition for g(t) 5v- l[H(s)/(1 + kH(s))]
to be absolutely integrable over (0, ) for each 1/po _-< k < , or equivalently a
necessary and sufficient condition for x z kh * x to be L2 input-output stable,
i.e., [xl12 =< K[[zll2 (see [12]). Thus we may conclude that under the constraints
A2, A6, A9, if the linearized system of the relay feedback system is L2 input-output
stable for sufficiently large gain including infinity (for La-stability for infinite
gain it is understood that infRe>=o [H(s)[ > 0), then the original relay feedback
system is stable in the sense of Theorem 1.

5. A sufficient condition for global stability. Thus far we have been concerned
with the asymptotic behavior of the solutions of the discontinuous integral equa-
tion with "small" perturbations and we have derived sufficient conditions for
stability. In this section we are concerned with global stability. As stated in 3,
in order to investigate the asymptotic behavior of the solution in the global sense,
using the approach proposed here, we need k 0.
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We assume that"
Al(a)’ xck(x) >= 71xl, 7 > 0 a.a.

Al(b)’ G(x)/x --, 0 as Ixl .
Note that Al(a)’ implies that the graph of the characteristic b(. must lie in the
first and third quadrants. The key result is as follows

THEORZM 4. Let assumptions Al(a)’, Al(b)’ and A2, A3 be satisfied.
If

A1 1. Re [(1 + jogq)H(jog)] >__ O, - < 09 < ,
is fulfilled for some 0 < q < oe, then for any z(t) satisfying IIz -+- qll < ,
x Loo,x L and x(t) 0 as o.

Proofof Theorem 4. Note that Al(b)’ implies that for any e > 0 there exists a
nonnegative number b b(e) such that

(19) G(Ixl) lxl + b,

Note also that the solution of (1) satisfies (15), i.e.,

T

(20) Jo ylx(t)l dt + q7lx(T)l <= IIz -+- qllxa fx(O+)sup Ix(t)l / q5 da.
O<t<__T 0

Let 0 < e < q7/llz + q]ll. Combining (19) and (20), and letting supo<,<_rlX(t)l
]x(t*)l, we get by direct calculation,

b + j’{+’4 da
Ix(t*)l_< M < ct3,

q- IIz / q e
which implies sup, >olX(t)l M. From (20) it follows clearly that

lie / q.IIG(M,)/
Ix(t)l dt < M2 < oO

which implies Ilxll, M2. The last statement of the theorem can be proved in
the same way as in Theorem 1.

The results obtained here are global, i.e., the solution x(t) is bounded, in-
tegrable over (0, oe) and tends to zero as long as the perturbation z(t) satisfies
zLx,L

It should be noted that the advantage of Theorem 4 is that we can apply the
well-known, Popov-type, stability criterion of the form All, obtained in [1]-[3],
for the wide class of feedback systems with discontinuous nonlinearities. Also,
it could be shown that if we consider a more restrictive stability criterion
Re [(1 + jcoq)H(jco)] _>_ 6 > 0, we can delete Al(b)’.

6. Conclusion. In this paper we have treated the local and global stability
problems of a Volterra integral equation with discontinuous nonlinearity and we
have shown that under mild conditions, Tsypkin’s conjecture, which was proved
for finite-dimensional systems, is also affirmative for an integral equation. By the
results obtained here, it is reasonable to apply Tsypkin’s conditions for stability
for a feedback system consisting of an ideal relay and distributed parameter system.
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Appendix. In this Appendix we assume, concerning (1)"

(I) 4(x) is a locally integrable function on
(II) z(t) is a continuous function on (0,

(III) h(t) is a measurable function satisfying

for each > 0.

The key result of the Appendix is the following theorem.
THEOREM A.1. Suppose the assumptions (I), (II) and (III) are satisfied. Then

at least one solution of (1) exists in the sense of the definition on (0, o).
The theorem is an immediate consequence of the following two lemmas.
LEMMA A.1 (Local existence of the solution). Under the assumptions (I), (II)

and (III) at least one solution of(l) exists on (0, to), 0 < to < oe.

ProofofLemma A.1. Let Xk(t be a unique continuous solution of the equation

(A.1) Xk(t) z(t)- h(t- S)k(Xk(S)) ds, > O,

where k(X)= (1/(2rk))fXx +rk (a)da, {rk} is a sequence of positive numbers such
that r --, 0 as k oe. Such a solution Xk(t) exists for all > 0 by virtue of (II),
(III) and the fact that 4k(" is continuous on (--oe, oe). Note that since for any
m > 0 there exists a number ko such that 0 < r < m for all k > ko, it follows that
]bk(a)] __< m forlal __< 2m, k > kowherem esssupll__<3m]b(o)l. Letm SUpo<t__<tl
[z(t)[, and P(t)= y [h(s)[ ds and let to be a positive number determined by the
relation P(to)M <= m. Since P(0) 0 and P(t) is continuous, monotone nondecreas-
ing, the existence of such a to is clear. Then by (A.1), we obtain [Xk(t)[ <--_ m + P(t)M
=< 2m, 0 < __< to, k > ko, which implies [Ck(Xk(t)) <= M, 0 < <= to, k > ko. That
is, the sequence {Xk(t)} is uniformly bounded on (0, to] and equicontinuous since

IXk(t + 6)- Xk(t)[ <= [z(t + 6)- z(t)l + M [h(s + 6)- h(s)[ ds + [h(s)l ds

(6) -, 0 as 6 -, 0.

Applying the lemma of Ascoli-Arzela, the sequence {Xk} contains a subsequence
{Xk,} converging uniformly to a continuous limit function x(t) on (0, to]. Let
ui(t) C])k,(Xk,(t)), ki > ko. The sequence {ui(t)} is uniformly bounded on (0, to], i.e.,
[ui(t)[ <= M, 0 < <= to, ki > ko, which guarantees the existence of a weakly con-
vergent subsequence [13]. Let us denote it again by {ui(t)} and the limit function by
u(t), such that for any f e LI(0, to),

f(s)ui(s) ds f(s)u(s) ds,

Therefore, from (A.1) with k k, we obtain, letting o,

x(t) z(t)- h(t- s)u(s) ds, O<t<-to.



STABILITY CONSIDERATIONS FOR A VOLTERRA INTEGRAL EQUATION 213

The remaining part we must show is that the function u(t) determined above satisfies
the relation (3). Let {xk(t)} be the subsequence converging uniformly to x(t). For
any 6 > 0 there exists a number k(6) such that Ixk(t) x(t)l _-< 6/2 for 0 <

to, k > k(6) and 0 < r, < 6/2 for k > k(6). Therefore, for any real number a,
we obtain the relation

u(t)a <= ess sup b(z)a < ess sup b(z)a, 0 < <_ to,
Iz x,(t)l -< 6/2 Iz x(t)l -< ,

k > k(b),

from which, furthermore, we obtain

u(t)a dt <= ess sup 4(z)a dt,
Iz-x(t)l<=6

0< t’ < t" =< o

k > k(6).

On dividing the inequality by t" t’ and letting t" t’ + 0 and after that letting
0 + 1 and 0 1, we obtain the desired form.

LMMA A.2 (Continuation of the solution). Let xl(t) (u(t)) be a solution of(l)
on (0, to]. Let Xz(t (Uz(t)) be a solution of the equation

(A.2) x(t) (t) h(t s)ck(x(s)) ds, 0 < <= fl, fl > O,

where (t) z(t + to) ftoh(t + o S)Ul(S)ds. Then x(t) defined by x(t) x(t),
0 < <= o andx(t)= x2(t- to), o < t<= o +flisasolutionon(O,to+

The proof is clear by direct calculation.
Proof of Theorem A.1. By Lemma A.1 there exists a solution x(t) on (0, to],

to > 0. Observing that z(t) is continuous, (A.2) has a solution x2(t on (0, fl],
fl > 0. Therefore, by Lemma A.2, the solution can be continued to (0, o + fl].
Repeating this process we can prove Theorem A.1.
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STRUCTURE OF INDEX-INVARIANT SYSTEMS*

A. S. MORSEf AND L. M. SILVERMAN:I:

Abstract. This paper introduces the concept of a controllability module and then uses it to study
certain algebraic properties of index-invariant, time-varying, linear systems. It is shown that control-
lability modules possess a property similar to the pole placement property of controllability subspaces.
Application of controllability modules to index-invariant systems leads to a new construction of
Brunovsk3’s decomposition which serves to clarify the algebraic relationships upon which the
decomposition is based.

Introduction. In a recent article [13, controllability subspaces and related
algebraic concepts were introduced and successfully applied to the problem of
noninteracting control. Although these concepts have since proved useful in
discussing other problems of system synthesis, they are effectively limited to time-
invariant linear multivariable systems. The present article is motivated by a desire
to extend these concepts to a broader class of physically significant processes;
namely, time-varying linear systems.

To treat the time-varying case, it is useful to regard the entries in the system
coefficient matrices as elements of a suitably defined ring of time functions ( 1).
Modules thus replace vector spaces and the controllability module becomes the
principal algebraic object of interest ( 2).

It is known that the state space of a controllable linear constant system
admits a canonical decomposition into independent controllability subspaces,
each subspace being generated by a single vector [23. An analogous decomposi-
tion for a restricted class of time-varying systems is developed in 3. This result
and the corollary which follows it coincide with earlier results due to Brunovsk3
[33 and thus we cannot claim originality. Nevertheless, the present approach is new
and should be of interest in that it clearly exhibits the algebraic relationships upon
which the constructions of [3 are based.

Our results, which are all of an algebraic nature, depend on a useful theorem
due to Dole2al [4] which characterizes the range and null spaces of constant rank
time-varying matrices. In 4 we summarize this theorem and provide an interpre-
tation in module theoretic terms.

1. Preliminaries. Notation. Let I [t0, t l] be a closed interval on the real
line and let R denote the ring of continuous, infinitely differentiable, real-valued
functions, I reals, together with pointwise addition and multiplication;
c R denotes the subring (field) of functions in R which are constant on I. Vector

spaces over/ are denoted by script letters with overbars; " is n-dimensional
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Grant DA-ARO-D-31-124-71-637.
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space and e, -= {e 1, e2,..., e,} is a basis for ". Modules over R are denoted
by script letters;N" is the free module generated by e,. If x e ’", denotes the
free module generated by x. Whenever 5 is free, d(SQ dimension 5;
means is isomorphic to . The symbol , denotes the class of all free sub-
modules of N" which are also direct summands of ". If k is an integer, k { 1, 2,

Each n x m matrix M over R is considered to be the unique representation
of a morphism N N" in the bases em and e, a matrix and its corresponding
morphism are denoted by the same symbol. The function :R R is the ring
derivation defined by r dr/dt D n denotes the function x n eii,
where x n egr, e en and r e R.

If M: n is a function, ker M {x :Mx O, x Rm} if c m,M
denotes the image of under M; if M is an R-morphism, M. The nota-
tion D,W + {x:x Ds + s2,se} is an R-module.

In this article we shall be specifically concerned with R-morphisms A:
Nn and B: Nn which are associated with the system Ax + Bu. We

use the notation {A D[}g + (A D)N +... + (A D)- 1N. For simpli-
city we assume that {A D[}n Nn (i.e., (A, B) is a uniformly controllable pair
[5) and ker B 0.

Let T" n n be a fixed automorphism and define the morphism " nn by e DTe, e en. It is a simple matter to show that the following diagram

A-D

commutes if and only ifM TAT- + ’T- D. Associated with the function
M, one can define a morphism H’N" " by requiring that the restriction ofH to

" coincide with the restriction of M to "; clearly H TAT-1 + T-1.
When speaking of the morphism of M we shall always mean the morphism H.
Clearly the automorphism T corresponds to the matrix transformation
A TAT-1 + J’T-1., a transformation of this type corresponds to the co-
ordinate change y Tx associated with the differential equation 2 Ax; i.e.,
y (TAT-1 + T- 1)y.

Properties of R-modules and R-morphisms. In the following sections we shall
be concerned with R-matrices of a special type. Let M be an n m matrix with
elements in R. By regarding M as a matrix-valued function of t, M(t), one can
define p(t) =_ rank M(t) for each fixed e I. In general, there does not seem to be
any way to interpret p(t) in ring theoretic terms unless p(t) is constant on I. We
shall say that the R-matrix M and its corresponding R-morphism have constant
rank p ifand only ifp(t) =_ p is independent of I. Constant rank morphisms admit
the following characterization.

PROPOSITION 1.1. Let M" l" l" be afixed R-morphism. Then M has constant
rank if and only if /{ ,.
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This proposition states that the image of any constant rank morphism
possesses a basis which may be completed to N". It also states that there is a one-
to-one correspondence between elements of , and constant rank morphisms
with codomain ". A proof of this proposition, which is a ring theoretic interpre-
tation of Doleal’s theorem [4], is given in 4.

The second property we wish to emphasize here is stated below.
PROPOSITION 1.2. Let 5, -, ll be fixed submodules of" satisfying 5 ,

and5 3-- O) l. Then - is free if and only if d# is free.
Note that this proposition states a general property of R-modules. Our

reason for presenting the proposition at this point is to emphasize that this is the
only special property of R-modules which we require. Thus all results which follow
are true over any commutative ring K with ring derivation 6" K - K, provided
Proposition 1.2 holds for K-modules and ker 6 contains a subring K which is
also a field. The set of continuous, infinitely differentiable, periodic functions on I
is an example of such a ring. Proposition 1.2 is proved in 4.

2. Controllability modules. Controllability subspaces have proved useful in
describing the algebraic structure of linear time-invariant systems [1]. To treat
time-varying systems, we introduce a similar concept. A submodule 5 N?" is
called a controllability module of the pair (A, B) if for some morphism F" " --*",

(2.1) {A + BF D] O }i Z, n,

and

(2.2) 5 {A + BF- D[ 5}n.
At present, the rather restrictive requirement (2.1) seems necessary in order to
obtain useful results. In effect, (2.1) means that each {A + BF DI }
must be the image of a constant rank morphism.

Controllability modules are important for at least two reasons. First, each
controllability module corresponds to a subsystem of the system 2 Ax + Bu
which can be completely controlled while not influencing the remainder of the
system. Second, controllability modules possess a property similar to the pole
placement property of controllability subspaces [1]. We shall elaborate on these
points later.

Since the Cayley-Hamilton theorem does not hold over the ring R, one cannot
conclude that modules satisfying (2.2) are (A + BF D)-invariant. Nevertheless,
controllability modules do possess this property.

LEMMA 2.1. Let 5 be a fixed controllability module and suppose that F is
chosen so that (2.1) and (2.2) hold. Then

(2.3) (A + BF- D)5 5.

Proof Clearly (2.3) holds if5 is either " or 0. If is a proper submodule of
", d(5) < n and d(N’ f"l if’) > 0. With -= {A + BF D] f’l }, in, there
follows d(+ )>__ d(), en- 1, and d(5)> 0. If inequality holds for all
i6 n 1, then d(+ x) > i, i6 n 1; thus d(9) d() > n 1 or 5 5", a
contradiction. Therefore d(+ ) d(,) for some e n 1 clearly + so
(A + BE D) . By induction, for j > and (2.3) follows.
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The following lemma characterizes a class of submodules for which (2.3) is
true.

LEMMA 2.2. Let ll ,, There exists a morphism F" A" A" such that

(2.4) (A + BF- D)# c oy

if and only if
(2:5) (A-D)’c+.

Proof If (2.4) holds, u /l implies (A + BF- D)u ll or (A D)u BF#
+ ’ + and (2.5) is true. To prove the converse, let {ul, "", u} be a basis
for ; from (2.5) there follows (A- D)ui Bxi + i, i !, for some xi Am,
i ’. Define F on ’ by u -x, i 1. Since n, by Proposition 1.2 there
exists a free module such that An= ’ ; thus the domain of F can be
extended to An. Clearly (A + BF D)u fi ’, 1; since for arbitrary r R,

(A + BF- D) uiri (ri(A + BF- D)u i’,ui)
ii ll

(2.4) is true..
It is possible to completely characterize controllability modules.
PROPOSITION 2.1. Let 5f A be fixed. Then 5f is a controllability module of

the pair (A, B) if and only if
(A- D)Sf + Sf,

3 , and i ,, !; the i are defined by 5o O,

((A D)/_ + /-1 + ,t) f"] , i61,

where 1= d(3).
With Lemma 2.2 at hand, the proof of this proposition parallels exactly

the corresponding proof of the theorem which characterizes controllability sub-
spaces [1]; thus the present proof is omitted.

It is useful to note that the class of F:A" A" for which (2.1) and (2.2)
hold coincides with F(Sf), the class of F for which (2.3) is true. To establish this
observe that if (2.1) and (2.2) hold for some F, then by Lemma 2.1, F e F(Sf).
Conversely, if F e F(Sf), then

i A D 5 + i-1 + ’] A + BF -D)i- + 5i + 3 f-] 5

((A + BF D)5,_ + f/- 1) [’-] (f + , [’’) f

(A + BF -D)5_1 + i-1 + ("lzCf, i6l.

By induction on there follows {A + BF- DI 71 5}, i 1, so (2.1) and
(2.2) hold.

Controllability modules have a property similar to the pole assignment
property of controllability subspaces. Below we describe this property for the
special case when d( f)5) 1.

PROPOSITION 2.2. Let 5f A" be a fixed controllability module with d( f-) 5f)
1; write d f-I and d(Sf). Let

(X / =-- / .3t_ Z /
il
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be a fixed monic polynomial of degree with coefficients fi R. There exists an
F 6 F(5) such that

(2.6) (A + BF D)b =_ ((A + BF D) + ?,(A + BF D)i-)b O.
iel

_Proof. Since 9 is a controllability module, F(5) is nonempty. Choose any
fixed Fo 6 F() and write Ao =- A + BFo. Clearly {b,(Ao D)b, ..., (Ao D)l-b}
is a basis for . Thus

(2.7) (Ao D)tb i(Ao- D)’-b
i!

for some i G R. Since r(A0 D)x (Ao D)rx + i’x for all x " and r R,
with suitable r R, (2.7) may be rewritten as

(2.8) (Zo D)lb Z (Zo D)i- 1rib"
iel

The computation of the r from the ?i is tedious but straightforward. To proceed,
define sl b and si+x (Ao D)si r+l_ib, i1 1. Clearly {Sl, .-., Sl} is a
basis for; in addition, by a simple computation,

(2.9) (A o D)s r b

Define f.5 --, so that fs -r+_ i, i 1; as in the proof of Lemma 2.2,
the domain off may be extended to ". Write b Bg and Aa Ao + Bgf. It
follows that

Si+ (A D)s (A D)ib, 1,
and

(2.10) (A D)lb O.

Write 5 for the -vector space with basis {si,.--, s} and let ft. be the
restriction of (A D) to 5f--. In view of (2.10), $ is an K-endomorphism and 5f

is -cyclic with generator b. It follows from well-known results [1] that for suitable

f2" --. , can be made ($ + bf2)-cyclic with minimal polynomial a(2) and
generator b. By first extending the domain off2 to 5f in the obvious way and then
extending the domain further to all of ’, the desired result is at hand. Clearly
with F F0 + g(f + f2), (2.6) is true and F F(Sf), thus completing the proof.

Remark. Proposition 2.2 can be generalized" IfSf is a controllability module
with d( f) 5) > l, then there exists a b 3 f3 5f and an F F(3) such that (2.6)
is true. At present there does not seem to be any direct way to establish this fact,
perhaps because not every free generator of f’l 5f is an appropriate candidate
for b. Nevertheless, such an (F, b) pair does indeed exist; this will be obvious from
the results of the next section.

Remark. Consider again the controllability module of Proposition 2.2 and
suppose that F has been chosen so that (2.6) is true. Let T.Sf " be the morphism
(A + BF D)-xb e, i61, e e,. Extend the domain of T to " so that T is
an automorphism. It should be clear that the matrix of the function T(A + BF)T-
+ T- D has the structure



220 A. S. MORSE AND L. M. SILVERMAN

where J-1 is an x K-matrix with characteristic polynomial e(2). In addition,
the matrix representation of the morphism TBg Tb has the structure

where b is an x R-matrix; the pair (Al,bl) is completely controllable. Thus
by introducing suitable feedback, one can transform that portion of the system
c Ax + Bu associated with 5 into a time-invariant controllable system. In the
next section, it will be shown that this can be done for any controllability module.

3. Index-invariant systems. In this section we study the invariant properties
of the matrix pair (A, B) under transformations of the type

(3.1) (A, B) (T(A + BF)T -1 + I’T- 1, TBG),

where T and G are invertible in R and F; N? is an R-morphism. Our results
are only valid for a restricted class of systems" roughly speaking, all systems whose
controllability properties are invariant with respect to time. To be more specific,
define

mi(t =-- rank [B(t), (A D)S(t),..., (A D)i- 1S(t)]
for e I and it n + 1. The pair (A, B) is called index-invariant on I if for all

n + 1, mi(t m const, on I and m, m, + 1. The m are called the structure
indices of the index-invariant pair (A, B). Since by hypothesis N" {A D[},,
m, m,+l n. Clearly (A, B) is an index-invariant pair if and only if " is a
controllability module.

Associated with the mi one can define a second set of integers nj as follows.
Write ko 0 and k =- m + m mi+l for it n. Define nj for j ki_
+ 1,...,ki and tn. Since k,-m+m-m,+l =m, there are exactly m
integers n. Clearly n <= n: <= <_ t/m ;in addition,

n) (k ko) + 2(k2 kl) +... + n(k, k,,_ 1)
jsm

nk,,- k
in-

nk,, (m -’l-" m mi+ 1)
in-

k + (n 1)(k m)- (mi- mi+ 1)
ien-

k,, + (n 1)(k, m)- m + m,.

Since k ml m,

(3.2) nj m, n.
jem

The ni have been discussed elsewhere [2], [3] and are called the controllability
indices of the index-invariant pair (A, B). Controllability indices are central to the
structure of the pair (A, B).
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THEOREM 3.1. Let (A, B) be an index-invariant pair with controllability indices
{nl, n,}. There exist controllability modules 61, m satisfying

(3.3) d( f’) c/)= 1, ism,

(3.4) d(/) ni, s m,

(3.5) " 03 .
iem

This theorem states that any index-invariant system can be decomposed
(with suitable F and G) into m independent subsystems, each completely controlled
by a scalar input. To prove the theorem, use will be made of the following special
result.

LEMMA 3.1. Let (A,B) be an index-invariant pair with structure indices
{ml, ran+ 1)" There exist modules i s n, sn, satisfying

(3.6) U cU ... =,
(3.7) (A D)ii {A D13}i, sn,

(3.8) d(//i rn + m m + 1, is n

Proof WriteMo 0 andN _= {A DIN}. Define 03 and note that.(3.7)
and (3.8) hold for n. To define the remaining //, s n 1, proceed as follows.
Since s ,, s n, by Proposition 1.2 there exist free ’ such that

(3.9) i + i ) 0-’i, s n 1.

Let Pi’i+l lli be the projection (u + b)--u, usql
i, bsMi; write Q’

for the insertion of in ". Since Mi+l (A D)M + ’, is n 1, it follows
from (3.9) that

(3.10) Pi(A D)iQ i, sn- 1.

By direct verification, Pi(A- D)iQ’M 1 is a morphism; by (3.10) even an
epimorphism.

Define by

(3.11) ker P(A D)iQ, sn- 1.

Clearly P(A D)’Q P(A D)q/ 0 or (A D)// ker P N’ and (3.7)
is true. To establish (3.8), note that since / is free,

(3.12) /( //, is n 1,

for some ’i (cf. [6, Chap. VI, Lemma 2]). Thus

d(//) d() d(//) m d() m (d(+ 1) d())
rn + m- mi+x, isn- 1,

so (3.8) is true. In addition, since s , and ’, by Proposition 1.2 and (3.12),
is also free. Since is a direct summand of N", so is /; i.e., /s ,, s n.
To complete the proof, it is enough to verify (3.6). By (3.7), (A D)

(A D) c i+ 1; clearly P+ I(A D)+ 1/= 0, so
/+1, is n 1, and (3.6)is true.
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Proof of Theorem 3.1. Write k =-m + m --mi+l, en. By Lemma 3.1,
there exists a basis {bl, "", bkl} for it also follows from Lemma 3.1 that this
basis may be extended sequentially so that {b l, "", bk,} is a basis for ., e n.
In this way, there results a basis {b ..., b,,} for N with special properties. From
(3.7) and the definition of the ni there follows

(A D)n’bi ,.l,li, m.

Thus for each i m, there exist b M such that

(3.13) (A D)"ibi _, (A D)-1b_1, 6 m.
jni

Define S’l =- hi, i m, and

(A- D)s}- bi.,_j jeni- 1 iem.(3.14) sj+

It follows that

(3.15) (A D)si,, b{), m.

Write

(3.16) span {Sl, si,,}, em.

It follows from (3.14) and (3.15) that

(3.17) (A D)St = + 5, i m.

Thus i,,, satisfies (A D)5 c 5 + M;in addition, since b e , e m,
c 5; thus (A D)5 c 5<. It follows that (A D)iM for all _>_ 0; thus

" c 5. But 5 ", so 5 ". From (3.16), N" is spanned by at most i,,, ni
generators; but from (3.2), i,,, ni n which means that each is free on the
elements {s],..., s,,}, e m, and that the are mutually independent. Thus
(3.4) and (3.5) are both true.

To prove (3.3), fix and suppose that bM f] ; clearly b j., rb,
rj e R thus

jeln jem
ji j=i

thus b ribi and bi is a basis for M CI ; therefore (3.3) is true.
To prove that % is a controllability module, write - 0, ’---span

{s], .-., s} and note by (3.14)that

-5 ((A D)--}_ "5-1 - ’) (’ ’-90, J G !1,.

Since each -5 is a free direct summand of Z,, clearly 5 Z,. Finally, since
,, and (3.17) is true, application of Proposition 2.1 establishes the desired

result.
Remark. Theorem 3.1 suggests a procedure for transforming any index-

invariant pair (A, B) into a pair of (constant) R-matrices (A,B). In particular,
having determined a set of for which (3.3)-(3.5) hold, define F on each (using
the construction of Proposition 2.2) so that (A + BF D)"’b 0. By the remark
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following Proposition 2.2, it is clear that for appropriate T and G, the pair (A, B)
defined by

T(A + BF)T-
3.8)

B =_ TBG

can be made (constant) R-matrices.
Clearly the structure indices of (A, B) are invariant under transformations of

the type (3.1). In addition, every pair of completely controllable R-matrices
(A, B) is index-invariant. Thus we have established the following result.

COROLLARY 3.1. Let (A, B) be afixed pair ofR-matrices. There exist transforma-
tions (T, F, G) such that the matrices (A,B) in (3.18)are constant R-matrices if and
only if(A, B) is an index-invariant pair.

Remark. The original statement and proof of this corollary are due to

Brunovsk3) [3 who developed the result using matrix methods. Brunovsk3) also
showed that for fixed n and m there is a bijection between the class of ordered sets
of positive integers {nl, n2, n,,} satisfying n <= n2 nm, Ziem ni n
and the set of equivalence classes {(A, B)}, where (A, B) {(A, B)} if and only if
(A, B) and (A, B) are related by (3.18) for some F and invertible T and G. Thus
controllability indices uniquely specify index-invariant pairs (A, B) up to trans-
formations (T, F, G).

Remark. Suppose (A, B) is index-invariant and T, F, G are chosen so that
(A, B) in (3.18) are -matrices. It is easy to show that (A, B) is a controllable pair.
Thus, using known methods 1, one can determine R-matrices F and such that
( + BF, B) is a controllable pair. It follows from (3.18) that the pair (A + B(F
+ GFT), BG) is index-invariant and that
where b BG. Extending this argument, it is straightforward to show that for
any fixed controllability module 5, there exists a b eo’ f-)5e and an F e F(Se)
such that {A + BF DId}, fi d(5). SinceS can be regarded as a control-
lability module of the pair (A + BF, b), Proposition 2.2 applies thus showing that
a pole-assignment-like construction is possible for any controllability module.

If I [0, 3, invertible R-matrices correspond to Lyapunov transforma-
tions [7, pp. 116-118]; in this case, as noted in [8, index-invariant systems may
be stabilized with state feedback control.

4. Constant rank matrices. In this section we discuss several properties of
constant rank R-matrices and then conclude with proofs of Propositions 1.1 and
1.2. Consider first the following fundamental result.

PROPOSITION 4.1 (Dole2al [4]). Let Mbe an n x rn R-matrix with constant rank
p. There exists an rn x rn matrix S, invertible in R, and an n x p matrix W with
constant rank p such that

(4.1) MS [W, 0].

This proposition may be restated in terms more suitable to our application.

Actually the results of [8] are slightly more restrictive than this, since it is assumed there (in
effect) that bases for the Si can be constructed from the columns of [B, (A D)B,..., (A D)"- tB]
rather than from linear combinations of the columns.
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PROPOSITION 4.1’. Let M" m.__), ,n be an R-morphism with constant rank.
Then both . and ker M are free R-modules.

Proof. Clearly .//g U; but ## is free on the linearly independent columns
of W; thus is free. From (4.1) there follows ker M ker [W, 0S- ker W, 0]
which is clearly free; thus ker M is free.

Remark 4.1. Let P be the canonical projection P’l m/ker M. The matrix
W in (4.1) may be regarded as a representation of the unique morphism
W: "/ker M - " for which M WP. The existence of matrix representations
for both W and P is assured by the fact that 9m, " and "/ker M are all free. In
addition, P is epic and its right inverse is a morphism; the existence of a left
inverse morphism for W(which is monic) may be established by dualizing Proposi-
tion 4.1.

To prove Proposition 1.1, use will be made of the following lemma.
LEMMA 4.1. Let H.# be a fixed morphism of the R-modules ll and

and suppose U is free. Then H possesses a left inverse morphism if and only if H is
monic and # Hll is a direct summand oft/.

This easily proved lemma is a slight variation of [6, Prop. 20, Chap. X], and
thus a proof will not be given.

Proof of Proposition 1.1. If M has constant rank, by Proposition 4.1, / is
free. By Remark 4.1, W is left-invertible and has codomain " which is free; thus
by Lemma 4.1, is a direct summand of ". But / ./ therefore .//g ,.

To prove the converse, write (as in Remark 4.1) M WP. Since ./ ,,
is a free direct summand of ". Since W is necessarily monic, Lemma 4.1

applies and W possesses a left inverse. Since M WP, rank M(t) <= rank W(t)
=< d(#) _= p. Since W is left-invertible and P is right-invertible, W- IMP- E,
the p p identity. Thus rank M(t) > p, which with the previous inequality implies
rank m(t) p.

Proof of Proposition 1.2. Consider first the case when 5 5". It is enough
to show that if - is free then ’ is free. Suppose - is free and let P’" " be
the projection on - along 0g. Clearly 5 -,; by Proposition 1.1, P has
constant rank. Thus by Proposition 4.1, ker P is free.

For the case when 5 is a proper submodule of ", write " 5 0); by
the above argument, U ,. But " (- 0)q/)0) ’ 0)(- 0)); since- 0) is free, by the above argument ’ is free.

5. Concluding remarks. Application of the algebraic concepts discussed in
this article to observer synthesis along lines paralleling [23, 93 should present no
difficulties;the results of [10] can easily be obtained. Application of controllability
modules to decoupling synthesis, however, is not so straightforward. For such an
application one will probably need a module theoretic result similar to the vector
space theorem which states that there is a unique maximal controllability sub-
space contained in a fixed subspace of state space [1]; an analogous result for
controllability modules has not yet been established.

An interesting problem suggested by this study is to find conditions on the
matrix pair (A, B) which insure the existence of transformations T and F such
that T(A + BF)T-+ T-1 is an -matrix with preassigned characteristic
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polynomial. Although index-invariant systems possess this property, a com-
plete solution to the problem is still outstanding.

The translation of the preceding algebraic results into matrix terms is not
difficult. Although one can use the algorithm of [3] as a starting point for future
research, the present coordinate-free approach appears more transparent and its
application to other problems of system structure should prove rewarding.
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DYNAMIC PROGRAMMING CONDITIONS FOR
PARTIALLY OBSERVABLE STOCHASTIC SYSTEMS*

M. H. A. DAVIS,- AND P. VARAIYA:]:

Abstract. In this paper necessary and sufficient conditions for optimality are derived for systems
described by stochastic differential equations with control based on partial observations. The solution
of the system is defined in a way which permits a very wide class of admissible controls, and then
Hamilton-Jacobi criteria for optimality are derived from a version of Bellman’s "principle of
optimality."

The method of solution is based on a result of Girsanov: Wiener measure is transformed for
each admissible control to the measure appropriate to a solution of the system equation. The optimality
criteria are derived for three kinds of information pattern: partial observations (control based on the
past of only certain components of the state), complete observations, and "Markov" observations
(observation of the current state). Markov controls are shown to be minimizing in the class of those
based on complete observations for system models of a suitable type.

Finally, similar methods are applied to two-person zero-sum stochastic differential games and a
version of Isaacs’ equation is derived.

1. Introduction.
1.1. This paper concerns the control of a system represented by a stochastic

differential equation of the form

(1.1) dz, g(t, z, u) dt + r(t, z) dBt,

where z is the state at time and the increments {dBt} are "Gaussian white noise."
The control u is to be chosen so as to minimize the average cost

(1.2) J(u) E c(t, z, u) dr.

Here T is either a fixed time or a bounded random time. The solution of (1.1) is
defined by the "Girsanov measure transformation" method (see 1.3, 2 below)
which permits a wide class of admissible controls. Controls based on three types
of information pattern (partial and complete observation of the past, observation
of the current state) are considered. In each case a principle of optimality similar
to that of Rishel [13] is proved, and criteria for optimality analogous to the
Hamilton-Jacobi equation of dynamic programming established by using an
Ito process representation of the value function. Controls based on observation
of the current state are shown to be minimizing in the class of those based on
complete observation for system models of a suitable type. Finally similar methods
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Research Office-Durham, under Contract DAGCO-67-C-0046.
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are applied to two-person zero-sum differential games, and a version of Isaacs’
equation derived.

The results presented here are closely related to those of Fleming on optimal
control of diffusion processes. A brief outline of the latter is given in 1.2 below
in order to give the flavor of the former and for purposes of comparison. Some
other possible approaches to stochastic control are mentioned; then, in the light
of these, a more detailed statement of the contents of this paper will be found in

1.3.

1.2. Control of diffusion processes. The results outlined here will be found in
Fleming [9 and in the references there. Let F c R" be open and define the cylinder
Q c R"+1 by

Q=0,1] x F.

The system equation, to be solved in Q, is

(1.3) o x6F.

{Bt} is a separable n-vector Brownian motion process defined on some probability
space (f2,,P). a is an n n-matrix-valued function on [0, 1] x R", and
g:[0, 1] x R" x Rl R"; both are of class C2, with g, a, gx, ax bounded on
[0, 1] R" x K, for K compact in Rt. Also there exists c > 0 such that

(1.4) aij(t, X)i# cl#l 2

i,j

for each # R", where a aa’ (’ transpose).
The control u, is given by ut Y(t, ), where Y is Lipschitz and takes values

in a compact set K RI. Thus the information pattern consists of complete
observations of the current state. Under the above conditions (1.3) determines
uniquely a diffusion process on [0, 1] with Eltl 2 < ct) for each t. The objective
is to choose Y so as to minimize

J(Y) E c(t, ,, Y[t, ,]) dt,

where is the first exit time from Q. Let gr(t, x) g(t, x, Y[t, x]) and similarly for
cr. Define the differential operator

(1.5) Ab , + 1/2 aijdpx,x
i,j

and consider the boundary problem

(1.6)
A,r + Or r:,g +c =0, (t,x) zQ,

fir 0, (t,x) ’Q cQ {0} F.

Under the stated conditions this has a unique solution with the required differen-
tiability properties. Applying Ito’s differential formula to the function jr(t, {,),
where {, is the solution of (1.3) with u, Y(t, ,), gives

r(0, x) E cr dt J(Y).



228 M. H. A. DAVIS AND P. VARAIYA

One can now drop the probabilistic interpretation and regard the problem as
that of choosing the coefficients of the partial differential equation (1.6) so as to
minimize the initial value 0r(0, x).

Let U(s, x) be the minimum cost, over the class ofadmissible controls, starting
at (s, x) Q. Formal application of Bellman’s principle of optimality leads to the
Hamilton-Jacobi equation

AU(t, x) + min { Ux(t, x)gr(t, x) + cr(t, x)} 0 in Q,
(1.7) r

U(t,x) O oncYQ.

Fleming’s "verification theorem" [9, Thm. 6.1] says that if"
(i) b(t, x) is a suitably smooth solution of (1.7), and
(ii) u= Y(t,x) is characterized by the property that [ckx(t,x)g(t,x,v)

+ c(t, x, v)] is minimized in Q by v Y(t, x), then

(t, x) u(t, x) (t, x).

A unique solution of (1.7) satisfying the conditions of the verification theorem
exists if a is bounded and Lipschitz and satisfies the uniform ellipticity condition
(1.4), K is compact and convex, and the boundary OF has certain smoothness
properties. (It is possible to relax these conditions somewhat.)

The above theory can be generalized in various ways. Let C C,[0, 1]
be the space of continuous functions on [0, 1] with values in R". Let be the
a-field in C generated by the cylinder sets {z C’z F} where F is a Borel set in
R" and s __< t. For z C, [0, 1], define zt,z C by

z, s __< t,
7[tZ(S)

Zt, S > t.

A function of the form u u(t, zt,z) is "nonanticipative" in that it is adapted tot.
A unique solution to (1.3) using a nonanticipative control u is obtained if u is
Lipschitz, i.e.,

lu(t, zctrl)- u(t, rct)l xllt/-

where II" is the uniform norm in C. See [16]. Here the information pattern is
complete observation of the past. It turns out that Markov controls are minimizing
in the class of nonanticipative controls, so the Markov theory is the natural one in
the case of complete observations. The partially observable Markov case where
u Y(t, ) only depends on certain components of can be considered though
this is a somewhat artificial problem since the controller generally does better
by using all the past observations, not just the current value.

1.3. Methods of the type outlined above suffer from two main drawbacks:
(i) The dependence of the admissible controls on the observations has to be

"smooth" (e.g. Lipschitz) to insure the existence of a solution for optimal control
it is undesirable to be limited in this way.

(ii) The observation r-fields {u)} depend on what control is being used.
This tends to vitiate variational methods since varying the control at a certain
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time affects the admissibility of controls applied at subsequent times. There are
two cases where this does not apply: (a) complete observations, as above, since
then the observation r-fields are those generated by the Brownian process; (b)
linear systems of the form

dxt Atx dt + u dt + dBl(t),
(1.8)

dy, Ftx, dt + dB2(t).

In this case lu) o, where o are the a-fields generated by {yO}, {xO, yO} being
the solution of(1.8) with u 0. This is the basic fact behind the separation theorem
[18], [19] which says that there is one optimal control of the form ut u(t, ),
where t Extl]. Of course, one can define other problems where the observa-
tion a-fields do not depend on the control (this amounts to observing some function
of the noise). Then variational methods can be used; see for example [20]. But
then the problem loses its feedback aspects.

The system equation (1.1) treated in this paper is more general than (1.3)
in that the dependence of the matrices g and a on the state is nonanticipative
rather than "Markov." The method of solution--given in 2--is designed to
avoid (i) and (ii) above. In 1.2 above one took a measurable space (fL ) and
random variables {B} constituting a Brownian motion under a measure P, and
defined a transformation (1.3), B---, , of the random variables. Here a trans-
formation P P, of the measure is defined such that the original random variables
generate under P, the measure in their sample space which is appropriate for the
solution of(1.1). This transformation is well-defined with only minimal restrictions
on the class of admissible controls, and the observation a-fields do not depend
on the control since they are always generated by the same random variables.
On the other hand, the most that is claimed for the "solution" is that it has the
right distributions.

Skorokhod remarks in the introduction to his book [5] that the methods of
probability theory fall into two distinct groups, analytic and probabilistic, the
former having to do only with the distributions of random variables, the latter
based on operations with the random variables themselves. The method used
here is something of a half-way house in that, while it is the distributions one is
concerned with, the techniques used to derive them are definitely probabilistic.

This method has previously been used in [7], [8 (on the existence of optimal
controls in the case of complete observations) and [19 (on the "separation
theorem" of (b) above).

With a solution defined for each admissible control, the objective is to derive
Hamilton-Jacobi-type conditions for optimality for the system (1.1) analogous
to (1.7).

In [13] Rishel developed dynamic programming conditions for a very general
class of stochastic systems. In 3 below, Rishel’s "principle of optimality" is
proved in the present context and in 4 conditions for optimality close to Rishel’s
are established. Using the special structure available here these can be recast
(Theorem 4.2) in a form close to that of (1.7) above.

In 5 the same methods are applied to the (simpler) completely observable
case.
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Section 6 deals with Markov control of systems similar to (1.3) (but without
the technical conditions). The results here are direct extensions of those of 1.2
above, coinciding with the latter when the relevant conditions are satisfied.

Differential games are susceptible to attack by the same methods. The paper
concludes with a brief section ( 7) outlining some of the possibilities in this direc-
tion.

2. Preliminaries. In differential form, the system equation (1.1) is

(2.1) dzt g(t, z, ut) dt + ((t, z) dw

with initial condition z(0) Zo e R", a fixed value. Here e [0, 1] and for each t,
zt R", wt R", ut R. When necessary g and r will be written g’ (g’l, g) and
r’= (r’l,a) (’= transpose) corresponding to zt (x’t,Y’t), the ’state’ and
"observation" processes with dimensions n m, m, respectively.

Let {Bt, [0, 1]} be an n-dimensional separable Brownian motion process
on some probability space (f, , #). For each let s/t be the a-field generated
by the random variables {B, 0 =< s =< t}. Consider the stochastic differential
equation

dz, ((t, z) dB,,
(2.2)

z(0) z0.

The following properties are assumed for the n n-matrix-valued function

(i) The elements (rij’[0, 1] C R are jointly measurable functions;
(rij(t, is ot-measurable for each t.

(2.3)
(ii) There exists a process zt, [0, 1], adapted to ’t, satisfying (2.2) and

(iii) a(t, z) is nonsingular; in particular, o’2(t z) has rank m, for almost all
(t,z).

In (ii), the process {zt} is assumed to be unique in the following sense All solutions
of (2.2), which must necessarily have continuous sample paths, generate the same
measure in the sample space (C, -). This is the definition used by Girsanov in
11 ]. Conditions (ii) and (iii) are given in the form in which they are required rather
than in such a form as to be easily verified;any sufficient conditions insuring
their satisfaction could be imposed;see, e.g., [16], [23].

Under the conditions (2.3), (2.2) defines a measure P on (C, ) by

PF #[z- I(F)] for F

Observe that

(2.4)

1C and {,} were defined in 1.2. We are assuming that a is defined as a function over [0, 1] x C
rather than over [0, 1] x f. Throughout this paper the elements of C are denoted by z.
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for each t, since

W 0"- dz.

The following properties are assumed for the function g"

(i) g "0, 1] C E R" is jointly measurable. (Here E, the control set, is a
fixed Borel set of RI.)

(2.5)
(ii) For fixed (t, u), g(t,., u) is adapted to .

(iii) For all (t, z, u),

[a- l(t, z)g(t, z, u)l -<_ gO( z ),

where l" is the uniform norm in C and gO is an increasing real-valued
function. Thus

*1

la-lgl2 dt <= [g(llzll)]2 < a.s.(P).
o

Admissible controls. The class of admissible controls is denoted by ’ and
defined as follows. For s, [0, 1], s < t, let q/t be the class of functions satisfying
(2.6) below. Let t be the sub-a-field of generated by the sets {z (x, y) C" ys
e F}, where F is a Borel set in R and s =< t. Note that , does not depend on u.
Thus , is the a-field generated by the past of the observation process.

(i) u’[s, t] C E c R is jointly measurable in (t, z).
(2.6)

(ii) For each t, u(t, is adapted to ,.
(iii) E[p’(u)l] la.s.(P).

[(g )], where g")(t, z) g(t, z,Here exp u[t,z]) and ")p’(u) " (g )is defined
by

(u)#(g {a ’(’r, z)g(’r, z, u[’c, z])} dB’c

2 I- (, zg(r, z, u[, z]l dr

(2.7)

(a- g)’a- dz - la-1g12 dr.

Now define ’ ’.
From (2.7)....s(u) can be computed directly from {z 0 < r < t}. Thus p(u)t

can be regarded as a random variable on the probability space (C, if, P);in fact
this is taken as the basic space from now on, the symbol E referring, as in (2.6)
(iii), to integration with respect to the measure P. It is shown in [11] that (2.5)
and (2.6(i)), (2.6(ii))imply

E[p(u)l] a.s.
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There is no known criterion for equality, though various sufficient conditions have
been derived;see [7], [8].

Remark 1. If u’ ’ and u" q/’t
S, where r _< s _<_ t, then u ’t where

u(, z)= u’(,z),-- Jr, s),

(, z), Is,

Indeed, u clearly satisfies (2.6(i)), (2.6(ii)), and

E[p’;’(u)l,] E[p,(u’)E{ p’"(u")l}l,]
E[p,(u’)[,] 1 a.s.

for r _<_ t’ _<_ s _<_ t" _<_ t. The other cases work similarly.
Remark 2. If u ’, then u restricted to Is, t] belongs to q/ts. This follows from

Lemma 2 of [11].
THEOREM 2.1 (Girsanov). For u ql let the measure P, on (C, ) be defined by

PF fr p(u) dP, F -.
Then" (a) dw dB a-g dt is a Brownian motion process under the measure #
defined by

#[z-I(F)] PF.

(This defines #, for each A 6 ’ in view of (2.4).)
(b) The process {zt} considered on the space (C, , P,) satisfies

(2.8)
dz, g(t, z, u[t, z]) dt + tr(t, z)

z(O) Zo.

This result is immediate from Girsanov’s Theorem 1 [11]. Lemma 6 of [11]
states that if {0} is adapted to s and 1012 dt < a.s., then

O dB Os dws + Ostr- g ds.

Putting 0, tr(t, z), we see that (2.8) follows from (a) above and (2.2).
Theorem 2.1 shows that the process {zt) is, with measure P,, a solution of

(2.1) in the sense that

dz g dt + tr d(Brownian motion).

Remark. All measures arising in this paper are, by definition, mutually
absolutely continuous with respect to the measure P; so when some property is
stated to hold "almost surely" (a.s.), it is irrelevant which measure is referred to.

Let c:[0, 1] C E R be a nonnegative real-valued function satisfying
(2.5(i)), (2.5(ii)) and

(2.9) c( t, z, u) __< k for all(t,z,u) e[0,1] x C x E,
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where k is a real constant. The cost ascribed to an admissible control u is

d(u)= E,I f[ c(s, z, u[s, z]) dsl E[p(u) f
Note that this allows for a random stopping time z as long as z < 1 a.s., for
ct ctI[>_q is an admissible cost rate function and

E c ds Eu c’ ds.

The following results will be required in subsequent sections.

2.1. Compactness of the set of densities. Let c5 be the set of measurable
functions 7:[0, 1] C - R" adapted to f*-t and satisfying:

(2.11)
(i) la- l(t, z)T(t, z)l =< g(llzll),

(ii) E[exp {((7)}] 1.

Let
THEOREM 2.2. @ is a weakly compact subset ofL(C, , P).
This result is contained in Theorem 2 of [8] for the case a I (the identity

matrix). Only minor modifications are required to establish the result as stated.
Note that p(u) for each u q/. Thus for any sequence u, ’ there is a

subsequence {u,k and an element h f# such that

p(u,k) exp[o(h)]
weakly in L as k

2.2. Innovations process and representation of Martingales. The main
result here is Theorem 2.3, which says that any Martingale adapted to t has a
representation as a stochastic integral with respect to the "innovations process"
of {Yt}, defined below. This definition was given in [15]. The result is proved in
[10] for the case a I the following is a similar method of proof using also ideas
from [15].

Let 7 e f#, 7 (h, h) with dimensions m n, n, and define the measure P* on
(C, ) by the Radon-Nikodym derivative

dP* exp [srg(7) dP.

P* is a probability measure in view of (2.11) and from Girsanov’s theorem the
process {zt} considered on the space (C, -, P*) satisfies

(2.12) dzt 7t dt + a dwt,

where (wt, f-t, P*) is a Brownian motion. From (2.12), the observation process
{Yt} satisfies

(2.13) dyt ht dt + O’2(t dw

and

(2.14) Ihtl 2 dt < oo a.s.
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Choose any vector 0 R" and let , O’y,. Applying Ito’s differential formula to
the function F() 2 gives

This shows that the symmetric positive definite matrix o2(t)a(t is measurable
for each t. Thus there exists a unitary matrix Q and a diagonal matrix L, both
,-measurable, such that

(2.15)

Now define

az(t)a’z(t) Q,L,Q,.

T, (L,)- /Q,

(2.16)

(E*[-Io,] denotes conditional expectation with respect to P*.) The innovations
process {v,} is defined by v0 0 and

(2.17)
dv T,(dy h, dt)

T(a2(t dw, + , dr).

LEMMA 2.1. (V,, , P*) is a Brownian motion process.

Proof It is evident from the definition that {v} is adapted to and has almost
all sample paths continuous. Pick 0 e R". In view of (2.15) and (2.16), for each t,

(2.18) Tta2(t)a’2(t)T’ I

so that applying Ito’s differential formula to the function f(v) ei’v gives (using
(2.17)),

NOW,

and

Thus,

ei’vm eTM iO’ ei’t)Tf dz + (-1/21012) ei’vm dz

+ iO’ ei’vtrra2(z) dw.

E*[iO’ ei’tTftls] E*{iO’ ei’VtTE*[h- ,:13]1s}
0 a.s.,

E* iO’ ei’v(r)Tra2(z) dwl% 0 a,So

E* [eiO’v(t) e’’ts)[%] E* (-1/21012) e’’t*) dl%
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or, alternatively,

E*[exp{iO’{v(t)- v(s)}} lls]

(2.19) -1/21012E* exp {iO’{v(r‘) v(s)}} dr‘ls

Pick A e Y, and define

f exp {iO’{v(t) v(s)}} dP*.
.a

Then from (2.19),

rl, P*A 1/210l 2 exp[iO’{v(r‘) v(s)}] dr, dP*

=P’A-1/2101 r d.

This integral equation has the unique solution

rl P*A exp[-1/21012(t s)]

from which it is immediate that

E*[-exp [iO’{v(t) v(s)}]l] exp -21-1012(t s)].

The statement of the lemma follows from this.
THEOREM 2.3. Suppose (M, t, P*) is a martingale. Then there exists a process

{if,} adapted to such that

l,l
2 < a.s.dt

and

(2.20) Mt Mo + 9 dv.

Proof. Mo is a constant a.s. since o {C, 3}. For convenience assume that
E*Mt Mo 0. For n 1,2,..., define

r‘. min 1, inf t" [Tfs[ 2 ds >= n

This is a stopping time of t, and r‘, T a.s. from (2.11(i)). Now define

n, exp (- Tsar)dv - Tfl 2 ds

and define the measure/3, by

d,, n ^. dP*.
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From Girsanov’s theorem/3, is a probability measure for each n, and the process

(2.21) v, + T, ds

is a Brownian motion under P,. Let

o, { U, 0 __< s <__ t}.

By Theorem 3 of[6], if(,, ’, P.) is a separable martingale, then it has continuous
sample paths and has the representation, dU.

Observe from (2.17) and (2.21) that ff dy for < , and hence that

Thus if (,, , ., P,) is a martingale,

An
(2.22) M, .
Now suppose (M,, P*) is a separable martingale. Then (,A, P) is a
martingale, whre

(2.23) , M,()
Indeed, (M A, , P*) is a martingale by the optional sampling theorem, and,
denoting integration with respect to P by , we have

s
m,.(.)- .

In this case M M ,. so that from (2.22),

(2.24)

M, dpT dy

’ dv +

Now rt, ^. satisfies the Ito equation

A:

Azn

(2.25) t ^. Th dv.
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Applying the Ito differential formula to the product in (2.23), using (2.24), (2.25),
gives

where

Such a representation is clearly unique, so that

k" k"’ for n’ => n,

If ff is the function which, for each n, agrees with if" on Is < r,], then

A

M,^,. sdvs,

0

(2.26) M 9sdvs
o

on It < r,] for each n. Thus (2.26) holds a.s. for each since r, T a.s.

3. Value function and principle of optimality. The results here are similar
to those of Rishel [13]. The valuefunction W. is defined by (3.3) below and shown in
Theorem 3.1 to satisfy a version of Bellman’s principle of optimality. In Rishel’s
paper this depended on the class of controls satisfying a condition called "relative
completeness." Here it turns out (Lemma 3.1) that this condition is always satisfied.

Suppose control u ) is used on [0, t] and v ’ on (t, 1. Then the expected
remaining cost at time t, given the observations up to that time, is

(3.1)
EEp’o(U)p)(v)f. cg

a.s.

See [3, 24.2]. We omit the superscript v if it is clear from the context. Define

f,,(t) E po(u)p, (v)

The notations , ,, and f, f,, for u @g will also be used. Now f,v(t)
LI(C, ,, P) since f,v >= 0 a.s. and

Ef.(t) E pto(u)pt(v c ds <= k(1 t)

from (2.9). L1 is a complete lattice [2, p. 302] under the partial orderingf -< f2
fl(z) _-< f2(z)a.s. The set {f.(t)’v e ’t} is bounded from below by the zero
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function, so the following infimum exists in L for each t:

(3.2) V(u, t) A L,(t).

Notice that the "normalizing factor" E[p[t] E[po[t] does not depend on v.
The valuefunction W,(t) is thus defined as

(3.3) W(t) A E,o c dsl#, V(u, t).

Thus V(u, t) is an unnormalized version of the g.l.b, of the expected additional cost
at time t. Suppose O LI, V(u, t)-< 0; i.e., V(u, t)(z) < O(z) for z M, PM 1.
Then there exists v and a set My with PMv > 0 such that fun(t, z) < O(z) for
z M. The class ’ is said to be relatively complete [13 if for any [0, 1] and e > 0
there exists v q/ such that

L(t) < V(u, t) + a.s.

This amounts to saying, in the above, that for 0 V there is a v with PM 1.
The fact (Lemma 3.1) that this is true is used in the proof of Theorem 3.1.

LEMMA 3.1. ’ is relatively complete.
Proof. Fix e > 0, t [0, 1] and u q/. Let V(z)= V(t, u)(z), and for v

let

M {zL(z) < V(z) + }
A partial ordering is defined on the set X {(v, M,)’v e q/)}. Then Zorn’s lemma
is used to establish the existence of a maximal element (v*, My,) which has the
property that PM, 1, proving the lemma.

The partial ordering >- on X is as follows"

(u, M) >- (v, M) if and only if

(i) m. m,
(3.4) (ii) PM, > PM,,

(iii) u and v agree on My.

Each chain in (X, >-) has an upper bound. Indeed, let {(v,, M)’a A} be a chain
in (X, >-).

1. If for some A, PM supA{PM}, then (u,, M,,) is an upper bound.
2. If PM, < supsa{PM} m for each 1 A, then PMs ]" m __< 1. For each

n 1,2,... pick a, such that

PMs, > m 1/n.

Ms and conversely,Let M U a M. Then M I.J +n_l M, clearly M I.J,__
given aA, PMs < m-1/n’ for some integer n’, and hence,
c (-J = Ms,,. Thus M is t-measurable and PM m.

3. Define the control v on < z < as follows"

v(z, z) vs,(z, z), z +
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This specifies v on M on M let v(r, z) v,l(r, z). v is clearly measurable; and

{z.v(,z)r}= u M, n {z.,(,z)r}
i=1

so that v is adapted to t Let M M, U M Mi---M.- U i- Mj for
j=l

1, 2, 3, .... Then {M} is a partition of C into t-measurable sets. Hence,

E[p](v)l,] E[IM,P](V,)I,]
i=1

i=1

I a.s.
i=1

Thus v
4. (v, M) is an upper bound for {(v,, m)’ A}.
(a) (v,m)x;i.e.,m m= {z:L(z)< V(z)+ e},sincezmsozm,for

some ;hence v v,, andL(z) < V(z) + e, while z m implies v(z) v,(z)
and z M since M = M.

(b) For any A, (v, M) (v, M). This is immediate from (3.4). Since each
chain in X has an upper bound, X has a maximal element, i.e., an element (v*, M*)
with the property that for each comparable (v, M,) X,

(*, M*) ,, M).

It remains to show that PM* 1. Suppose PM* < 1. Then P(M*) > 0 so there
exists v’ and a set W = (M*) with PW > 0 such that

L,,(z) < V(z) +
Recall that W, M are ,-measurable. Define

This is admissible and

v(t,z),
zM*,

v(t, z)
v (t, z), z (M*).

M {z’v(t, z) < V(z) + } M* U .
Thus PM > PM, and hence (v, M) >- (v*, M*), contradicting the maximality
of (v*, M*). So PM* 1, as required.

THEOREM 3.1. For each [0, 1] and u lo, the value function Wu(t) satisfies
the "principle of optimality":

(3.5) W.(t) E, c") dslO#t + E.[W.(t + h)l#,] a.s.

for each h > O. Furthermore u is optimal if and only if there is equality in (3.5) for
all t, and h > O.



240 M. H. A. DAVIS AND P. VARAIYA

Proof.

V(u, t) A E pto(u)pt (v c v) ds + pto(u)plt (v c]
il + h

(3.6 <= og*"(u c"asl,

+ A e o*(uo,(v c s,ve+ + h

(Otherwise there would be a v e+h and M e with PM > 0 such that

V(u, t) E pg+ a(u) c, dsl, > E p+ a(u)pd+ a(v) c, dsl,
+h

for zs M; i.e.

V(u, t) > E pg+ a(u)p+ a(v) c, dsl, for z M,

a contradiction.) The next step is to show that

(3.7) E[g(u, + h)l] A E p+ h(u)o+ h(v) c dslv+ + h

For any v’ s+h,

V(u + h) N E p+ h(u)p+ ,(v’) c’ dsl+ h a s
+h

Hence,

Therefore,

E[V(u, + h)lO#,] E p’o+(u)p,+(v’) c’ dsl,
+h

E[V(u, + h)l,] <- A E po+(u)p,+(v’) c’)

V’ ll + h

a,So

aoSo

Since the class ’t is relatively complete, given + h, u s k’+h, and e > O, there
exists u’ s q/t+ such that

Then,

E po+ "(u)p+ (u’) c"’ dsl+ <= V(u, + h) + e
+h

E po+ "(u)pl,+ n(u’) c]’’) dsl, <= E[V(u, + h)l,] + e
+h

and thus,

a,So

E po+"(u)p)+n(u’) c’’) dslO#, <_ E[V(u, +
+h

aoSo
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This establishes (3.7). From (3.6) and (3.7),

V(u, t)<__ E p’o+h(u) c") dslYt, / ElY(u, / aoSo

Dividing this through by E[po(u)l,] gives (3.5) after noting that

E[V(u, + h)[,;

E,EW(t + h)l,].

The last assertion is evident from the argument above.

4. Conditions for optimality. Two sets of criteria--Theorems 4.1 and 4.2.
are presented in this section. Theorem 4.1. is included for two reasons: it is used
later in establishing other criteria, and it is the equivalent in the present context
of Rishel’s results (Theorems 8 and 9 of [13]). The process "W(t)" of Rishel’s
Theorem 9 corresponds to the process Z(t) defined below. Theorem 4.2 is the main
result of this section.

The objective of this and the following sections is to get Hamilton-Jacobi
criteria for optimality, i.e., a local characterization of the optimal policy in terms
of the value function. The results are bound to be less than satisfactory in the case
of partial observations as there is a different value function for each control: the
expected remaining cost from a certain time on depends on what control was
applied prior to that time. By restricting attention, as Rishel does, to "value
decreasing" controls, in which class the optimal control, if it exists, must lie, one
can get some way towards the above characterization. This is Theorem 4.2.

The case of "complete observations" is a great deal simpler as here there is
only one value function. This case is treated in 5.

THEOREM 4.1. U* # is optimal if and only if there exists a constant J* andfor
each u ll an integrable process {a.(t)} adapted to and satisfying:

(i) E. a.(s) ds J*,

(ii)
e,,Ecl"*)l,] ,,(t)- 0,

for almost all (t, z).
Then J* J(u*), the cost of the optimal policy.

Proof Suppose u* is optimal. Let J* J(u*) ,,(0). Define x, J*(O,(0))-
thus x, =< and xu 1 if u is optimal. Then the process

is clearly integrable and in fact satisfies (i) and (ii). Indeed,

E. .(s) ds ,E. cds ..(0)= J*
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and

Conversely, suppose there exists an integrable process {,(t)} satisfying (i) and
(ii). Let Z,(t) be defined by

Z,(t) E,[a,(1)l,] a,(t),

where a,(t) f’o ,(s)ds. It is easy to check that

Thus

It follows that

,>__ Z, a.e.(d2 x dP).

Similar steps using the equality in (ii) lead to

0,,= Z,, a.e.(d2 x dP).

Thus

.q,.(0) >__

,,O,,(0) ,,z.,(0).

But ,(0)= J(u) and E,Z,(O)= E,.Z,.(O)= J* from (i). So from the relations
above,

J(u) >= J* J(u*)

for all u e ’. This completes the proof.
Following Rishel [13], a control u e //is called value decreasing if

W,(t) >__ E,[W,(t + h)l,] a.s. for each t,

i.e., if (W,(t), Y/t, t),) is a supermartingale. Any optimal control is value decreasing"
from Theorem 3.1, if u is optimal,

Itt+h

Cu) dslt] >_ 0 a sW,(t)- E,[W.(t / h)l,] E.
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On the other hand, optimal controls could conceivably be the only value decreasing
ones, though normally one would expect this class to be a good deal larger.

In the case ofvalue decreasing controls the value function can be represented as
an Ito process and the conditions for optimality restated in a more intuitively
appealing way. The term "Ito process"is borrowed from [11, p. 286].

LEMMA 4.1. Let u ll be value decreasing. Then there exist processes {AWu},
{VWu} 2 taking values in R, R" respectively and adapted to t, such that

(i) IA W.I2 dt < a s

(ii) E VW,lds< ,

(iii) W,(t) J* + AW.(s) ds + VW,(s) dy a.s.

under measure P.
Proof. By assumption, (Wu(t), , P,) is a supermartingale thus from (3.5),

[E.[W.(t+ h)- W(t)]l < Eulft+h c) dsI <= kh.

Thus the function EuW,(t) is right-continuous, and therefore (VI T4) (such
a reference is to Meyer’s book [4]) { W.(t)) admits a right-continuous modification,
which is assumed to be the version chosen. It is clear from the definition that
W.(t) --. 0 as T 1, a.s. and in LI(P.) so that { W.(t)} is a potential and by (VII T29)
there exists a unique integrable natural increasing process {At) which generates
W,(t) i.e. such that

(4.1)

Define, for h > 0,

W,(t) E,[AI,] At.

/3--
1

Then (VII T29) also states that

(4.2) h ds A

weakly in LI(P,) as h $ 0 for each fixed t. Now from (3.5),

1 I’+c]U’dsl,l<k a.s.

Thus the subset {B’h > 0} is uniformly integrable and hence, from (II T23),
weakly compact in L(P,). There therefore exists a sequence h, + 0 and an element
e ofL such that

B)"e, asn.

So-called because they play a similar role to the functions A and V4 in the Markov case

(see 1.2). This will become apparent.
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It is then immediate that there is a sequence h, $ 0 and a subset {at’t e S} c L1,
where S is a countable dense subset of [0, 1], such that

For S define at by

(4.3)

/3)"-et asnoe for eachteS.

sS

To see that this limit exists, note that/h is right-continuous in s for each fixed h.
Let 0 L. For t, t’ S, t’ > t,

(4.4) IEuO(a at,)l

Now 0(flh, flh,) 0 a.s. as t’ $ t, and hence also in L1, in view of the uniform

integrability. Choosing n such that the sum of the first two terms in (4.4) is less than
1/2e and then t’ such that [E,,O(," fl")l < 1/2e gives

Thus if t, $ t, {at,} is a weak Cauchy sequence and the limit in (4.3) exists.
For 0 s L,

(4.5) E,O a ds A, <= E,O ds ds + E,O ds A,

The last term converges to zero along {h,) from (4.2), and since the expectations
E, are uniformly bounded for h > 0, by Lebesgue’s bounded convergence
theorem,

f E,O( ds ") ds O, n

Thus from (4.5),

It follows that

OLoo, t [0, 1].

(4.6) At as ds a.s. for each t.

Recalling (4.2) and in view of (4.6), evidently

at w-lim flh,

for every subsequence {h,} such that the limit exists. Therefore

Now (4.1) says

(4.7)

a w-lim fith.
hO

W.(t) E.[A l[t] a ds.
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Y E,[AIIt] is a right-continuous, hence separable, uniformly integrable
martingale on (C, , P,). Applying Theorem 2.3 with 7 gt"), P* P,, shows
that { Y} has the representation

(4.8) Y, Yo + O dv,

where dvt T(dy, ,2") dr) is a Wiener process under P,. Here

(4.9) ’(2") E,[gz(t, z, u,)l].

Thus from (4.7) and (4.8),

W,(t) Yo- [e + OsT,2")(s)] as + OT dys.

Now W,(0) J* Yo; and defining

AW,(t) -,- O,Tz")(t)
and

finally gives

vw.(t) 0,T,

W.(t) J* + AW.(s) ds + VW.(s) dy

as required.
THEOREM 4.2. U* ll is optimal if and only if there exists a constant J* andfor

each value decreasing control u l processes {r/")}, {}")}, taking values in R, R
respectively and adapted to , and satisfying thefollowing conditions"

for almost all (t, z) [0, 1] x C.
Then Z}"*) W,.(t) a.s. and J* J(u*), the minimal cost. Here ,"(t) is defined by
(4.9) above, and ") is defined similarly.

Proof Suppose u e //is value decreasing. Then from (3.5),

(4.10) W.(t) E.EW.(t + h)l,] <= E. c) dslO,
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Now from Lemma 4.1,

vv.(t) J* + AW.(s) as + VW.(s) aye.

Under measure P,, { Yt} has, from Lemma 2.1, the innovations process represen-
tation

and thus

dy T[-1 dv + ,z")(t) dt,

W,(t) J* + [AW.(s) + VW,(s),z")(s)] ds + VW.(s)T-’ dv,.

E, o,(s) ds J*.

Then from (4.13) and (ii),

Therefore,

W,(t) E,[W,(t + h)l,] E, [A W,(s) / VW,(s),z")(s)] dslYl,

so (4.10) becomes

(4.11) E. (AW,(s) + V(s)")(s)+ c") dsl, 0 a.s.

Denote the integrand in (4.11) by X and take 0 6 L. Then

1 ,+h 1
E.{E.[OI,]X} ds

as h + 0 for almost all t. Hence from (4.11),

(4.12) AW,(t) + VW,(t)")(t) + ") 0

for almost all (t, z). If u is optimal, then equality holds in (4.10), and hence in (4.12).
Thus, identifying

properties (i)iii) are seen to hold.
Conversely, suppose J*, {,")}, {")} exist and satisfy (i)-(iii), for each value

decreasing control. Let u be value decreasing. Then under measure P,, Z")

satisfies

(4.13) ,) j. + (q,) + (,)z(,)t ds + ?(") T- dv

where {dvt} is a Brownian motion. Define

.(t) q" t 62
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{a,(t)} is adapted to t, and from (iii),

(4.14) E,[c")[t] 0u(t >= 0.

In the case u u*, (4.14) holds with equality. It now follows from Theorem 4.1
that u* is optimal in the class of value decreasing controls. Since these are, as
remarked earlier, the only candidates for the optimum, u* must be optimal in

Since u* is optimal, W,,(t) ,,(t) from Theorem 3.1. Now

qt,,(t) E,,I f
E., (-" "*) ,*)a,*) ds ?"*) dvqs s 2

Eu u*)q ds- dye[

E, * ds +

Thus Z"* %,(0, as claimed.

(from (ii))

(from (iii))

5. Completely observable systems. This section treats the case where the
entire past of z is available for control; i.e. (in the definitions of 2) m n and

for each t. Thus the admissible controls (denoted by /) are functionals
of the past of z, and are for that reason sometimes referred to as "nonanticipative
controls" [9].

The considerable simplification that results in this case is due to the fact that
there is now only one value function. In fact,

E[p’o(U)p](v)f c dsl]

does not depend on u; thus W,(t) W(t) for all u, where

IW(t) A E p](v) c])dsl

The principle of optimality (3.5) becomes

(5.2) W(t) <_ E. c" dsl, + E.[W(t + h)l].
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Using this, a genuine Hamilton-Jacobi criterion (Theorem 5.1) for optimality can
be obtained, as a corollary to Theorem 4.2.

THEOREM 5.1 (Nonanticipative controls), u* A/" is optimal if and only if there
exist a constant J* and processes {q,), {t) taking values in R, R" respectively,
adapted to , and satisfying thefollowing conditions:

where

(i) It[z dt < oo a.s., E t dz, O,

(ii) Z(1)-0 a.s.,

(iii)

Z(t) J* + rlsds + dz,

_(u*)
r/, + ,gl") + cl")>__ 0 r/, 4- ,g"*) 4- c,

for almost all (t, z), for each u

Then Z(t) W, a.s. and J* J(u*), the minimal cost.
Now the value function W(t) is defined whether or not an optimal control

exists. As a result of independent interest we obtain a representation for W(t) as
an Ito process (Theorem 5.2).

Recall the definitions of the sets ad and from 2.
LEMMA 5.1. There exists a process h such that (W, ,P*) is a super-

martingale, where

dP*/dP exp [((h)].

Proof Select a sequence {u,} c ,/V such that

J(u.) ..(o) + w(o) j*.

Now g("") ad and hence p(u,) @ for each n. From Theorem 2.2 there exists a
subsequence, also denoted by {p(u,)}, and an element h f# such that

(5.3) p(u,) - p* weakly in La(P),

where
p* exp [(h)].

Evidently, from (5.3), for any 6 [0, 1],

(5.4) p’o(U,) E[p(u,)l,]- E[p*I] exp[(h)].

Define the measure P* by dP* p* dP and let

p* E[p*I].

To show that (W,, , P*) is a supermartingale it suffices to prove that for any
t,h,F,,

(5.5) f (W+ W)dP* f p*+h(W+ W)dP <= O.
aF dF
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Let p. pt+h and p. pto+h(u,). Then

(5.6)

The third and fourth terms of (5.6) are nonpositive, the third because O,,(t + h)
majorizes Wt+ and the fourth because k,, is a supermartingale under

Fix e > 0 and choose n’ such that ,,,(0) < W(0) + e for n >__ n’. From (5.2)
(with 0, h t),

E..[q,.o(t)- w,] <
for each t. Hence,

(5.7)

Now [Wt+h

(p.

Thus for n >__ max In’, n"], in (5.6),

Wt+h

f p.[,.o(t) w,] __< J
E,,[O,,(t)- W] < forn>=n’.

Wt]IF e Loo, so there exists n" such that for n >__ n",

p.)(w,+,- w,)< .

a.s. under measure P.

(ii) E IAWlds< o,

(iii) W,=J* + AWsds+ VWdzs

Proof Choose a sequence {u,} q/satisfying (5.3) and such that

J(u,) -, W(0) as n

Now

IE*(W,+ W,)l IE[p*(W, +h

(5.8) <-IE[(p* P(Un))(Wt+ h Wt)]l

/ IE[p(u,)(W,+h W,)]I.

respectively, and adapted to , such that

(i) j IVWl 2ds<
o

which is equivalent to (5.5) since e was arbitrary. This completes the proof.
THEOREM 5.2. There exist processes {AWt} {VWt} taking values in R,
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The first term on the right goes to zero as n v since (W+h I/V) Loo and since
p(u,,) p* weakly in L1 by (5.3). Also

E[p(u)(W+ W)] E[p(un)(W+ h ,.(t + h))]

+ E[p(u)(qt.(t)- W)] + E[p(u)(,.(t + h)- ff,.(t))],
and by (5.7) the first two terms on the right go to zero as n . Finally from (5.1) it
is easy to check that

E[p(u)(.(t)- u.(t + h))] E p+h(U,) G ds kh.

Thus letting n in (5.8) we get

(5.9) IE*(W+ w31 <- kh.

This implies, as in Lemma 4.1, the existence of a right-continuous modification
of W; and since (W, , P*) is a potential, it follows again from (VII T 29) of [4]
that

W E*[A ,l]-
where

and

flh (1/h)(W E*[W+hI]).

The next stage is to show that , dA]dt w-limh+oflh. It suffices to show that
{flh’h > 0} is uniformly integrable then the rest of the proof is exactly as in

the proof of Lemma 4.1. From (II T19) of [4], ocf is uniformly integrable if:
(i) *E fl are uniformly bounded for h > 0, and

(ii) vlfl] dP* 0 as P*F O, uniformly in h.
(i) follows from (5.9). Since fl is -measurable, in proving (ii) we can restrict

ourselves to F . Now

f_ hfl dP* I_ [W W+h] dP*

(5.10)

Once again since (W W,+h) e Loo and p(u,)-% p*, the first term on the right
goes to zero as n . Next,

f[w-W,+h]p(u,)dP=fp(u.)(W,-.(t))dP
(5.11) + f p(u,)(b,.(t + h)- W+h)dP

+ fv p(u.)(O,.(t)- O,,(t + h))dP.
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From (5.7), the first two terms on the right go to zero as n ---, v. On the other hand,
from (5.1),

so that

fv p(u.)O..(t) dP fF p’o(U.)q,..(t) dP

p- h(u,) cs ds dP + p- h(Un)lu.(t -k h) dP.

Also,

fr P(U.)k,.(t + h)dP Jv P+ h(u")""(t + h)dP

so that the last term in (5.11) is equal to

po+ h(u,) c ds dP kh p+ "(u.) dP

and converges to khP*F as n . Thus letting n in (5.10) we conclude that

v
hfl dn* khP*F,

and (ii) is established. Therefore,

(5.12) E*[AII] a ds.

To represent the separable martingale E*[AII], again Theorem 2.3 is
used. Recall from Lemma 5.1 that

dP* exp [(h)] dP.

Thus,

(5.13) dw a- l(dz h, dt)

is a Brownian motion under P* and is in fact the innovations process for {zt}
since it is adapted to . From Theorem 2.3 there exists a process {qt} such that

(5.14) E*[A11] E*[A 1] + dw.

Combining (5.12)--(5.14) gives

W J* + AW ds + VWdzs,



252 M. H. A. DAVIS AND P. VARAIYA

where

AW e, qb,a- h,,

This is the desired result.

6. Markov controls. In this section a more restricted class of models is
considered, namely those where the system matrices g and a depend at a given
time on the state only at that time. More precisely, let 3 be the a-field generated
by the single random variable zt. The definitions (2.3) and (2.5) are unchanged
except for (2.3(ii)) and (2.5(ii)) which now read:

(6.1) (ii) For each fixed (t, u), g(t, u) and a(t, are measurable.

In view of [3, 35.1a] this amounts to saying that g and a are functions
on [0, 1] R" R taking on values g(t, z, u) and a(t, z,) at (t, z, u).

The class of Markov controls is denoted by /g , where //ts is the class
of functions u satisfying the following conditions:

(i)
(6.2)

(ii)

u :[0, 1] x R" F_, c R is jointly measurable,

E[p’(u)ls] 1 a.s.,

where pts(u) is defined by (2.6) with

glu g(t, z,, uEt, z,3).

Let u . Then, from Theorem 2.1, under measure Pu the process {z) satisfies

(6.3) z, z + g") d + rdw,

where (w,, , P,) is a Brownian motion. From (6.3) it is evident that

and it is easy to see that z is a Markov process under P,; hence the term "Markov
controls." {z,} is also Markov under the original measure P.

The cost rate function c is also assumed to satisfy a condition similar to (6.1),
so that

cl"(z) c(t, z,, uEt, z,]).

Stopping the process at the first exit time from a cylinder Q (as in 1.2) can
be accommodated within this framework. For, let l(s, x) 1 for (s, x) Q and 0
elsewhere. Then the new system functions gO Ig, o Ia and c Ic satisfy all
the relevant conditions. If u /and E denotes integration with respect to the
measure corresponding to gO,), ro, then

E, c") ds E, c(") ds
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The remaining cost function q.(t) is defined for u e///as

u(t) E,I ft c") dsl,1

This does not depend on us for s [0, t] there is therefore, as in the case of complete
observations, a single value function U(t, zt) defined by

or, or(t, z,) A 0,(t).
dltx

Since /t c Xt it is clear that Ut __> W a.s. for each t. The main result of this
section (Theorem 6.2) is that in fact U, Wt. This is intuitively clear:since the
system’s evolution from time depends only on z the controller gains nothing
by taking account of previous values zs, s < t. The proof depends on a principle
of optimality for the Markov case and results exactly analogous to Lemma 3.1
and Theorem 5.1 for the completely observable case. The proofs are almost
identical here, the Markov property stepping in wherever the fact ot for
s < was used in 5. So in the following, complete details are provided only where
there is significant deviation from the corresponding previous proofs.

LEMMA 6.1 (Markov principle of optimality). Let u . Thenfor each t, h,

(6.4) U, <= E, c") dsl, + E,[U,+hIt] a.s.

The following result is the analogue of Theorem 5.2.
LEMMA 6.2. There exist measurable functions AU:[0, 1] x R" R and

Ux [0, 1] x R" --. R" such that

(i) g lAg(t, z,)l dt <

(ii) U,(t, zt)12 dt < oe a.s.,
0

(iii) U(t, z,) Jt + AU(s, zs) ds + U,(s, zs) dzs,

where JM infua J(u), the minimum Markov cost.

Proof. The methods of Theorem 5.2 can be used to show that U has the
representation:

(6.5) Ut JM + rls ds + s dzs,
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where {r/t {} are adapted to . It remains to show that r/,, , are Nt-measurable
for each t. For n 1, 2, let

%=min 1,inf t" 1 ds >- n

r is a stopping time of {} and : T 1 a.s. since

’IQ/s< a.s.
o

Let

Let

fort =< ,,
for,<t=< 1.

M, sdz,
(6.6) ,

^. jo .. dz
Now E [,)[2 ds n, so that M") is a second order (square integrable) mar-
tingale for each n; thus M is by definition a local second order martingale. The
following results are proved in Kunita and Watanabe [12]. Let

Y {(a(t) az(t)) ai(t r,) is a natural, integrable increasing process adapted
to,,i= 1,2;n= 1,2,...}.

If (X, ), (,) are local second order martingales, there exists a unique process
( Y, X), e Y such that for > s,

In addition,

(6.7) (Y, X), (X + Y),- (X Y),),

where

(x), (x, x),.

(X)t is known as the quadratic variation of X for the following reason: if X has
continuous sample paths, then [12, Thm. 1.3] there exists a sequence of partitions
{t"), k 1, 2, ..., k,} of [0, t] such that

(6.8) max It") ’(") 0 n ck-1
k

(6.9) E (Xtk{n) Xtj,n)-, )2 ....+ (X)t (X)o a.s. as n -+ oo.
k

It is shown in [15] that for local martingales of the form (6.6),

(6.10) (M), [’,r,[ 2 ds a.s.
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Also, referring to (6.5) and (6.9), we have

(6.11) [Ut,n Otn)_ 1] 2 -- (M), (M)o a.s. as n ---} .
(The sums corresponding to y rinds converge to zero a.s. since this term is of
bounded variation.)

Let superscript denote the ith component of a vector or row of a matrix.
Then from (6.6),

M, + z (’a + a) dB,

so that, using (6.10), we have

(M + zi), (lrsl 2 / Irl = / 2a(a)) ds,

(M zi)t (112 + i12 i,2a(as) ds.
0

Therefore, using (6.7),

(6.12) (M z) ar ds,

where (M, z), is the n-vector whose ith component is (M, zi>t.
In view of(6.9) and (6.11), for each h > 0 there is a sequence of partitions {t")}

of It, + h] satisfying (6.8) and

(6.13) (Y,.,- Y,._ 1)2 - (X),+ (X), a.s., n- or,
k

and Y= U,+z, or U, Inwhere in this case X, Mt + z or Mt- zt z,.
either case, for any n the sum on the left of (6.13) is an -/h-measurable random
variable, where

,,+h {z, s m It, + hi}.
It follows from (6.12) that

I d

}h) i w L for almost all t. Hence a subsequenceis ’-+h-measurable. Now
of a sequence of convex combinations converges a.s. and therefore is =+-
measurable for every h and hence measurable with respect to

N ’,+ ,.
h>O

There is thus a measurable function U, :[0, 1] R" R" such that

(6.14) Ux(t,
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Referring back to (6.5) now gives

qs ds U, + U, Ux(s zs) dz

t+h _t+Thus (1/h)y, r/ ds is ., h-measurable, so r/ must be -measurable by the same
reasoning as above. Defining

A U(t, z,) rl,

concludes the proof of the lemma.
COROLLAIY. Suppose the value function U(t,x) has continuous first, and

continuous first and second, partial derivatives respectively in and in x; then

(6.15) Ux(t, x) x U(t, x),

1 c3 2
(6.16) A U(t, x) U(t, x) + 5 .Z cxi Cxj U(t, x)(r’)ij.

Proof Denote the right-hand sides of(6.15) and (6.16) by U’x,AU’ respectively.
Under measure P,

dz (t, zt) dBt,

so applying Ito’s lemma to the function U(t, zt) gives

dUt U’x(t) dz, + AU’(t)dr.

Thus ; (Ux U’x)dz (AU’- AU)dt and the left-hand member is a local
martingale which must be ofbounded variation. It follows thato (Ux U’x) dz 0
a.s. for each t, and hence that A U’t AU, U’x(t) Ux(t) a.s.

Remark. The corollary shows that the results of this section are precisely
equivalent to those of Fleming mentioned in the Introduction, when the relevant
conditions are satisfied. But in [9] conditions are given which guarantee that U
is smooth.

Here is the analogue of Theorem 5.1.
TI-IEORFM 6.1 (Markov controls), u* // is optimal if and only if there exists

a constant Jt and measurablefunctions rl :[0, 1] x R" --+ R and :[0, 1] x R" --+ R"
satisfying:

Io(i) I{(t, z,)l 2 dt < oo

(ii) 7(1) 0 a.s.,

where

(iii)

E {(t, z,) dz, O,

Z(t) Jv + rl(s, zs) ds + {(s, z) dzs,

q(t, z,) + (t, z,)g(t, z,, u[t, z,]) + c(t, z,, u[t, z,]) >__ 0 a.s.,

r/(t, z,) + (t, z,)g(t, z,, u*[t, z,]) + c(t, z,, u*[t, z,]) 0 a.s.
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Then Z(t) Ut a.s. and Jt J(u*), the cost of the optimal Markov policy.
Proof The proof is as for Theorem 4.2 by use of Lemma 6.2.
Notice that since u(t, zt) can take any value in E, and in the restriction of

Wiener measure to is absolutely continuous with respect to Lebesgue measure,
(iii) is equivalent to

(6.17) rl(t, x) + min {(t, x)g(t, x, v) + c(t, x, v)) 0

for all (t, x) [0, 1] R", and the optimal policy u* is characterized by the property
that [Ux(t, x)g(t, x, v) + c(t, x, v)] is minimized by v u*(t, x).

THEOREM 6.2. For the system considered in this section (i.e., satisfying (6.1)),

inf J(u) inf J(u),
..,/ u,

where ./1 is the class ofnonanticipative controls.
Proof From Theorem 6.1 and (6.17),

(6.18) A U(t, x) + Ux(t, x)g(t, x, v) + c(t, x, v) >= 0

for all (t, x, v) [0, 1] R" E. Let u . Then the process {w} defined by

dw at- 1( g.) dt + dzt)

is a Brownian motion under P. and

Ut JM + (AU + Uxg(")) ds + Uxo dw.

Now U(1) 0 a.s., so taking expectations at 1 gives

J E. AU Ug(") ds

<= E. c(" ds (from (6.18))

J(u).

Since u was arbitrary,

Jt inf J(u).

The reverse inequality is immediate from the inclusion

7. A note on two-person, zero-sum stochastic differential games. Stochastic
differential games--control problems where there are several controllers with
conflicting objectives--can also be treated by methods based at least implicitly
on dynamic programming. For instance, Friedman in [22] has developed a theory
using partial differential equations analogous to that of Fleming [9] for the optimal
control problem. The "Girsanov" method of this paper can also be applied.
The intention here is not to provide an exhaustive account but merely to indicate
one or two of the possibilities; in particular, attention is restricted to two-person
zero-sum games where complete information is available to both players. The
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method was first applied to games of this type by Varaiya [8], [21]. See Theorem
7.1 below.

The game (G) is defined as follows. The system dynamics are represented by

dz, g(t, z, u, v) dt + a(t, z)

where g and a satisfy (2.5) with the obvious modifications. The control strategies u
and v take values in E c Rt, and -"2 C:: R12 respectively and satisfy (2.6) with, (complete observations). The measure P,v is defined for any admissible
strategy (u, v) by

where

The payoff is

dPuv
dP

p(uv) exp [{(g")],

g("V)(t, z) g(t, z, u[t, z], v[, z]).

J(u v)= e.. If c")

Here E, denotes expectation with respect to P,, and c") c(s, z, u[s, z], v[s, z])
is a bounded function satisfying conditions similar to those satisfied previously
by the cost function. Player I (control u) is attempting to minimize the payoff
while player II (control v) wants to maximize it. The game has a saddle point if
there is a pair of strategies (the equilibrium strategies) (u*, v*) such that for all
admissible (u, v),

a(u*, v) <__ J(u*, v*) <= J(u, v*).

Assumption. There exist equilibrium strategies (u*, v*) for the game (G).
In [8], [21] it is shown that a saddle point does in fact exist under certain

conditions.
THEOREM 7.1. Suppose:

(i) I (the identity matrix);
(ii) g has theform

g(t, z, u, v) [g l(t’ z’ u:]gz(t,Z, v

(iii) forfixed (t, z), g (t, z, and g2(t, z, are continuous on -.2 respectively.
(iv) gl(t, z, Ex) and gz(t, z, 2) are closed and convex for each (t, z).

Then game (G) has a saddle point.
Let (u*, v*) be an equilibrium strategy for (G) and let P* P,,,, E* E,,v,.

For any admissible strategy, define the process ’ by

O E. c" dslG

Let
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(7.2)

LEMMA 7.1. For each [0, 1] and h > 0,

’* dsl + E,,[4, + 1] <

a.s.

Proof Suppose there is a strategy v for player II such that for some t, h,

for z M , PM > 0. Define the strategy v’ for player II by

v’= v, t6[t,t + hi, z6M,
v*, elsewhere.

Then

(7.3)

+
J(u*, v’) J(u*, v*) E,,v, Im c

’"*’ ds E* I t cs+ E,,, I t
+h

where lt is the indicator function of M. Now,

E,,. IM c’"*’ ds E* ItaE ptt + h(u*v) c-"* ds[

IMEu,v cs

> qb,It-

q,IM E*(E[pt+h(U*V)IMqS,+hI])

(7.4)

From (7.3) and (7.4),

J(u*, v’) > J(u*, v*).

So PM must be zero. The other inequality in (7.2) is proved similarly.
LEMMA 7.2. There exist processes Aq5, Vq5 such that

, J* + AqS ds + Vq5 dzs.
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Proof It is easy to check that

4) E* c* dsl Cs

Under measure P* the innovations process of z is dw a-l(dz g* dr). Hence
from Theorem 2.3 there is process {7,} such that

The result follows after defining

v$ 7a-, A c* VSg*.

THEOREM 7.2. (*, v*) is an equilibrium strategy if and only if there exist

(i) I dt < and E dz O,
o

(ii) Z(1)--O

where

Z(t) J* + rls ds + dz,

(iii) //t + min (g,V,) + c/,V,)) qt + (g"**) + c"**))

r/t + max (g"*) + c"*)) 0.

Then Zt dPt a.s. for each t, and J* is the value of the game.
Proof Sufficiency is proved as in the proof of Theorem 4.2. Necessity is

established by showing that r/, Aq5 and t V4)t satisfy (i)-(iii). Fixing v v*
and using precisely the methods of Theorem 4.2 together with Lemma 7.1 gives
the result with the left-hand side of (iii), while fixing u u* similarly gives the
right-hand side. This completes the proof.

For p R", define

H(t, x, u, v, p) p’g(t, x, u, v) + c(t, x, u, v).

Then, from (iii) above, we have

(7.5) min max H(t, x, u, v, p) max rain H(t, x, u, v, p)

for all (t, x, p) e [O, 1] x C x R".
The equality (iii) in Theorem 7.2 is a version of Isaacs’ equation (the game

equivalent of the Hamilton-Jacobi equation). The partial differential equation
counterpart of this for the Markov (pure strategies) case was derived by Friedman
in [22], and a solution shown to exist under certain conditions; notably, under
the assumption that (7.5) is satisfied.
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THE STABILIZING SOLUTION OF THE ALGEBRAIC
RICCATI EQUATION*

B. P. MOLINARI"

Abstract. This paper investigates solutions 3 of the algebraic Riccati equation F’X + XF
XGG’X + Q 0 with the property Re)(F GG’) <= O. The uniqueness and existence of such a

solution is completely characterized. In addition, the conditions are strengthened to characterize the
important stabilizing solution (Re 2(F GG’) < 0). All standard existence results are recovered as
special cases.

1. Introduction. This paper is concerned with the algebraic Riccati equation

(ARE) F’X + XF- XGG’X + Q- O,

where F and G are n n and n m real matrices respectively, and Q is an n n
real symmetric matrix. No a priori sign-definite condition is imposed on t2.

It is a standard property that solutions X of the ARE satisfy

det (Is + F- XGG’)det (Is- F + GG’X)= det (Is- M),

where M is the associated Hamiltonian matrix

(1.1) M
F’Q

Hence it is meaningful to seek solutions ofthe ARE subject to eigenvalue restrictions
on F- GG’X. This paper establishes existence and uniqueness properties of
solutions ) and ) satisfying

(1.2) Re 2(F- GG’) <= O,

(1.3) Re 2(F GG’X) >__ O.

It also clearly establishes when these conditions can be sharpened to

(1.4) Re 2(F- GG’2)< O,

(1.5) Re 2(V GG’X) > O.

Such a solution J? is termed a stabilizing solution of the ARE.
These results have direct application. The ARE arises in least squares problems

defined on stationary linear systems, namely"
(i) the regulator problem [1], [3], [17];

(ii) the dual filtering problem [4];
(iii) the stability theory of feedback systems [16].

In these applications the solution of the ARE involved is either 2 or ). Moreover,
Willems [17] has recently shown that all real symmetric solutions of the ARE can
be characterized in terms of 2 and J.

In a companion paper 12], the author has established a one-to-one equivalence
between the solutions 2 and a spectral factorization of a related real rational
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matrix. This paper uses this equivalence to transcribe well-known existence results
for spectral factorization [19] into basic existence results for 2. Elementary
transformations and manipulations extend these results into various necessary
and sufficient conditions for the existence of 2 and J. All standard (sufficient)
conditions for the existence of 2 are easily recovered.

Since the first draft of this paper, Willems [17] has obtained necessary and
sufficient existence results for 2 and 3 by a different method. This paper provides
a wider range of equivalent conditions, several of which are easier to interpret.

2. Equivalence results. A companion paper [12] relates solutions 2 of the
ARE to certain factorizations of the real rational matrix

(2.1)
where

(2.2)

(2.3)

(2.4)

o,,(s) z’(- s)e(s)Z(s),

@(s) I + G’(-Is- F’)-’Q(Is- F)-

Z(s) I- K(Is- F + GK)-’G,

K is a real m x n matrix.

The matrix O(s) is related to M by

det [O(s)]
det (Is M)

det (Is + F) det (Is F)"
Multiplication by Z’(-s) and Z(s) merely serves to cancel the poles of O(s) and to
replace them by poles in a more acceptable position. This is indicated by

det [Or(s)]
det (Is M)

det (Is + F GK) det (Is- F + GK)"
These relations are established in [12].

Remark 1. The matrices O(s) and Or(s) can be visualized with reference to the
integral

;oJ x’Qx + u’udt,

defined on trajectories of

Should J exist, then

5c Fx + Gu, x(O) O.

J U’(-jco)O(jco)U(jo)) do,

where U(jco) is the Fourier transform of u(t) [2, Chap. 5.63. On the other hand,
define v u + Kx. Then

c (F GK)x + Gv, x(O) O,

U(jo) Z(jco)V(jco),

J - V’(-jo))Or(jco)V(jco) do.



264 B.P. MOLINARI

The factorization of r(s) appropriate to this paper is given by the following.
DEFINITION 1. A matrix A(s) is a spectral factorization of r(s) if and only if

A(s) is an m x m real rational matrix satisfying"
(a) A’(- s)A(s) (s);
(b) A(s) is analytic in Re s >= 0"
(c) A-(s) is analytic in Re s > 0;
(d) lim_.oo A(s)= I.
This is a simple normalization of the standard spectral factorization of

Youla [19].
The equivalence result used in this paper is a slight extension of Theorem 4

of [12] and may be stated as the following theorem.
THEOREM 1. Assume that (F, G) is controllable and that Re 2(F GK) < O.

Then A(s) is a spectral factorization of Pr(s) if and only if
(i) A(s) admits a realization

A(s) I + (G’2- K)(Is F + GK)-IG
for some real symmetric X, and

(ii) 2 is a solution of the ARE satisfying Re 2(F GG’2) <= O.
Further, the relation is one-to-one. Finally, A-(s) is analytic for Re s >= 0 if and
only if Re 2(F GG’X) < O.

Proof. Theorem 4 of [12] cannot be applied directly to r(s), since it may not
be of full degree 2n. However, a simple transformation gives a rational matrix to
which the theorem is applicable. Consider the m x m nonsingular matrix Z.(s)
defined on a real m x n matrix L by

Z(s) I- (L- K)(Is- F + GL)-G,
where Re 2(F GL) < 0, and (F GL) and M have no common eigenvalues.
Such matrices L exist since (F, G) is controllable [14, Thm. 5.4.2]. Now

Z(s)Z.(s) I- L(Is- F + GL)-XG
and

z’(- s)O(s)Z,(s) ,,.(s),

where aL(S is defined on L exactly as r(s) is defined on K. Via Definition 1 and
the definition of ZL(S) it follows that"

(i) A is a spectral factorization of (I)(s) if and only if AZL is a spectral
factorization of L(S)

(ii) the relation between A and AZL is one-to-one;
(iii) A- is analytic in Re s >__ 0 if and only if (AZL)- is analytic in Re s >= 0.

Now, Theorem 4 of [12] characterizes the solution 2 as claimed in Theorem 1,
but in terms of spectral factorizations AZL of aL(S), via the realization

AZL I- (G’X L)(Is- F + GL)-IG.
Theorem 2 follows by the equivalences just stated and the fact that the last
realization can be written

AZL [I (G’2 K)(Is F + GK)-’G]ZL(S).
Note that it is not claimed that the realization for A(s) is minimal. Clearly,

it must be nonminimal if 6[] < 2n.



ALGEBRAIC RICCATI EQUATION 265

3. Existence results. This section first uses the well-known theory [19] to
give the following.

THEOREM 2. Assume Re 2(F GK) < O. Then Or(joo) >= 0 if and only if there
exists a spectral factorization A(s) of (I)((s). Further, A(s) is unique. Finally,
r(joo) > 0 if and only if A- X(s) is analytic in Re s >= 0.

Proof. First note that the assumption implies that poles p of r(s) satisfy
Re p :/: 0. Now given gOi((jco) >= 0, the classic result of Youla [19] establishes a real
rational matrix H(s) satisfying conditions (a)-(c) of Definition 1. Moreover, from
(a) of Definition 1,

[Hik(flo)[ 2

k=l

and it follows that lim,_ Hik(jo exists for all i, k. Since H(s) is rational it follows
that

lim H(s)- N,
S--

and by (a) of Definition 1, N is an orthogonal matrix. It is easily checked that
A N’H(s) is a spectral factorization of (I)r(s) according to Definition 1. That the
existence of A(s) implies (I)r(flo) >= 0 is trivial from

A(ja)) * A(ja)) OK(ja)).

Assume two spectral factorizations A and A2. Then by Youla’s result,

A x(s) NA2(s)
for some constant orthogonal matrix N. Taking limits s oo shows that N I,
and that the factorization is unique. Finally consider r(jo9) > 0. From condition
(a) of Definition 1 it is clear that det A(jo9) # 0 for all a. This plus condition (b)
of Definition 1 implies that A- X(s) has no poles on the imaginary axis s jo9, and
hence is analytic for Re s >_ 0. The converse is easy and completes the proof.

The result immediately allows an existence and uniqueness statement to be
given for the required solutions of the ARE.

THEOREM 3. Assume that (F, G) is controllable. Then the following conditions
are equivalent"

(A.1) the ARE has a real symmetric solution satisfying Re 2(F GG’fi;) <= 0;
(A.2) the ARE has a real symmetric solution X satisfying Re 2(F GG’X) >__ 0;
(A.3) r(jo9) >= 0, for any K satisfying Re 2(F GK) < 0;
(A.4) O(j(o) >= 0.

Moreover, . and f( are unique in the set of all real symmetric solutions of the ARE.
Proof. (A.1)(A.3). Merely combine Theorems 1 and 2, using the inter-

mediate notion of spectral factorization.
(A.1) (A.2). Consider Y -X. The ARE becomes

(ARE’) (-F)’Y + Y(-F) YGG’Y + Q O,

where (-F, G) is controllable. This implies a real symmetric solution of the
ARE’ satisfying Re 2(-F GG’) <= O. That is, Re 2(F + GG’) >_ O. Denoting

-) gives (A.2).
(A.1) (A.2). This is exactly analogous to the last step.
(A.3) (A.4). This is immediate from (2.1).
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Finally is unique in the set of all real symmetric solutions of the ARE
since it has a one-to-one relation to the unique spectral factorization. The solution
X is unique by the equivalence (A.1) (A.2).

The equivalence (A.1)-(A.2)-(A.4) has recently been given by Willems [17],
using a different method. The proof uses a novel representation of Q to separate the
ARE into two special ARE equations, both of which are amenable to standard
theory [3, Thms. 23.4 and 25.2]. It is fair to point out that the proof of these under-
lying results is not trivial.

Finally, it is of particular interest to the applications of and ) to sharpen
the eigenvalue conditions to strict inequalities. This is done in the following
theorem.

THEOREM 4. Assume that (F, G) is controllable. Then following conditions are
equivalent"

(B. 1) the ARE has a real symmetric solution , satisfying Re 2(F GG’) < 0;
(B.2) the ARE has a real symmetric solution X satisfying Re 2(F GG’X > 0;
(B.3) I)(jo9) > 0, for any K satisfying Re 2(F GK) < 0;
(B.4) (I)(jco) > eG’(-Ijco- F’)-I(/j(D- F)-XG for some e > 0;
(B.5) Re 2(M) 4= 0.

Moreover, X and X are unique in the set of all solutions of the ARE.
Proof (B.1)-} (B.3). Again by Theorems 1 and 2, through the intermediate

concept of spectral factorization.
(B.1) (B.2). This follows exactly as before.
(B.3) (B.4). Since (Ijo9 F + GK)-IG is bounded for all 09, it follows that

K(jco) > eG’(-Ijo F’ + K’G’)-(Ijo9 F + GK)-1G, for some e > 0.

Condition (B.4) then follows from (2.1), from the identity

(Is- F + GK)-xG.Z-l(s)= (Is- F)-1G,
and from the fact that det [Z-l(jo)] #- 0.

(B.3) *-- (B.4). Reversing the last step shows that (B.4) implies

dPK(jco) >= G’(-Ijo) F’ + g’G’)-l(Ijco F + GK)-IG.
The inequality >__ is applicable since it is not guaranteed that det [Z(jco)] 0 for
all

Consider e*(I)(jo))e, for e - O. Two cases are possible"
(a) Ge =/= O. Then (Ijo9- F + GK)-IGo =/= O, and the above inequality

implies that e*(I)(jco)e > O.
(b) Ge O. Then it is easily checked that Z(s)o e, and that e*(I)(jco)e

*0 > 0.
In other words, I)t:(jo9) is positive definite for all o.
(B.3) (B.5). This is shown independently in the following lemma. Finally,

uniqueness is shown by assuming two stabilizing solutions X and X2 (not neces-
sarily real symmetric). These both satisfy the ARE, which by rearrangement may
be written

(F’- X2GGt)X1

(F’ XzGG’)X2 + Xz(F GG’X1) + XzGG’X1 + Q O.
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Subtraction gives

(F’- X2GG’)(X

But

X2) --I- (X Xz)(F GG’X1) O.

det (Is + F’ X2GG’ det (ls F + GG’X2) det (ls M) det (-Is M).

Hence Re2(-F’ + X2GG’ > 0 (since the other n eigenvalues of M satisfy
Re 2 < 0). By standard theory [7, Chap. VIII] this implies that X X2 0 is
the unique solution of the matrix linear equation, and the stabilizing solution is
unique.

It remains to establish the following lemma.
LEMMA 1. Assume Re 2(F- GK) < O. Then r(J03) > 0 if and only if

Re 2(M) : 0.
Proof The matrices (I)K(s) and M are related by

det /(s)
det (ls M)

det (ls + F- GK) det (ls- F + GK)"

See, for example, [12, Lemma 3]. Any factors cancelled on the right-hand side
are certainly not on the imaginary axis. Hence (j03) > 0 immediately implies
Re 2(M) 0. Now denote the minimum eigenvalue (necessarily real) of the
Hermitian matrix (j03) by 2min(03). By standard theory/min is a continuous func-
tion of the components of (j03) [15, Thm. 4.6], which in turn are continuous
functions of 09. Hence 2mi is a continuous function of 03. Now assume

min((D1) - 0, for some o91.

Since /]’min 1 as 03- , it follows from the intermediate value theorem of
elementary calculus [6, p. 66] that

min((.D2) 0 for some 031 - 032

Hence M has an eigenvalue J032" In other words Re 2(M)- 0 implies that
:(j03) > 0, and the proof is complete.

The equivalence (B.1)-(B.2)-(B.4) has been given by Willems [17], by con-
sidering the solutions guaranteed by Theorem 3 and investigating the range of
the inequality . > .. The additional conditions given in Theorem 4 are interest-
ing in several respects. First, the sharpening of condition (A.3) to (B.3) is some-
what neater than the relation of (A.4) to (B.4). Condition (B.5) is of considerable
importance since, although it is a little hard to visualize, it provides by far the
most direct test in terms of the data F, G and Q. Finally, it can be noted that the
equivalence (B.1)-(B.5) has long been an article of faith in linear regulator theory
[9], [10], but to the author’s kncwledge a proof has never appeared in the litera-
ture.

Remark 2. Using the methods of this paper, it does not seem easy to provide
a condition (A.5) corresponding to (B.5). A likely candidate is that the elementary
divisors of M on the imaginary axis are of even multiplicity.
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4. Extended existence result. For the stabilizing solution the controllability
condition can be weakened to give the following complete characterization.

THEOREM 5. The ARE has a real symmetric solution satisfying
Re (F GG’) < 0 if and only if:

(i) (F, G) is stabilizable;
(ii) Re 2(M):/: 0.
Proofi The necessary conditions are immediate. That the conditions are also

sufficient is shown via Theorem 4. Now if (F, G) is stabilizable [18] there exists a
nonsingular real matrix T such that [5, p. 276]

T-1F I11 F12 r-l [11F22_

where (Fll G1) is controllable and Re 2(F22 < 0. Defining

I -] Iell R121T’XT= Yll Y12 T’QT=
Y21 Y22-] R21 R22

the ARE can be transformed and partitioned into

F;1Y11 + YllFll- Y11GIGlY11 + R,1 O,

(Fll- G1GIY’ll)’Y12 -+- Y12F22 + (R12 -+- YllF12)--0,

F’22Y2, + Y21(F,, GG’xY) + (R21 + F’lzY11)= 0,

F2Y22 + Y22F22 + (R22- Y21G1GIY12 + F’12Y12 + Y21F12 0.

These equations can be solved sequentially for Yll, Y12, Y21 and Y22. Now, by
Theorem 4, the reduced algebraic Riccati equation has a real symmetric solution

1 satisfying Re 2(F1 G1G’111) < 0. This follows since the reduced Hamil-
tonian matrix

M, VFll GIG’ll
LR11 _F,11]

satisfies

det (Is + F22) det (Is M 11) det (Is F22) det (Is M),

and hence Re 2(M1) - 0. By the standard theory of matrix linear equations the

r.emaining equations have unique solutions, denoted ’2, 21 and 22. Denoting
the entire solution by it can be checked to be a real symmetric matrix. Consider
the corresponding solution (T’)-T of the ARE. Now

T-I(F GG’)T-- T-1FT (T-1G)(T-1G)’

F1,- GIG’ Zll F12 GIG’l 210 F22
Hence Re 2(F GG’;) < 0. In other words, a real symmetric stabilizing solution
of the ARE has been constructed. Exactly as in Theorem 4 it can be shown to be
unique in the set of all solutions of the ARE.
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COROLLARY. In Theorem 5, condition (ii) can be replaced by
(ii’) K(joJ) > Ofor any K satisfying Re 2(F GK) < O.

5. Special eases. This last section recovers from Theorem 5 various standard
sufficient conditions for the existence of a stabilizing solution ) of the ARE. These
conditions are applicable for special cases of F, G and Q.

So far no conditions have been imposed on the square matrix F (apart from
the implicit conditions of Theorem 5). A weak eigenvalue restriction allows the
following.

THEOREM 6. Assume that Re 2(F)- 0. Then the ARE has a real symmetric
stabilizing solution X if and only if:

(i) (F, G) is stabilizable
(ii) I)(joJ) > 0.
Proof Directly from the realization (2.3),

det Z(s)
det (Is F)

det (Is- F + GK)

and Z(s) is nonsingular for Re s 0. Hence (I)(joJ) > 0 is equivalent to K(joJ) > 0
for any K satisfying Re 2(F GK) < 0. The result now follows from the corollary
to Theorem 5.

COROLLARY. Assume
(i) Re 2(F) < 0 and (F, G) is controllable;
(ii) Q H’H and (H, F) is observable;

(iii) (joJ) > 0.
Then the ARE has a real symmetric stabilizing solution f(.

Proof The proof is immediate. For a standard proof, see 3, Thm. 25.2].
In the regulator problem of linear optimal control, the main interest is with

the case Q H’H >= O. It is clear that this immediately guarantees condition (A.4)
of Theorem 3, and hence the existence of a real symmetric solution of the ARE
satisfying Re 2(F GG’X) <= O. However, the sharpening of the result to stabiliz-
ing solutions of the ARE is not automatic.

The essential problem is to isolate the occurrence of imaginary eigenvalues
in M. This is done via the following lemmas.

LEMMA 2. The matrix pair (F, G) is controllable ifand only ifno nonzero vectors
satisfy

*(I2 F)= O, *G O,

where, clearly, 2 is an eigenvalue of F.
Proof See [14, Thm. 2.6.2].
LEMMA 3. Assume Q H’H. Then Re 2(M) 4:0 ifand only ifall eigenvalues of

F satisfying Re 2 0 are controllable modes of(F, G) and observable modes of(H, F).
Proof Assume that jco is an eigenvalue of M. That is

(5.1)
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Multiplication gives

H’H F’
jco

(fl*Fa a*F’fl) + (fl*GG’fl + a*H’Ha) jc(fl*a + a*fl).

Equating real parts gives

That is,

fl*GG’fl + a*H’Ha O.

fl*G 0, Ha 0.

Further, substituting this into (5.1) allows

fl*(ljco F) O, (ljco F)a O.

In other words, fl 4:0 implies that jo is an uncontrollable mode of (F, G), and
a 4:0 implies that jo is an unobservable mode of (H, F). The algebra can be
reversed, which establishes the lemma.

This allows the following.
THEOREM 7. Assume that Q H’H. Then the ARE has a real symmetric

stabilizing solution [ if and only if:
(i) (F, G) is stabilizable;
(ii) all eigenvalues of F satisfying Re 2 0 are observable modes of (H, F).
Overspecifying the conditions (i) and (ii) gives the following.
COROLLARY 1. Assume that Q H’H and Re 2(F) 4: 0. Then the ARE has a

real symmetric stabilizing solution X ifand only if(F, G) is stabilizable.
COROLLARY 2. Assume that
(i) (F, G) is stabilizable
(ii) Q H’H, where (H, F) is detectable.

Then the ARE has a real symmetric stabilizing solution X.
Proof For alternative proofs, see Potter [13] and Wonham [18].
Of course, these last conditions can be further strengthened to controllability

and observability respectively, to give the classic result of Kalman [8].
Finally, it is of interest to repeat a standard link between the stabilizing solu-

tion 2 (which is unique) and nonnegative solutions of the ARE (which are not
necessarily unique [11]).

LEMMA 4. Assume that Q H’H and consider X a real symmetric solution of
the ARE.

(i) If(H, F) is observable, then X > 0 if and only ifRe )(F GG’X) < O.
(ii) If (H, F) is detectable, then X >= 0 if and only if Re 2(F GG’X) < O.
Proof See Wonham [18, Thm. 4.1].

Note added in proof. A recent paper by Kucera [20] establishes the theory of
nonnegative stabilizing solutions by direct arguments.
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EQUIVALENCE RELATIONS FOR THE ALGEBRAIC
RICCATI EQUATION*

B. P. MOLINARI"

Abstract. By generalizing the notion of spectral factorization, solutions X of the matrix quadratic
equation BX + XA XCDX + Q 0 are shown to have a one-to-one relation with factorizations
of a rational matrix. By progressive specialization of this factorization, equivalence results are obtained
in turn for symmetric solutions, Hermitian solutions, stabilizing solutions and positive definite solu-
tions of the special case of the algebraic Riccati equation F’X + XF XGG’X + Q O.

1. Introduction. The normalized algebraic Riccati equation

(ARE) F’X + XF- XGG’X + Q-O
is fundamentally associated with least squares problems defined on trajectories of
stationary linear systems. Problems of this type include:

(i) the regulator problem of linear optimal control [5], [7], [18],
(ii) the dual filtering problem of estimation theory [8] and

(iii) Lyapunov stability theory of feedback systems [17].
These least squares problems involve only particular solutions of the ARE, and
the theory of these solutions is adequate for the problem application.

However, the fundamental problem of characterizing all solutions of the ARE
is not so well developed, particularly when no a priori sign-definite assumption is
made on Q. One approach characterizes solutions in terms of eigenvalues and
eigenvectors of the Hamiltonian matrix:

(1.1) M
F’2

Unfortunately the equivalence statement involves the nonsingularity of an
intermediate matrix [13], [15], which has hindered the generation of existence
results via this approach. A second approach, recently published [18], relates
general solutions of the ARE to two extremal solutions encountered in least
squares problems. As the existence of these extremal solutions has been established,
a proper picture of the complete set of solutions of the ARE emerges for the first
time.

This paper establishes a third characterization of solutions of the ARE. It is
motivated by the solution of the linear regulator problem by Weiner-Hopf
methods 6], [16], which involves a factorization of the general form A’(-s)A(s)
(spectral factorization) of the rational matrix

(1.2) 9(s) I + G’(- Is- F’)-XQ(Is- F)-1G.

This paper relates solutions of the ARE not to (s) but to a closely related rational
matrix r(s). In particular, it establishes a one-to-one relation between solutions
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of the ARE factorizations of the general form V(s)W(s). Specializing this notion of
factorization in turn characterizes the symmetric, Hermitian and the stabilizing
solutions of the ARE.

This work is very closely related to the results of Popov [14] and of Anderson
[1]-[4]. In particular, Anderson establishes [3] an equivalence between certain
factorizations of the form W’(-s)W(s) (I)(s) and real symmetric solutions of a
matrix quadratic equation. However, for O(s) defined by (1.2) this equation in
general is not the ARE (see later comments). This paper, on the other hand,
carefully preserves the relation to the ARE by modifying (I)(s).

It must be stressed that this paper is involved only with equivalence results
and no attempt is made to provide existence results. However, as the theory of
rational matrices is reasonably well established [21], [10], [11], these follow
readily enough and will be dealt with separately. One such application to special
solutions of the ARE is given in a companion paper.

The methods used are essentially those introduced by Anderson in [1]-[4].
These in turn rest squarely on the realization theory of constant finite-dimensional
linear systems and the related notion of the degree 6[Z] of a rational matrix
Z(s) [12, [7, Chap. 2], [9, Chap. 6].

2. Problem statement. It must be realized at the outset that the general
solution of the ARE is a complex matrix, neither symmetric nor Hermitian.
Because of this fact there is no additional difficulty in studying the slightly more
general matrix quadratic equation

(MQE) BX+ XA-XCDX + Q =0,

where A, B and Q are n n real matrices and C and D’ are n rn real matrices.
No symmetry is claimed for Q.

The matrices M and (I) are logically redefined as

(2.2) (s) I + D(- Is- B)-IQ(Is- A)-IC.
There are several easy connections between the MQE and the M and matrices.
Before these are given it is convenient to state the following aids to matrix mani-
pulation.

LEMMA 1. The following two conditions are equivalent:

BY+ YA + Q =0,

(-Is- B)-’Y + Y(Is- A) -1 --(-Is- B)-IQ(Is- A) -1.

If Z(s)= I + K(Is- A)-1C, then

det (Z)
det(Is- A + CK)

det (Is A)

Z-I(s)-- I- K(Is- A + CK)-IC.

Proof The determinant relation is given by Kalman in [12, Prop. 6]. The
others are trivial.
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The matrices M and (I) and the MQE are related according to the following.

(I)-1(S)-- I + Is- M

det (Is M)
det ((I))

det (Is B) det (Is A)"

LEMMA 2.

lJ’X is a solution of the MQE, then

(2.3)

(2.4)

[I + D(-Is- B)-’XC][I + DX(Is- A)-’C] (s),

det (Is + B- XCD)det (Is- A + CDX)= det (ls- M).

Proof By immediate calculation

-Q Is+ B

and the application of Lemma 1 provides the first two identities. Equation (2.3) is
obtained by expanding the product using Lemma 1, and (2.4) follows by taking
determinants of (2.3).

Relation (2.3) shows that solutions of the MQE imply certain factorizations
of (s) of the general form V(s)W(s) (s), where V and W are square rational
matrices. This paper determines a situation where a converse result holds.

It turns out that the arguments used in this paper break down when there is a
cancellation of factors in the rational expression for det ((I))(for example, when
6[(I)] < 2n). This paper avoids the impasse by considering rather a matrix (I):(s)
where the troublesome poles of (I)(s) (if any) have been cancelled and replaced by
poles in a more acceptable position. The cancellation technique is critical to the
method of the paper, and utilizes the standard identity

(2.5) (Is- A)-IC[I K(Is- A + CK)-IC] (Is- A + CK)-IC.

This corresponds to the situation of system dynamics Ax + Cu, where state
feedback u v Kx is used to modify the dynamics to Y (A CK)x + Cv.
Taking Laplace transforms provides (2.5).

With this background, define

ZA(S I KA(IS- A + CKA)-IC,

Z(s) I D(- Is B + KD)-

for real matrices KA and Ks of appropriate dimension, and for convenience
denote

AK =A- CKa, B:= B- KD.
The rational matrix of interest is defined by

(2.6) (K(S) ZB(S)IJI(S)ZA(S

Its essential properties are collected in the following.
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LEMMA 3.

t((s) I
Q- KnKA Is + Bt( -Ks

(I)/ I(S)--- I +
[KA

det (Is M)
det ((I)t() det (Is + Bt() det (Is At()"

If X is a solution of the MQE, then

[I + D(- Is Bt()-I(XC Ko)] [I + (DX Kc)(ls At()- 1C] OK(S).

Proof Using (2.5) to expand (2.6) gives

Ot((s) I- D(- Is- Bt()-1Kn- KA(IS- At()-IC
(2.7)

+ D(- Is- Bt()-I(Q + KKA)(Is_ At()-C.
By direct expansion this can be shown equivalent to the realization in the lemma.
The expressions for O/ (s) and det ((I)t() follow exactly as in Lemma 2. Finally
the factorization identity is obtained by premultiplying (2.3) by Z(s) and post-
multiplying it by ZA(S). In other words, a solution of the MQE now implies a
factorization of the general form V(s)W(s) Ot((s). This paper seeks a converse
result where a factorization of Ot((s) implies the existence of a solution of the MQE.

To establish this result the poles of Ot((s) have to be fixed via the following
assumptions.

(A.1) (a) (A, C) is controllable;
(b) Re 2(At() < 0;
(c) At( and M have no common eigenvalues.

(A.2) (a) (O, B) is observable;
(b) Re 2(Bt() < 0;
(c) -Bt( and M have no common eigenvalues.

Remark 1. The essential assumptions are (A.la) and (A.2a). Given these con-
ditions, standard results [9, Thm. 7.6] imply the existence of suitable Ka and Ks.

Remark 2. Should (A.la) and (A.2a) not hold, then a canonical structure result
[9, Thm. 5.17] can be used to reduce the MQE to a set of one smaller MQE where
(A.la) and (A.2a) do hold, and three matrix linear equations that can be solved
sequentially.

The essential consequences of (A.1) and (A.2) are collected in the following.
LEMMA 4. Assume (A.1) and (A.2). Then

(2.8) 6[(I)t(] 2n,

(2.9) t((s)= I + D(- Is Bt()-I(LC- Ks)+ (DL KA)(Is At()-IC,
where L is the unique solution of
(2.10) Bt(L + LAt( + KKa + Q --O.

Moreover, the realizations in (2.9) are both minimal.
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Proof Directly from Lemma 3, 61OK] __< 2n. By standard theory, 610r]
6[Or 1], and applying the Duffin-Hazony concept of degree [12, Def. 6] gives

610] max 6[],

where

det (R + (Or I))
fOR(S)
p(S)

and rCR(S and pR(S) are relatively prime. But for R 1 the conditions (A.lc)
and (A.2c) applied to Lemma 3 give 6[rtl] 2n.

Hence
610] __> 2n,

which immediately gives (2.8).
Now by (A.lb) and (A.2b), (2.10) certainly has a unique solution. Lemma

gives an equivalent condition which when substituted into (2.7) directly gives (2.9).
Finally denote

6[D(- Is- Br)-I(LC KB) roB,

6[(DL KA)(Is AK)-IC] ma.

By inspection,

mB < rt, D’lA l

But from (2.9) the degrees are related by [12, Thm. B]

2n <= mA + mB.

Hence mA mB n, which completes the lemma.

3. Main equivalence result. The factorizations studied in this paper are pre-
cisely defined by the following.

DEFINITION 1. The pair (V, W) is a factorization of Or(s) if and only if V(s) and
W(s) are m m rational matrices satisfying"

(a) V(s)W(s) O(s);
(b) V is analytic in Re s _<_ 0 and W is analytic in Re s >= 0;
(c) V-1 has no poles in common with W, and W-1 has no poles in common

with V;
(d) lim_.o V(s)= lims_. W(s)= I.
Remark 3. This notion of factorization is a logical generalization of those

involved in Weiner-Hopf methods [21], [10], [6], covariance generation [3] and
feedback systems stability theory [22], [19].

Remark 4. The matrices V(s) and W(s) are "minimal" in several respects.
By assumption, V has the minimum number of columns and Whas the minimum
number of rows. Condition (c) excludes the possibility of "inflating" a factoriza-
tion (V, W)into

(VZ-1)(ZW) (K(S),

where Z(s) is analytic for Re s _>_ 0 and Z-l(s) is analytic for Re s __< O. Condition
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(d) similarly excludes the extension of a factorization (V, W) to

(VN- X)(NW) K(S),

where N is a constant nonsingular matrix.
Remark 5. It is not claimed that V(s) or W(s) is a real rational matrix. In fact,

it is essential to allow the possibility of complex coefficients in V and W.
The essential result of this paper is now stated.
THEOREM 1. Assume (A.1) and (A.2). Then the matrix pair (V, W) is a factoriza-

tion of Or(s if and only if
(i) V and W admit thefollowing minimal realizationsfor some X:

V(s)- I + D(- Is- Br)-I(XC- K),

W(s) I + (DX Ka)(Is Ar)-C,
and

(ii) X is a solution of the MQE.
Further, the relation between (V, W) and X is one-to-one. Finally, X is a real matrix
if and only if both V(s) and W(s) are real rational matrices.

It is convenient to prove the theorem in several easy stages.
LEMMA 5. Assume (A.1) and (A.2). If (V, W) is a factorization of r(s), then

6EV] 6[W] n.

Proof Condition (d) of Definition 1 implies that V(s) and W(s) possess minimal
realizations of the general form V(s), W(s) I + H(Is F)-1G. Lemma 1 then
implies that

det (V) nv(S)
det (W)

nw(S)
p,(s) pw(s)’

where nv and Pv (relatively prime) are of the same degree, as are nw and Pw.
Moreover, all zeros of nv(S) are poles of V- l(s), and all zeros of nw(S are poles of
W- l(s).

Lemma 3 provides
det (Is M) nvnw

det (Is + BtO det (Is At) PvPw
It follows from condition (c) of Definition 1 that (nvnw) and (PvPw) are relatively
prime. Hence
(3.1) det (Is M) nvnw,

(3.2) det (Is + Br) det (Is A) PvPw,

and conditions (A.lb) and (A.2b) then imply that

det (Is / Br)--- pv(S),

Hence exactly as in Lemma 4,
3IV] > n

det (Is At) pw(S).

6[W] > n.

Conversely, conditions (b) and (c) of Definition 1 imply by standard theory
[1, Lemma 4] that

2n 6[1,;] cS[V] + 5[W].
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The lemma follows immediately.
Equation (3.1) provides the basis for the following.
COROLLARY. Assume (A.1) and (A.2). Then all the poles of V-l(s) and all the

poles of W-X(s) are eigenvalues of M.
This partitioning of the eigenvalues of M between V(s) and W(s) provides a

formal link between this characterization of solutions of the MQE and the eigen-
vector characterization of Potter [15] and Martensson [13].

The next step establishes the structure of the minimal realizations.
LEMMA 6. Assume (A.1) and (A.2). If (V, W) is a factorization of @r(s), then

V(s) and W(s) admit minimal realizations

V(s) I + D(- Is- Br)-’H,,
W(s) I + HA(IS- A)-IC,

for some Hs and HA of appropriate dimension.

Proof From Lemma 5, V and W admit minimal realizations [9, Chap. 6] of
the form

V(s) I + Gv(- Is Fv)-IHv,
W(s) I + Hw(Is- Fw)-1Gw,

where Fv and Fw are n n matrices, and Gv, Hv, Hw and Gw are all n m
matrices (not necessarily real matrices). By direct expansion using Lemma 1

V(s)W(s) I + Gv(- Is Fv)-l(Hv + YGw)

+ (Hw + GvY)(Is- Fw)-1Gw,
where Y is the solution (unique by condition (b) of Definition 1) of the matrix
linear equation

FvY+ YFw+ HvHw=O.
Equating this expression to (2.9) and using a partial fraction argument gives

Gv(-Is- Fv)-l(Hv - YGw)= D(-Is- BK)-I(LC- Ks),

(Hw + GvY)(Is Fw)-Gw (DL KA)(Is AK)-xC.

Now all these realizations are minimal. The isomorphism property [7, Thm.
18.2] of minimal realizations implies

(a) there exists Tv such that B T 1FvTv, D GvTv;
(b) there exists Tw such that A wFwTv, C TwGw.

Using these matrices to transform the above realizations provides the lemma.
Remark 6. Although the realization theory just used was developed for real

rational matrices, it holds equally well for complex rational matrices.
The last lemma provides the basis for the following.
Proof of Theorem 1. Sufficient conditions. For V(s) and W(s) defined in the

statement of Theorem 1:
condition (d) (of Definition 1) holds by inspection;
condition (b) holds by (A.lb) and (A.2b);
condition (a) holds since X is a solution of the MQE (Lemma 3), and
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condition (c) follows from relation (2.4), conditions (A.lc) and (A.2c), and

V-I(S) I O(- Is B + XCD)-I(XC- KB)

W-l(s) I- (DX- Ka)(Is- A + COX)-lC.

Hence (V, W) is a factorization of (I)(s).
Necessary conditions. Consider the realizations of Lemma 6 and evaluate the

product V(s)W(s)exactly as before. Then

V(s)W(s) I + D(- Is- B)-’(YC + Hn) + (HA + DV)(Is- AK)-Ic,
where Y is the unique solution of

(3.3) BKY + YAK + HBHa O.

Again equating this expression to (2.9) and using a partial fraction argument
gives

D(- Is- Br)-(YC + H)= D(- Is- Br)-I(LC- K),

(HA + DY)(Is- AK)-C (DL- KA)(Is- AK)-IC.
The observability of (D, BK) and the controllability of (AK, C) then give

YC + Hn= LC- K,
HA +DY=DL-KA.

Consider the well-defined matrix X defined by X L Y. Then

H XC- K, HA DX- KA,

which provides the desired realizations. It now remains to show that X is a solution
of the MQE. Subtracting (3.3) from (2.10) gives

(3.4) BK(L Y) + (L Y)AK UUA + KKA + Q O.

Substituting gives

BKX + XAK (XC KA)(DX KA) + KaKA + Q O.

Simple removal of brackets gives

BX+ XA-XCDX+ Q=0, as required.

One-to-one relation. Consider two factorizations (Vx, Wx) and (V., W2),
and assume that they are equal. In terms of the realizations just established this
means that

Xx- K=X2C-K,
DX K- DX2- KA,

where X and X2 satisfy

BKX + XAK (XIC K)(DX KA) + KKa + Q 0,

BKX2 + X2AK (X2C Kn)(DX2 KA) + KnKA + Q O.
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Subtracting these equations and noting the last relations gives

BK(X X2) -- (X X2)AK O.

Conditions (A.lb) and (A.2b) then imply that X X2 0. Hence the corre-
sponding solutions X1 and X2 are equal. The converse is trivial.

Real property. Consider V(s) and W(s) to be real rational matrices. Now

V(s) I + D(- Is- BK)-IHe.

Since D and B: are both real matrices and (D, B) is observable it follows that
He must be a real matrix. Similarly Ha must be a real matrix. Then (3.4) is a matrix
linear equation with real matrix coefficients, and it must follow that L Y X
is a real matrix. Again the converse is trivial. This completes the proof.

Alternatively the factorization (V, W) can be characterized in terms of the
solutions Y of (3.3). For the special case where Ka KB 0 is allowable in
conditions (A. 1) and (A.2), this equation can be written as

BY + YA + (YC LC)(DY- DL) O.

This is the approach taken by Anderson 3, Eq. (12)] for special (symmetric) cases
of(V, W).

4. The algebraic Riccati equation. This section specializes the results of
3 to the algebraic Ricatti equation

(4.1) F’X + XF XGG’X + Q O.

This of course is the MQE for the special case

A=B’=F, C=D’=G,

and the associated matrices return to

GG’ 1(4.2) M
Q -F’

(4.3) (D(s)-- I + G’(- Is- F’)-1Q(Is- F)-1G.

In the applications of the ARE no loss of generality is involved in the assumption
(A.3) Q is symmetric.

Immediate consequences are

(4.4)

(4.5)

I- s)

det (- Is M) det (Is m).

The latter result follows immediately from Lemma 2.
It is essential to preserve the symmetry property (4.4). To this end denote

Fx F GK, where K is a real matrix of appropriate dimensions, and consider
KA K’n K. Then (2.6) specializes to

(4.6) %(s) z’(- s),(s)Z(s),
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where

Z(s) I- K(ls- Fr)-1G-- ZA(S)-- Z’(--s).
Clearly this gives the property

(4.7) O(- s) Or(S).
To establish pole-placement, assume
(A.4) (a) (F, G) is controllable;

(b) Re (Fr) < 0;
(c) Fr and M have no common eigenvalues.

Again (A.4a) implies the existence of matrices K satisfying conditions (b) and (c).
Note that (A.1) holds directly, and by the symmetry property (4.5) condition

(A.2) also holds. Hence (A.3) and (A.4) are sufficient conditions for Theorem 1 to
characterize the general complex solution of the ARE. However, the symmetry of
the ARE admits the possibility of symmetric and Hermitian solutions. These are
now characterized in turn by specializing the notion of factorization.

4.1. Symmetric solutions. Definition is specialized to the following definition.
DEFINITION 2. A matrix S(s) is a symmetric factorization of Or(s) if and only if

S(s) is an m m rational matrix satisfying"
(a) S’(- s)S(s) Or(S);
(b) S(s) is analytic in Re s >= 0;
(c) S-1(_ s) and S(s) have no common poles;
(d) lims_ S(s) I.

If, in addition, S(s) is a real rational matrix, then such a factorization has applica-
tion in covariance generation and has been studied by Anderson [3].

Clearly (S’(-s), S(s)) is a factorization of Or(s) in the sense of Definition 1.
This provides the basis for the following theorem.

THEOREM 2. Assume (A.3) and (A.4). Then S(s) is a symmetric factorization of
Or(s if and only if

(i) S(s) admits the minimal realization

S(s) I + (G’X- K)(Is- Fr)-

.for some symmetric matrix X, and
(ii) X is a solution of the ARE.

Further, the relation is one-to-one. Finally, X is a real symmetric matrix if and only
if S(s) is a real rational matrix.

Proof Define rational matrices V and W by

v(s) s’(-s), w(s) s(s).

Then (V, W) is a factorization of Or(s), and Theorem 1 gives the existence of a
solution X of the ARE (not yet symmetric) such that

V(s) I + G’(- Is- F’r)-’(XG- K’),

W(s)- I + (G’X K)(Is Fr)-IG.
Now by (4.7), Or(s W’(-s)V’(-s), and it is easily checked that (W’(-s),
V’( s)) is a factorization of Or(s). By inspection, it is related to X’, again a solution
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of the ARE. But by definition,

(V(s), W(s)) (w’(-s), v’(-s)).

The one-to-one property ofTheorem 1 then gives X X’. The rest follows directly
from Theorem 1.

4.2. Hermitian solutions. A parallel characterization can be given for
Hermitian solutions. It is convenient to use the following notation introduced by
Youla [21],

z,(s) [z(- )*,

where ff denotes the complex conjugate and x* denotes the adjoint (complex
conjugate transpose) of x respectively. If Z(s) is a real rational matrix, Z,(s)

z’(-s).
An appropriate notion of factorization turns out to be the following.
DEFINITION 3. A matrix H(s) is a Hermitian factorization of r(s) if and only

if H(s) is an m x m rational matrix satisfying"
(a) H,(s)H(s) (s);
(b) H(s) is analytic for Re s >__ 0;
(c) n (s) and n(s) have no common poles;
(d) lim,_oo H(s) I.

Note that if H(s) is a real rational matrix, it reduces to a real symmetric factoriza-
tion of (s).

Exactly as for the last theorem the following can be shown.
THEOREM 3. Assume (A.3) and (A.4). Then H(s) is a Hermitian factorization of

r(s) if and only if
(i) H(s) admits the minimal realization

H(s) I + (G’X K)(Is Fr)-1G,

.for some Hermitian matrix X, and
(ii) X is a solution of the ARE.

Further, the relation is one-to-one.

4.3. Stabilizing solutions. In view of relation (2.4), it is valid to consider
eigenvalue restrictions on the matrix (F- GG’X) for solutions of the ARE,
especially the restriction of the eigenvalues to a half-plane. An appropriate factor-
ization is given by the following.

DEFINITION 4. A matrix A(s) is a spectral factorization of Or(s if and only if
A(s) is a real m m rational matrix satisfying"

(a) A’(- s)A(s)
(b) A(s) is analytic for Re s __> 0;
(c) A-(s) is analytic for Re s > 0;
(d) lim,_ A(s) 1.

Clearly condition (d) merely normalizes the standard concept of spectral factor-
ization [21, [10].

A spectral factorization A(s) satisfies the definition of a real symmetric factor-
ization. Theorem 2 provides the basis for the following.

THEOREM 4. Assume (A.3) and (A.4). Then A(s) is a spectral factorization of
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OK(s) if and only if
(i) A(s) admits a minimal realization

A(s) I + (G’- K)(Is- V)-IG,

.for some real symmetric matrix , and
(ii) " is a solution of the ARE satisfying Re 2(F GG’) O.
Proof It remains to show that the eigenvalue condition is equivalent to

condition (c) of Definition 4. By inspection,

A-(s) -(G’- K)(Is- F + GG’J)-G.
Since this realization is minimal, it follows that A-(s) and (F GG’2) have the
same invariant factors [12, Thm. 1], which is precisely what is required.

COROLLA. Assume (A.3) and (A.4). Consider A(s) and 2 involved in Theorem 4.
Then A- (s) is analytic for Re s > 0 if and only if Re 2(F GG’) < O.

A solution ofthe ARE satisfying this last condition has been called a stabilizing
solution in the sense that a feedback control u -G’x will stabilize the differen-
tial equation 2 Fx + Gu.

4.4. Positive definite solutions. Finally, it is worth noting a further restriction
that is standard for the regulator problem"

(A.5) Q H’H.
For this case the following equivalence is well known.

THEOREM 5. Assume (A.5) and consider X a real symmetric solution of the
ARE.

(i) If (H, F) is observable, then X > 0 if and only if Re 2(F GG’X) < O.
(ii) If (H, F) is detectable, then X >= 0 if and only if Re 2(F GG’X) < O.
Proof See Wonham [20, Thm 4.1].
Under the additional assumptions of Q H’H and (H,F) observable,

Theorem 4 and its corollary can be written in terms of positive definite solutions
of the ARE rather than stabilizing solutions. This then provides a precise statement
of the equivalence between positive definite solutions of the ARE and spectral
factorizations. For the special case m 1 (G is an n x vector) this equivalence is
well known [7, 27]. For the general case Anderson has pointed out [2] that a
positive definite solution of the ARE implies a spectral factorization. The converse
result has apparently not been published but has long been an article of faith in
optimal linear regulator theory. It was an interest in this converse problem that
motivated the more general results of this paper.

5. Example. The following simple example may help to illuminate the nature
of the results of this paper. Consider

F’X + XF- XGG’X + Q O,

where

F G= Q=
-2 -3

Note that the pair (F, G) is in the controllable canonical form. The special pro-
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perties of (Is F)-IG then easily provide

-s2 +21
,(s) +

(S2 3s + 1)(s2 -k- 3s + 2)

S4- 6S2 -k- 25

(S2 3s + 2)(s2 -+- 3s + 2)"

It can be checked that (A.4) holds for K 0. All possible factorizations of O(s)
are now listed, along with the corresponding complete set of solutions to the ARE.

V,W X

s2 + 4s + 5 S2 --4s + 5 [- 30
s2 3s + 2’ S2 "t- 3S + 2 L 3

S2-2js-5 S2+2js-5 --10-- 10j
S2- 3S+2’ S2 + 3S+2 L--7
s2-(3+4j) s2-(3-4j)
s2- 3s+ 2’ s2 +3s+ 2 5+4j

s2-(3-4j) s2-(3+4j) [-10
s2- 3s+2’ s2 +3s+2 L-5-4j
S2 q’- 2is- 5 S2 2is- 5 I-
S2- 3s + 2’ S2 + 3S + 2 --S2- 4s + 5 s2 + 4s + 5 [- 10
s2- 3s + 2’ S2 + 3s + 2 k 3

3

3+2j

5
3 4.j]
5+4j13
7
3- 2jl
3

For this simple case all solutions are either symmetric or Hermitian matrices.
This is not true in general.

6. Conclusions. This paper has precisely established, in quite general terms,
an equivalence that has long been assumed to hold. Solutions of the algebraic
Riccati equation have been shown to have a one-to-one relation with certain
"minimal factorizations" of a real rational matrix. Apart from being of intrinsic
interest this equivalence has considerable utility as results from the theory of
rational matrices can be simply transcribed into existence results for solutions
of the ARE. One such application to stabilizing solutions is considered in a com-
panion paper.
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A CRITERION FOR THE BOUNDED-INPUT, BOUNDED-OUTPUT
STABILITY OF TIME-VARYING NONLINEAR SYSTEMS*

EMILE K. HADDAD"

Abstract. A new approach is used to derive sufficient conditions for the boundedness of a broad
class of time-varying nonlinear feedback systems. The stability problem is defined and treated indepen-
dently from the problem of well-posedness of the feedback system. The a priori restrictions stipulated
on the nature of the system are relatively unrestrictive. In the general time-dependent system con-
sidered, time-variation may be exhibited by linear as well as the nonlinear portions of the system. The
type of linear subsystem admitted includes the class of systems with feed-forward differentiators. The
stability criterion is derived via a time-domain method of analysis that makes no reference to Lyapunov
functions, transform relationships, or normed spaces. A number of examples demonstrate that the
present criterion can predict stability information which is not readily obtainable for other comparable
criteria.

1. Introduction. In the past few years the stability properties of nonlinear and
time-varying systems have been extensively studied. A broad class of such systems
can be represented by the feedback format shown in Fig. 1, which consists of a

h(t,z)

n(x,t)

FIG. 1. The time-varying nonlinear feedback system S

linear subsystem H interacting with a nonlinear characteristic N. Most of the
available criteria dealing with the stability of time-varying nonlinear feedback
systems are applicable only to cases where the linear subsystem H is stationary
[1]-[7]. This paper presents a new criterion for the bounded-input, bounded-
output stability of feedback systems in which the nonlinearity, or the linear sub-
system, or both may be time-varying.

The approach adopted in this paper is based on the point of view that the
stability problem can be divorced from the questions of existence, uniqueness, and
causality of solutions, and the related concept of well-posedness of the feedback
model. The practical motivation for such an approach can be justified by the
fact that there are situations where the stability properties of a physical process
can be adequately predicted from an "ill-posed" model of the process. Specific
illustrations of this point will be given in subsequent sections of the paper.

Received by the editors June 22, 1971, and in revised form May 3, 1972.

" Lockheed-Georgia Company, Marietta, Georgia 30061.
For a discussion of the concept of well-posedness see J. C. Willems [12].
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The stability criterion presented in this paper is applicable to a broad class
of systems. In the derivation of the criterion, the a priori restrictions imposed on
the nature of the system are kept to a minimum. For instance, no sector restric-
tion is initially imposed on the graph of the nonlinear characteristic n(x, t), and
continuity in x and is not stipulated. Furthermore, the nonlinear relationship
n(x, t) is allowed to be multivalued in x, as in the case of hysteresis. The time-
varying linear subsystem H is allowed to be an improper system [8], such that its
impulse response may contain any number of nth order delta functions which may
be considered to represent feed-forward differentiators. Such systems are not
uncommonly encountered, notably in circuit theory. Moreover, H is allowed to
be a noncausal, or anticipative, system.

The method of analysis presented in this paper is rather distinct from the
types of analyses to be found in previous investigations of the stability problem.
In the course of the derivation, the system behavior is examined entirely in the
time domain, with no reference to Lyapunov functions, frequency-domain rela-
tionships, or normed spaces.

The interpretation of the results of this paper and their application to specific
systems is fairly straightforward. The conditions for stability stated in the criterion
lend themselves to a simple graphical interpretation. Application to various
specific systems is illustrated by a number of examples. In one of the examples, a
stationary subsystem H is considered, and bounded-input, bounded-output
stability is established for a nonlinearity that occupies a sector considerably larger
than the sector obtained by the circle criterion.

2. System descriptions, assumptions, and problem definition. In this section,
the nature of the feedback system under consideration is described in detail. The
a priori assumptions about the system behavior are stated. The specific stability
problem to be studied is formulated. In the interest of admitting a broad class of
systems, and enhancing the generality of the results, the initial restrictions on the
nature of the system will be kept to a minimum.

2.1. The feedback system. The schematic shown in Fig. is a model for an
observed system or process S. The observation terminals, represented by dots in the
figure, are associated with the observation variables or signals, r l, r2, e,f u, and g.
These signals are represented by real-valued functions of the real variable (time).
It is assumed that there is a value to such that

(1) rx(t)= r2(t)= e(t)=f(t)= u(t)= g(t)= 0 for allt < o

Thus, to may be described as the starting instant of the process or the initial instant
of excitation of the system S. The observation of S takes place over the interval
to, ), and it is therefore assumed that the signals are defined for all t0, ).
The system signals are assumed to satisfy a number of specific relationships or
constraints. The three-terminal junctions E and 2 induce the following con-
straints between their terminal signals:

(2) r- g- e= 0 for allte[-to ,),

(3) r2 + f- u 0 for all e [to, v).
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Similarly, the blocks H and N induce specific constraints between their respective
terminal signals. The exact description of these constraints will be given in subse-
quent sections. For the time being, let these constraints be symbolically repre-
sented by

(4) H[u, g] 0 for all [to, oo),

N[e,f] =0 for allt[to, OO).

The constraints (2) through (5) will be referred to as the process (system) dynamics. A
specific set of signals s (rl, r2, e,f, u, g) is said to be an admissible process, or
a solution to the system S, if the given signals rl, r2, e,f, u, and g satisfy the system
dynamics, i.e. satisfy the constraints (2) through (5). The constituent signals ofa given
solution will be referred to as the components of the solution. The stability prob-
lem to be investigated relates to the question of boundedness of the components
of system solutions. This is expounded in the following section.

2.2. Stability problem. Let Z represent the set of all possible solutions to the
given system S. Let W be the set of all functions defined on [to, oo) which are
bounded over finite intervals, i.e.,

(6) W =- {w(t)[sup[w(t)[ < oo for all T [to, oo)}.
[to,T]

If w(t) W, then w(t)is said to exhibit no "finite escape time." Let Y denote the
set of all system solutions whose component signals exhibit no finite escape time,
i.e.,

(7) Y {(rl, r2, e,f, u, g)e Zlrl r2 e,j; u, g W}.
In this paper, we shall be mainly concerned with the class of solutions represented
by Y.

The designations of "inputs" and "outputs" will be used in conjunction with
the signals of the system S, not to imply a cause-and-effect relationship, but rather
to distinguish between signals for which some information is known a priori and
signals for which information is being sought (a posteriori). In the study of the
set of system solutions Y, it will be assumed that some information is given about
some of the component signals, say r and r2, which are therefore designated as
inputs, and that information is being sought for the other signals, which are then
designated as outputs. The information to be obtained on the outputs is to be
derived from the given information on the inputs and the system constraints
(dynamics).

This brings us to the stability problem to be investigated in this paper, which
may be stated as follows: given a solution (rl,r2, e,f,u,g) Y, what a priori
information on r and r2, and on the system constraints, would guarantee that
the signals e, f, u, and g are bounded over [to, oo)? In this problem setting, the
signals rl and r2 are regarded as inputs and the other signals as outputs, and the
information to be sought about the output signals is their boundedness over
[to,

In this formulation of the stability problem, two points should be emphasized.
First, attention is being given only to solutions that belong to Y, i.e. solutions
whose component signals do not exhibit finite escape time. Second, the question
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of stability of solutions is being divorced from the question of uniqueness of solu-
tions. With regard to the first point, it should be mentioned that, for a given
system, it might be possible to have admissible solutions which do not belong to
Y. In this respect, a legitimate stability problem would be the following" given a
solution (r l, r2, e,f, u, g) Z, given that r l, r2 W, what conditions on the system
constraints would guarantee that e,f, u, g W, i.e. (r, r2, e,f, u, g) Y? This ques-
tion will not be tackled in this paper. 2

As to the question of uniqueness, it should be noted that, for some given
(r l, r2) there might exist more than one solution s, (r, r2, en, fn, Un, gn) Y"
Nevertheless, the stability problem stated above is still meaningful" what condi-
tions would guarantee the boundedness of e,,f,, u., g, for all n? If the model
of a physical process does not establish unique correspondence between the inputs
(r, r2) and the other signals, then the model is said to be "ill-posed" with respect
to uniqueness. This means that, for a given input (r l, r2) the model by itself is not
sufficient for the determination of the actual output observed in the physical
process, and that some additional information (data) about the physical process
is needed for such a determination. Nonetheless, such a model may still be adequate
for the study of the stability of the process, i.e. "well-posed" with respect to stability.
In this regard, one can give concrete examples of realizable physical processes
whose stability properties can be adequately predicted from a model that is ill-
posed with respect to uniqueness. In such instances, it can be shown that the
additional information about the model which may be needed to establish unique-
ness need not invalidate the predictions about the stability of the process. To
recapitulate" the problem of stability of solutions can be conceptually separated
from the problem of uniqueness of solutions, and there is legitimate practical
justification for doing so.

2.3. The linear subsystem H. In subsequent discussion, it will be assumed
that the terminal constraint induced by the block H can be expressed in the form,

(8) g(t) u(z)h(t, z) dz + a,(t)u((t b,,,(t)) for all e [to, oe),
n=0 hi=0

where h(t, z), a,,n(t), b,,n(t) are given functions; N, M [0, ] are given integers;
and u")( is the nth derivative of u(. ). Note that the relationship in (8) qualifies
the subsystem H as a linear operator (mapping), and one may write

(9) g H(u)= Hu.

If N >_ 1, then g(t) depends explicitly on derivatives of u(t), and the system H is
said to be improper. Such would be the case, for example, if H represents a two-
terminal input impedance circuit having an inductance in series with its terminals.
If N 0, H is said to be proper. The functions bnm(t) represent time-varying dis-
placement (delay or advance) of u(. ). If b,m(t) >- 0 and if h(t, z) 0 whenever
z > t, then H is said to be nonanticipative. Under these conditions the value of g(t)

In a forthcoming paper, a sufficient condition for the system of Fig. to exhibit no finite escape
time, will be presented. That condition is in fact weaker than the condition stipulated by the stability
criterion presented here. Consequently, the a priori requirement of no finite escape time is auto-
matically satisfied.
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at any given does not depend on future values of u(t). Otherwise, H would be
described as being anticipative.

Remark 1. Ordinarily, the constraint in (8) would include an additive term
go(t) which solely depends on the initial conditions existing in the system at to.
It is assumed here that such a term is combined with the input rl(t). This entails
no loss of generality, yet it allows us to treat H as a linear mapping between u
and g.

Remark 2. By using generalized functions (distributions), one can define for
the system H an equivalent impulse response kernel h(t, z), such that the relation-
ship in (8) can be expressed in the compact form,

(10) g(t) u(z)h(t, z) dz.

The expression for (t, z) would then be
N M

(11) (t,z) =- t,(z) h(t,z) + (-1)"a,,,(t)6(")(z- + b,m(t)),
n=0 m=0

where (") is the delta function of order n. The designation of h(t, z) as h,(z) is
intended to mean that should be regarded as a function of z with as a parameter.

2.4. The nonlinear characteristic N. The constraint induced by the block N is
assumed to be a nonlinear time-varying relationship between e(t) and f(t) of the
form

(12) f(t) n(e(t), t) for all [to, ).

The relationship in (12) need not represent a unique correspondence between the
functions e and f. In other words, the relationship y n(x, t) is allowed to be
multivalued in x. Thus, we are admitting a class of nonlinear characteristics that
exhibit hysteresis. We assume that for any fixed and any x (-, ) there is
at least one value of y (-v, ) that satisfies the given relationship y n(x, t).
Note that under these conditions, the constraint y n(x, t) does not always qualify
as an operator or mapping from (-, ) into (-, ). No conditions of con-
tinuity are stipulated on the relationship y n(x, t). Furthermore, no sector
restriction is imposed on the graph of y n(x, t), thereby admitting cases where
n(x, t) is discontinuous at x 0 and n(0, t) # 0.

3. Definitions and lreliminaries. In this section we introduce the special
definitions and symbols to be used in the statement and derivation of the main
results. A transformation involving two parameter functions, k(t) and /3(0, is
introduced. The significance and implications of this transformation will be
elaborated throughout the rest of the paper.

Let k(t) and /3(t) be arbitrary real-valued functions defined for all t, with
/3-1(0 well-defined for all t. Consider the systems Nka, Hka and R described in
Fig. 2. The blocks designated k(t), (t) and 1//3(t) represent multiplicative time-
varying gain constraints. The constraint induced by Na between its terminal
signals is

(13) y [n(e, t) ke] for all [to, ).
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k(t

(o) Nk/

l I//3 (t) H

(b) Hk/

FIG. 2. The systems Nk#, Hk# and R

Hence, Nk# may be characterized by a nonlinear relationship nk# defined as

(14) nka(x, t) =_ fl[n(x, t) kx]

The constraint induced by Hka is

(15) g H kg for all e [to, o),

where H is the linear operator described in 2.3 and specified by (8) and (9).
The constraint induced by Rk among its terminal signals r, r, and rk is

(16) rk r H(r2 d- krk).

The stability conditions, to be discussed in the following section, will be expressed
in terms of simple parameters obtained from the systems Hk# Nk# and Rk.

Although the constraints for Hk# Nk# and Rk are well-defined for an arbitrary
k(t) and an arbitrary invertible fl(t), we shall find it necessary for our purposes to
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restrict the choice of the pair (k, fl) by a number of conditions. These conditions
are designed to force the constraints of Hko and Nko to have certain properties
which will be essential in the derivation of the stability results. The restrictions on
k(t) and fl(t) are stated in the following definition.

DEFINITION. A pair of functions (k, fl) is said to belong to the class C, viz.
(k, fl)6 C, if the following conditions C1, C2, and Ca are satisfied:

(C1) If one can find functions hkt(t, z), aktm(t), bktm(t >= O, such that the
constraint (15) for Hk can be expressed as

g(t) Hw w(z)h(t, z) dz + am(t)w(t bm(t))
(17)

for all [to, oo),

i.e., such that every pair (w, g) that satisfies (15) also satisfies (17).
(C2) If the function Akt(t), defined by

(18) Ak#(t) =-- [hk#(t, z)l dz + [ak#m(t)[ for all e [to,

is bounded.
(C3) If the nonlinear characteristic nkt(x,t), defined in (14), satisfies the

following property:

(19) hk/(2 sup Inka(X, t)l < c for all 0 =< 2 <
Ixl_-<
t[to,)

In subsequent discussions, the condition (k, fl) C will be used to imply the
three conditions C, C2, and C3. The significance of each of these conditions will
be thoroughly discussed in conjunction with the stability results to be presented
in 4. For the time being, note that condition C implies that the system H is
a linear operator, and the constraint in (17) may be symbolically written as

(20) g Hkt(w HktW for all 6 [-to, c).

This, in turn, implies that the system R is a linear operator which maps any
given (rl, r2) into a unique rk according to the relationship

(21) rk r Hklfl(kr + r2) for all

This can be verified by comparing R with Hk in Fig. 2, and noting that Hkfl is
in fact identical to the feedback subsystem appearing in Rk. Note that Hkfl is
independent of fl, and therefore r is independent of ft.

Finally, we define Gkt(x, t) in terms of nkt(X, t) as follows:

(22) Gk(X, t) =--Ink(X, t)/xl for all x O.

Note that if nk is multivalued in x, then Gk would also be multivalued in x.
The functions Akt(t), Gkt(x, t) and rk(t), as defined in (18), (22), and (21)

respectively, will be the key parameters in the stability criteria to be presented in
the following section. For a given (k, fl), the functions Akt(t) and Gkt(x, t) may be
described as the instantaneous gains for Hkt and Nkt respectively. The signal
rk(t), which depends on the inputs r(t), rz(t), and on k(t), may be described as the
system "effective input" corresponding to the specific choice of k(t).
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Remark 3. The function Age(t), defined in (18), depends on to, and one may
appropriately write Aga(t, to).

4. Main results. The theorem which follows provides a sufficient condition
for the boundedness of the signal e(t) in any solution s (r l, r2, e,f, u, g) e Y. The
condition involves an inequality in terms of the functions Aga(t) and Gga(x, t)
which must hold for large values of x and t. Conditions for the boundedness of
the other output signals, namely, f(t), u(t), and g(t), are also discussed. Proofs of
the results will be given in a later section on derivations.

4.1. Boundedness of e(t).
THEOREM. Let s (r r2 e, f, u, g) Y be a solution to S. Let (k, fl) C such that

(23) rk(t is bounded,

(24) Aka(t)Gka(X,t) <= 1-- e for all >_ T and Ix[ > X,

where > O, X >= O, and T >= o are some (finite) numbers. Then the signal e(t) is
bounded.

The theorem states that the boundedness of e(t) can be inferred from two bits
of a priori information" condition (23) which relates to the "input" signals r and
r, and condition (24) which relates to the system constraints. This is consistent
with our formulation of the stability problem discussed in 2.2. Note that the
functions Aka(t), rk(t), and Gka(X, t), as defined in (18), (21), and (22), depend on the
specific choice of the parameters (k, fl). Therefore, in applying the theorem, one
should choose (k, fl) C first and then test conditions (23) and (24). It should be
emphasized that the boundedness of rk(t in condition (23) does not necessarily
imply the boundedness of r and r2. In other words, the output signal e(t) may be
bounded even though r or re may be unbounded. This will be illustrated by a
specific example. On the other hand, one may consider the function rk(t), as given
in (21), to be the system "effective input" relative to the specific choice of k(t).
With this terminology, and with e(t) considered as output, the theorem may be
described as a criterion for "bounded-input, bounded-output" stability.

The inequality in condition (24) should be satisfied with some specific choice
for the numbers e > 0, T => 0, and X >= 0. Note that if condition (24) is satisfied
with some specific e el, T Tx, X X1, then the condition would also be
satisfied with any e < el, any T > T1, and any X > X. In other words, if the
condition is to be satisfied at all, it should be satisfied with arbitrarily small values
of e > 0, and with arbitrarily large values of T and X. This observation leads to
the following result.

COROLLARY. Let s (r r2, e, f, u, g) Y be a solution to S. Let (k, [3) C such
that

(25) rk(t is bounded,

(26) Fg max lim lim Ag(t)Gg(x, t), lim lim Ag(t)Gg(x, t) < 1.

Then e(t) is bounded.
The symbol lim denotes the limit superior. Condition (26) does not require

the determination of specific numbers such as e, T and X of condition (24), and
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therefore may be easier to apply in those cases where the evaluation of the limits
is not complicated.

Remark 4. If Gk is multivalued at some x , then Gk(c, t) in (24) and (26)
should be understood to represent the largest value taken by Gk at (, t).

4.2. Graphical interpretation. The condition of stability stated in (24) may
be given a simple graphical interpretation or visualization in terms of the graph
of the given nonlinearity n(x, t). By substituting into (24) the expressions for

Gk(X, t) and nk(X, t), as given in (22) and (14) respectively, one obtains,

(27) [fl(t)[n(x, t)- k(t)x]l <= [(1 e)/Akt(t)]lx for all >__ T, Ixl > X.

Since Ix] > X implies x > X or x < -X, one has,

[k(t)- (1 e)/lfl(t)lAt(t)]x <= n(x, t)
(28)

=< [k(t) + (1 e)/[fl(t)[Akt(t)]x for all => T, x > X,

[k(t) + (1 )/lfl(t)lAkt(t)]x <__ n(x, t)
(29)

__< [k(t)- (1 e)/lfl(t)lAke(t)]x for all __> T, x < --X.

The conditions (28) and (29) are graphically represented in Fig. 3. The nonlinear
characteristic n(x, t) is shown plotted as a function of x for some specific value of

>__ T. In effect, the condition of the theorem stipulates that the outer portions of
the graph of the nonlinearity (i.e. the portions of n(x, t) for Ix[ > X) should belong
to the shaded region Sk. Note that, in general, the region Sk and the nonlinearity
n(x, t) are both time-varying, and that the conditions depicted in Fig. 3 are required

FIG. 3. Graphical representation of the criterion
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to hold only for >__ T. Recall also that T and X can be arbitrarily large. Thus, the
theorem states that the waveform e(t) is bounded if the outer portions of the
graph of the nonlinearity eventually enter the region Sk.

4.3. The eontiition (k,) e C. The three conditions which define the allow-
able class of the parameter functions k(t) and/?(t), namely, C1, C2, and C3, were
presented in 3 in a rather ad hoc fashion. In this section we shall elaborate on
the implications of these conditions.

The first condition, namely C1, stipulates that (k, fi) should be chosen such
that the resulting system Hk is characterized by the constraint

(30) g(t) w(z)h(t, z) dz + a,,,(t)w(t b,(t)),

with b,(t) >= 0. This implies that Hk should qualify as a proper, causal, linear
operator. It should be emphasized that this requirement does not necessarily
restrict the given linear system H, which is characterized by (8), to be proper or
causal.

In the second condition, namely C, the stipulation that A(t) be bounded
is equivalent to the requirement that H be bounded-input, bounded-output
stable," i.e. if w(t) is bounded then g(t) is bounded, and conversely [8. This does
not necessarily restrict the given system H to be bounded-input, bounded-output
stable.

The third condition, as expressed in (19), implies that the nonlinear charac-
teristic n(x, t) should be a bounded function of for any finite value of x. This
condition need not be satisfied by the given nonlinear characteristic n(x, t).

4.4. Bountiedness ofj(t), u(t), anti g(t). Having established the bondedness
of e(t), the boundedness of the other "output" signals may be verified by examin-
ing the relationship of these signals to e(t) and the input signals rl and r2"

(31) f(t) n(e(t), t),

(32) u(t) rz(t) + f(t)= r2 + n(e(t), t),

(33) g(t) r(t)- e(t).

The boundedness off(t) may be deduced from (31)o If, in addition, r2(t) is known to
be bounded, then u(t) is bounded. If r (t) is bounded, then (33) implies g is bounded.
It should be emphasized that any such additional conditions that might be needed
to establish the boundedness off(t), u(t) or g(t) are not necessary for the bounded-
ness of e(t). It is possible for e(t) to be bounded when other signals in the system
are unbounded.

5. Examples. In this section, the application of the results is illustrated by a
number of examples. The constraint for the linear system H orH will be specified
in the form of a differential equation. The standard methods for obtaining the
impulse response (Green’s function) can then be employed to express the constraint
in the integral form of (17). As mentioned earlier, the unforced (zero-input)
response in H or Hk due to initial conditions will be lumped with the input r.
Recall that we consider solutions s Y, i.e., we assume that the signals exhibit no
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finite escape time. 2 In some of the examples, the Bellman-Gronwall inequality
[9] may be used to verify that s Y if ra and r2 W. (See also [10] and [11].)

In Example 1, the system H is specified, and the results are used to obtain
general conditions on the nonlinearity under which the boundedness of e(t) can
be guaranteed. In Example 2, a stationary linear system H is considered, and the
present criteria give better results than the circle criterion. In Example 3, an
improper system H is considered. In Example 4, a system with periodically time-
varying coefficients is considered.

Example 1. Let H be characterized by the differential equation

(34) t2 + 4t + (t2 4- 1)g u, >= o > 0.

The nonlinear characteristic y n(x, t) is not specified, but is assumed to satisfy
the following "sector" restriction"

(35) In(x, t)l (a + bt)lx] p 4- ct 4- d; a, b, c, d > O, 0 < p 1.

Figure 4 shows a graphical representation of this condition, which is assumed to
hold for all => to > 0. For p 1, the symmetrical time-varying sector would

(a + bt) x + ct + d

’/ (a + bt) xp + ct + d

/ :’i’i’i’i:i

:::::::::::::::::::::::::::::::::::::::::::::::::::::

FIG. 4. Condition on nonlinearity ofExample
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have straight boundaries. The inputs r and r2 are assumed to satisfy the condi-
tion

(36) Ir1(01 < B1, Ir2(t)l < Bo + B2t, Bo, B1, B2 > 0.

It is required to specify conditions on the magnitudes of the constants a, b, c, d, p,
Bo, B1, and B2, under which the boundedness of e(t) can be guaranteed.

In the corollary of 4.1, let (k, fl) (1, l/t). 3 For this choice of(k, fl) the system
Hka is governed by the following constraint:

t2 + 4t + (t2 -+- 1)g .w/fl- kg tw- g,

(37) t + 4 +
2 + 2) g=w, t>=to>0.

(38) g(t) W(Z)t-2Z sin (t z)dz, > to > O.

The step from (37) to (38) can be verified by the standard methods of obtaining
the impulse response (Green’s function) for a differential equation [8]. Now, we
verify that the condition (k, fl) (1, 1/t) C is satisfied. Equation (38) implies that
condition C1 is satisfied with

hka(t, z) t-2z sin (t z), atm(t 0, b#m(t O.

Furthermore, condition C2 is satisfied since Aa(t) is bounded"

(39) A(t) It-2z sin (t z)l dz < for all => to > 0.

To verify condition C, note that from (14) and (35) one obtains,

(40) Inure(x, t)l
n(x, t) x d Ixl<a+btlxlp+ c+--+ for allt> to>0

and condition C3, as expressed in (19), is satisfied.
Next, we examine condition (25). From (21) and from (38) which defines the

operator Hk(. ), one has,

(41) rkrl_H(rl+r2) fttrl(z)+r2(z) t- 2z sin (t z) dz.rl(t)
z

Combining (36) with (41), one obtains,

Ir(t)l < Bx + B2 nt-
(Bo +

t>=to>0.

For/ to be well-defined for all t, let/(t) for 0 < to. Since the system at hand involves
no delay, the exact nature of the function/(t) for < is inconsequential.
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Thus, rk(t is bounded for arbitrary values of B0, B1, and B2. Finally, we examine
condition (26). From (39) and (40), one has,

1 a + btlxlp_ + + + x:/:OAt(t)GI(x, t)< - -1
1 b c

lim At(t)Gt(x t) <
,- 2 Ixl 1- Ixl

Thus, Fa 0 ifp < 1, Fe <= b/2 ifp 1.
This leads us to the following conclusion" if in (35),/9 < 1, e(t) is bounded for

arbitrary values of a, b, c, d, Bo, B, and B2 if p 1, e(t) is bounded for b < 2 and
arbitrary values of a, c, d, Bo, B, and B2.

Example 2. Let H be the stationary system governed by the equation

+ 3 + 3 + g t/- u, >= to 0.

Let n(x, t) be given as

x(1 + cos x)(sin t)
n(x, t)= K

10lcos tl + 0.1
K > 0.

The inputs rl and r2 are assumed to be bounded. It is required to find the largest
value of K for which the boundedness of e(t) is guaranteed. Since the subsystem
H is stationary, the circle criterion is applicable to the system at hand [9]. The
circle criterion gives K--0.05 as the maximum allowable value for which
boundedness is guaranteed. The results of this paper give the substantially larger
value of K 1.10.

Letting k(t)= 0, fl(t)= 10lcos tl / 0.1, the nonlinear characteristic na and
the impulse response he of Ha are given by

(42) nt(x, t) Kx(1 + cos x) sin t,

(t- z)(1 + z- t)e-t
(43) ht(t’z) lO[cos z[ + 0.1

Figure 5 shows a plot of A(t) versus as evaluated on the digital computer.
Observe that4

(44) Aka(t) < 0.45, _>_ 50.

Referring to the conditions stated in the theorem of 4.1, it is easily verified that
(k, fl) C and that r is bounded. Furthermore, from (42) and (44) one has,

Aka(t)Gka(x, t) < 0.45K(1 + cos x)lsin tl < 0.9K

for all ]xl > 0, __> 50. Thus, if K __< 1.1, one has,

Akt(t)Gke(x,t)< 1-0.01 for alllxl >0, t=> 50.

Thus, condition (24) is satisfied with e 0.01, X 0, T 50. Hence, all the
conditions of the theorem are satisfied, and e(t) is bounded.

’ The use of the digital computer to verify (44) is not intended as a method of proof. The result in
(44) can be proven by rather cumbersome manipulations of the expression for Aka(t).
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Aka(t)

0.50

0.40

0,30

50 55 60

FIG. 5. The function Aka(t) of Example 2

Example 3. Let H be the improper system governed by

4t + 2g t2, >= o > 0.

Letting (k,/) (1, 1), the constraint for Hka is

t + 4t + 2g tzf, >- o > 0,

g(t) W(z)
2t 6z

t2
dz -+- w(t).

Thus, condition C1 is satisfied with hkt(t,z (2t- 6z)/t2, m 1, at(t 1,

ba 0. Condition C2 is satisfied since

(2t- 6z) 8
(45) Aa(t)= t2

dz + 1 <-, >= to > O.

Assume that the nonlinearity n(x, t) satisfies condition C3. Assuming that r and

rz are bounded, (45) implies that r is bounded. Furthermore, (45) implies that
condition (24) would be satisfied for any n(x, t) such that

(46) Gkt(x, t)
n(x, t) x <

3

x =- e for all >= T => -to, Ixl > x.
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Thus, for any n(x, t) that satisfies (46), e(t) is bounded. Recall that T and X can be
arbitrarily large, i.e. condition (46) places a restriction on the behavior of n(x, t)
for large values of x and t.

Example 4. Let H be governed by the integro-differential constraint

(47) ) + g e-(sin t) u(x) e dx for all >__ to.

With (k, fl) (0, 1), one obtains

hk#(t, z) e-re sin2 x dx, akm(t O,

Aka(t) < (1/5)(sin2 + 2 sin 2t) for all >= to.
Thus, e(t) would be bounded if r and r2 are bounded, and if the nonlinearity
satisfies condition C3 and the constraint

5(1 e)
In(x, t)l < sin2 + 2 sin 2tlxl for all => T, Ixl > X,

for some T >= to and X > 0. It should be noted that the constraint for H in (47)
can be expressed as a second order differential equation with periodic coefficients"

(48) (sin t) + 2(sin cos t) + (sin 2 cos t)g (sin3 t)u.

Any pair (u, g) which satisfies (47) also satisfies (48).

6. Derivations. Let s (r r2, e, f, u, g) G Y be a solution to S. Let (k, fl) be
a pair of functions for which the hypothesis of the theorem is satisfied. Recall that
the condition (k, fl) C implies that conditions C1, C2, and C3 are satisfied.
Define the function y(t) as

(49) y =_ fl(f ke).

The function y(t) will play a primary role in proving the boundedness of e(t).
The proof of the theorem will be organized and presented in four steps"
(a) Step 1. We will show that the functions e(t) and y(t) satisfy the following

constraints"

(50) y nka(e, t) for all => to,

(51) e= rk- Hka(y >= o

(b) Step 2. We will assume that the function y(t) is unbounded. Based on this
assumption, a basic property of the function y(t) will be derived. This property is
true for a broad class of unbounded functions, and will therefore be stated and
proven as a general result in the form of a lemma.

(c) Step 3. The results of Steps 1 and 2 are then used to deduce a contradiction
to the hypothesis of the theorem. This implies that the assumption of unbounded-
ness of y(t) is not valid.

(d) Step 4. The boundedness of e(t) is then deduced from the boundedness of
y(t) and the constraint (51) of Step 1.
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Step 1. The validity of (50) follows directly from the definition of nka in (14)"

nkt(e, t)= flirt(e, t)- ke] (f ke)= y.

To prove (51), note first that

(52) u (y + krl + flr2)/(fl)- kg.

This follows from (49), (2), and (3). Letting w (y + Bkrl + fir2), one has,

(53) g= H(u)= H(-kg),
(54) g Hka(w).

The step from (53) to (54) is a consequence of condition C1 implied by the hypo-
thesis (k, fl)e C. Finally, from (2), (54), and (21), we obtain the required result"

e r g r Hk#(W rx Hkt(flkrx + flr2 + y)

r Hktfl(kr + r2)- Hk(y),

(55) e rk Hka(y).

Step 2. We now show that y6W. Given any T[to,), define
2 suptto, le(t)l. Note that s Y implies e W, and therefore 2 < . From
(50), one has,

(56) sup ly(t)l- sup Inkt(e(t), t)l _--< sup Inka(X, t)l _<-- hka(2) < ,
[to, T] e[to, T] [to, T]

Ixl _-< z

where the last two inequalities in (56) follow from condition C3 stated in (19).
Hence y W. Having established that y(t) exhibits no finite escape time, we now
assume y(t) to be unbounded on [to, ). This assumption leads to a contradiction,
as will be demonstrated in Step 3. But first, we need the following result, which
applies to y(t), and to any unbounded function in W.

LEMMA. Let y(t) W be an unboundedfunction defined over [to, ). Given any
T >= o, any 6 > O, and any M, one canfind an instant z >= T such that

(57) lY(r)I > sup ly(t)l- b, >= T,
[to,rl

(58) ly()l > M, z > T.

Proof For convenience, we introduce the notation

y(a, b) sup ly(t)l, a, b e [to,
[a,b]

Note that the hypothesis y e W implies that (a, b) < oe whenever a, b e [to,
Since y(t) is unbounded, one can find an instant > T such that ly(tl)l is larger
than M + 6 and larger than Y(to, T)"

(59) ly(tl)l > Y(to, T), tl > T,

(60) ly(tl)l > M + 6, > T.
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From the definition of supremum, it follows that,

(61) (to, tl) max {(to, T), (T, tl)).
From (59) one has,

(62) (to, T) < lY(tl)l <= y;(T, 1).

Combining (62) with (61), one obtains,

(63) (to, t) (T, t).

Since (T, tl) is the supremum of }y(t)l over T, tl], one can find a z T, t] such
that,

(64) ly(z)l > y(T, tl) b, Z e [T, tl].

Substituting (63) into (64), and noting that Y;(to, t) >= Y(to, z), one obtains the first
required relationship,

ly(z)l > Y(to, )- 6.

From (64), (62), and (60), one obtains the second required relationship,

ly()l > ly(tl)l-6>M+6- 6=M.

Step 3. It is now shown that the assumption in Step 2, namely, "y(t) is un-
bounded," entails a contradiction to the hypothesis of the theorem in (24). This
will be demonstrated by producing specific values and x 2, such that

Ak(Z)Gk(. Z) > 1 e, z >= T, 11 > X,

which is contradictory to (24).
From (51) and (17) one has,

e(t) rk(t y(Z)hk(t Z)dz- ak(t)y(t- bk,n(t)), >-- to

le(t)l <-_ Irk(t)] + (sup ly(z)l) Ihkt(t, z)l dz
[to,t]

(65)
+ ]aktm(t)] ]y(t- bko,(t))l, >__ to.

We now show that for any >__ o, one has,

(66) ]y(t bkm(t)) <= sup ]y(z)] for all >= o.
[to,t]

Recall from condition C that bkt,,(t >__ O, therefore (t- bkt,,(t))[--o,t].
Furthermore, from (49) and (1), y(z) 0 for all z < to. Consequently,

ly(t bkt,,(t))l <--_ sup lY(Z)l- sup ly(z)] for all >= o,
(- ,t] [to,t]

and (66) is valid. Substituting (66) into (65), and using the expression of Ak(t
from (18), one obtains,

(67) le(t)l <-_ Irk(t)[ 4- (sup ly(z)[)Akt(t for all >__ o.
[to,t]
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By hypothesis, r(t) and At(t are bounded functions. Let R > 0 and A > 0
represent some finite bounds on r and Aa respectively, i.e.,

(68) Ir(t)l < R, Aa(t) < A for all >= o.

Consider the (finite) numbers e > 0 and X _>_ 0 specified in the hypothesis of the
theorem, and define new numbers L, 6, and M, as follows"

(69) L _= max (X, 2R/e);

(70) 6 (eL)/(ZA)

(71) M =_ fika(L) =_ sup Inka(X, t)l.
Ixl<-L

t6[to, oO)

Note that L < oe, 6 > 0, and M < oe as a consequence of condition C3 expressed
in (19). Now consider the results of the lemma in Step 2, with T being the number
specified in the hypothesis of the theorem, 6 and M being the numbers specified
in (70) and (71) above" one can find an instant such that,

(72) z >= T>=to,

(73) [y(r)l > M,

(74) ly(r)l > sup ly(z)l- .
[to,rl

The inequality (67), which holds for all _>_ to, is now written for the spec!fic
value : _>_ to"

le()l =< Irk(r)l / (sup ly(z)l)Aka(r,),
[to,]

(75) le(r)l < R + (lY(r)l / 6)Aka(r),
where the last step follows from (68) and (74). Recalling from (50) that y(r)

nka(e(r), r), and introducing for convenience the notation e(r), one has,

(76) I1 < R + (Ina(, r)l + 6)A,t(r).
In order to divide both sides of (76) by Il, we now show that I1 > L > 0.

Assume, to the contrary, that [1 =< L; then it follows from (71) that

ly(r)l--Ina(e(r), r)l--Ina(, r)l _-< M,
which is contradictory to (73). Therefore,

(77) I:1 > L.

Recalling that L max (X, 2R/e) > 0, it follows that I:1 > 0. Divide both sides
of (76) by " R In,a()2, Z)l + Zka(.C

(
(78) 1 < - + A,t( I1 I1"
Rearranging terms, and recalling that G(:, r) nka(, r)/,5
(79) Aa()Ga(, )> 1 R/II- Aa()5/ll.

If, for the specific value , na(, ) is multivalued, then Ga(, ) => na(, r)/2 as indicated in
Remark 4, and (79) is still valid.
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Combining (77) and (68) with (79), one has,

(80) Aka(Z)Gka(, ) > 1 R/L- A6/L.

From the expressions for 6 and L in (69) and (70), one obtains,

(81) A6/L /2, R/L <= /2.

Substituting (81) into (80), one has

Akt(z)Gkt(Pc, z) > 1 e.

Recalling from (77) and (69) that > L >= X, and from (72) that z _>_ T, one has,

(82) Akt(r)Gka(2, ) > 1 e, T, 121 > x,

The resulting statement in (82) is a contradiction to the hypothesis of the theorem
as stated in (24) with the specific values x 2, z. Because of this contradiction,
one concludes that the starting assumption, namely, "y(t) is unbounded," cannot
be valid. Hence y(t)is bounded.

Step 4. Let Y be a bound on y(t),

(83) ly(t)l < Y for all _>_ to.
From (67) and (68), one has,

le(t)l < R + YA for all >_
0.

Hence, e(t) is bounded, and the proof of the theorem is completed.
The proof of the corollary follows immediately from the theorem. Note that

the difference between the hypotheses of the corollary and the theorem lies in
conditions (26) and (24). It can be shown in a straightforward fashion that if
condition (26) is satisfied, one can find an e > 0, a T _>_ 0, and an X >__ 0, such
that condition (24) is satisfied, and the boundedness of e(t) follows from the
theorem.
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EQUATIONS DESCRIBING
MULTIDIMENSIONAL CAUSAL SYSTEMS*

VACLAV DOLEZAL"

Abstract. This paper contains an abstract treatment of functional equations which involve non-
linear causal operators. We consider equations on linear spaces that are certain extensions of Banach
or Hilbert spaces. The causality is defined in the traditional way, but by a "past" we mean a set from
a given family of subsets of a generalized "time domain."

An operator A is said to have a resolvent operator Q, iffor each ufrom a certain space, the equation
x A(x, u) possesses a unique solution x; then x Qu. We prove a theorem giving conditions for
the existence of Q, and for continuity and boundedness of Q in a certain sense.

Further results are obtained for the case A(x, u) Bx + u, i.e., for an equation of Hammerstein’s
type. In particular, it is shown that some monotonicity properties of operators involved guarantee
the existence and continuity of the resolvent Q. The theory is illustrated by several concrete examples.

1. Introduction. In this paper we develop an abstract treatment of functional
equations which involve nonlinear causal operators. In fact, we deal with equations
of Hammerstein’s type in linear spaces which are certain extensions of Banach
or Hilbert spaces. There is an extensive literature concerning Hammerstein’s
equation on a Hilbert space; we mention only papers [33 and [5], which are re-
ferred to in the text. However, the present theory appears rather as a general-
ization of results by Sandberg [2], [4] and Zames [6] than the theory of Hammer-
stein’s equation. On the other hand, some present results can be reduced to known
results on Hammerstein’s equation by using causality of the operators involved.

According to the standard definition, an operator is called causal, if two
elements equal on a past P, which is an interval of the form (-, T) or [0, T,
have images which coincide on P. In the present context, however, P will be any
set from a given family. It turns out that the scale, i.e., the set of all pasts, can be
any family of subsets of a fixed "time domain," provided the intersection of two
pasts is a past and all pasts fill out the time domain.

In the first section of the paper we shall consider the equation x A(x, u),
where the operator A is assumed to be causal in x. The operator A is said to have
a resolvent operator Q if, for each u from a certain space, the equation x A(x, u)
possesses a unique solution x Qu. We shall prove a theorem giving conditions
for the existence of Q, and for continuity of Q in a certain sense. Further results
are obtained for the case A(x, u) Bx + u.

In 2 we consider again the above particular form of A under the additional
assumption that the space involved is an appropriate extension of a Hilbert space.
It turns out that certain monotonicity properties of operators involved then
guarantee the existence and continuity of Q.

1.1. We begin with several basic concepts.
Let f be a nonempty set. The collection .Y- T} will be called a scale on fL

if all T c f and
1. T f’l Ta e - whenever T, Ta e -,
2.
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Let W be a linear space, and let F be the collection of all mappings x from
into . Clearly, e becomes a linear space, if we define addition and multiplication
by scalars pointwise. Let F and F* be linear spaces such that F* c F c/, and
F* is a Banach space with a norm II"

Finally, for each T J--, let Sr be a linear mapping from/ into itself such
that the following axioms are satisfied"

(i) S1S2 SIr2 for any TI, T2 -.
(ii) If x, y F, then x(t) y(t) on T6 -, if and only if Sx Sry.

(iii) If x if, then x F if and only if Sx F* for every T .Y-.
(iv) If x F*, then Sx <= x for anyT-.
(v) If x F and there exists a number a > 0 such that ISxl <= a for every

T .Y-, then x 6 F* and xl < a.
On occasion we shall use the shorthand notation x Srx. Observe that the

above axioms imply the following facts"
(a) STST2 SrSr, for any T1, r2 G

(b) S2r Sr for every r e - (i.e., Sr is a projection).
(c) x(t) xr(t) on T for any x e F and T6

(d) IISrx <= Srx whenever T T2, T1, T2 e .Y- and x e F.
Facts (a) and (b) follow trivially from axiom (i). If Te ,Y- and x e F, we have

by (b), Sr(Srx) Srx, and consequently, by axiom (ii), xr(t) x(t) on T. Finally,
if T T2 and x e F, then St2x F* by (iii); hence, by (iv), ISrSrx <-_ Srx
and now (d) follows from axiom (i) since T1 T1 f3 T2.

A trivial example of F, F, F* and Sr which satisfy all the axioms arises as
follows"

Let f be a Hausdorff space, let - be the family of all compact subsets of f,
and put R 1. Then e is the set of all functions on fL F is the set of all functions
in F whose restrictions to compact sets are bounded and F* is the set of all bounded
functions with norm Ix supn Ix(t)l. Finally, we let Sr be defined by

x(t) for e T,
(Srx)(t)

0 for T.

Another simple but important example is as follows"
Let R" be n-dimensional Euclidean space; for 6 R", let It] denote some

norm of t. Also, let R_ [0, o)"’, if t= (t 1, 2, t,)e R"+, let It] [0, tl]
X [0, t2] X X [0, tn]. With this notation, put f R" and .Y-= {[t]’t R"+,
> 0, 1,2,..., n} and let cg R",

F {x’x measurable, [x(:)l’ dr < oe for any e R_ },
t]

F* {x’x measurable, t" [x(r)ldr <

here <_ p < o and F* is equipped with norm I111- (j’e.+ Ix()l ’ d) /’. If, for

every [r] e .Y-, we define Sm by

(Smx)(t)={(t) for [:],

for

then we can easily verify that all axioms (i)-(v) are satisfied. Other examples will
be discussed later.
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Now, we define the concept of an operator causal with respect to a scale.
DEFINITION. The (not necessarily linear) operator A’F F will be called

causal with respect to the scale -, if

(1.1) SA SAS for every T,Y-.

This concept of causality can be characterized in the same fashion as the usual
causality in one dimension.

LEtVIA 1. An operator A’F F is causal with respect to ,Y- if and only ([

(1.2) X 1,X2 F, x(t) Xz(t on T,Y- (AXl)(t) (Axz)(t) on T.

The proof of this lemma is obvious.
From the definition it follows immediately that all operators from F into

itself which are causal with respect to - constitute a ring.
We now prove a fundamental proposition about causal operators.
LEMMA 2. Let A’F --, F be causal with respect to the scale -. If, jbr every

T6 -, the operator SzA has a unique fixed point xt’) in F*, then A has a unique

fixed point x in F. Moreover, we have ST-x x for every T .Y--.
Proof. First, axiom (iii) shows that for any T.Y-, SrA maps F* into itself.

Next, we verify that xtf, x,’) with T, T’6 .Y-, T* T 1"1 T’. Indeed, we have

(1.3) x) SAx), xt’) S,Ax’)

thus, by axiom (i) and causality of A,

x2= S,SAx= S, Ax= S,Ax S,Axr2.

Similarly, x,’ S,Ax,’. Thus, both x, and x,’ are fixed points of S,A.
Since T* ,Y- and both x, and x’ are in F*, we have by uniqueness that
x, x,’, i.e., x(r)(t) xtr’(t) on T* by (ii).

Now, define the element x /V as follows" if f, let x(t) xtr)(t) for some
T ,- with T; such a T exists by assumption 2 on -. This definition is un-
ambiguous, since if T’ ,Y- and T’, then, as we have just shown, xt)(t) xt’)(t).

On the other hand, if T ,Y-, our construction of x implies that x(t) xtr)(t)
for every T. Thus, we have Sx Sx) by (ii), and since Sx) F* by (iii),
we have Srx F*; consequently, again by (iii), x F.

In order to show that x satisfies the equation x Ax, i.e., x(t) (Ax)(t) for
any f, pick some T ,Y- with t T; by the above x xtf)= xtr), the last
following from the fact that the fixed point of SrA is in the range of St. Causality
of A yields (Ax) (Axr) (Axtr)) xt)= xr, so that, by axiom (ii),
x(t’) (Ax)(t’) for every t’ T. Consequently, x(t) (Ax)(t) as desired.

To prove uniqueness, suppose that y F exists such that y Ay. Choosing
f arbitrarily, pick a T - with T. Then, y F* by (iii) and yr SAy
SAyr by causality; consequently, by uniqueness of the fixed point xt), neces-

sarily y xt) xr, which implies that y x. This completes the proof.
We now introduce some further concepts. First we extend the notion of

continuity.
DEFINITION. Let ( be a linear space, let G* t be a normed linear space

and let G be a subset of t such that G fq G* - . If P" G F and u G, then the
operator P is called continuous at the point u, if for every e > 0 there exists a 6 > 0
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such that for any fie G with fi u e G* and lift ul] < 6 we have P Pu F*
and ][Pfi Pull < e. If the operator P is continuous at every point, it is called
continuous.

Analogously, if, for u e G, there exist constants p > 0 and a > 0 such that
Pfi-PuF* and ][P-Pu]] pl]-u[ whenever G, -uG* and
lift ul] N a, then P is called L-continuous at u. If P is L-continuous at every
point u e G, it is called L-continuous.

Clearly, the above notion of continuity reduces to the usual one when
F F* and G G*. Furthermore, from axiom (iv) it follows that for any T
the operator St" F F* is L-continuous.

Now, let A be an operator mapping F x G into F. A will be said to have a
resolvent operator Q" G F, if for every u e G, the equation

(1.4) x A(x, u)

possesses a unique solution x in F. Then Q is defined by Qu x.
We can now state the first result concerning equation (1.4).
THEOREM 1.1. Let A’F x G F. Assume that, for every u e G, the operator

A, A(., u) is causal with respect to , and that for every u e G and T there
exist an integer m,,r 1 and a number 0 2,,r < 1 such that

(1 5) IIST(A, ,x mA ’x2)ll < 2,rllSr(x

for all x, x2 e F. Then A has a resolvent operator Q.
If, in particular, G F and A is causal in u with respect to , i.e.,

(.6 s(x, s(x, s
for every x e F and Te , then Q is also causal with respect to .

If, Nrthermore,
(i) a fixed integer m 1 and a fixed number 0 N 2 < 1 exist such that (1.5)

is true for every u e G, Te and x x2 e F,
(ii) the operator Ax is continuous (L-continuous) in u for any x e F,

then Q is continuous (L-continuous).
Finally, if also AO e F* (0 denotes the zero of F), then Qu e F* if u e G G*.
Proof. We begin by observing that if u e G, k 1 is an integer and Te W,

then

(1.7) SrAk. (SrAu)k
this follows easily by causality of A

Choose u e G and Te -. Then (1.7) and (1.5) show that (SrA,)mu,T is a con-
traction on F*; indeed, if xl, x2 F*, we have (dropping the indices of m and 2
for brevity),

[l(SrA.)mxl -(SrA.)mXzl[ [ISr(A.xl Aumx2)[I
(1.8)

_--< ),[[Sr(x x2)[[ -< , [X -x2[

by axion (iv). Consequently, there exists a unique x(r) e F* such that

(1.9) x(r) (SrA,)mxr),
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and it follows that xT) is also a unique fixed point (in F*) of STAu, i.e.,

(1.10) xT)= STAuX(T).

(See [1] .) From Lemma 2 it follows that A, has a unique fixed point x,, so A has
a resolvent Q given by Qu x,, for u G.

Now, assume that G F and (1.6) holds. Choose a fixed u F and let T -;
putting x Qu, Yc =QUT, we have by definition of Q,

(1.11) x A(x, u), Yc A(Yc, UT).

Thus, by causality of A and (1.6),

(1.12) XT STA(X, u) STA(XT, U) STA(XT, UT),

and similarly,

T STA(, UT) STA(CT,

i.e., xT STAuTXT and T STAuTT" Since both xr and T are in F*, it follows by
the uniqueness of the fixed point of STAuT that xw w, i.e., (QU)T (OUT)T, SO

Q is, indeed, causal.
Next, assume that (i) and (ii) are satisfied, and choose a fixed u e G and e > 0.

If Te - and e G is such that fi u e G*, let xtwo, (T) satisfy

(1.13) x(T) (STAu)mx(T), (T) (STAr)mc(T).

Then, by a standard argument we get from (1.8),

(1.14) lyetT) xtT) <= (1 2)-IIST(Ax(T) Zm, xtT))

On the other hand, putting x Qu, Yc Qt, we have, by Lemma 2, (1.13) and
the equivalence of (1.9) and (1.10), x(T) STX and 2tT) STYC. Using this and the
fact that operators Am and A’ are causal, we can write (1.14) as

(1.15) ST(& x) <= (1 2)-’1ST(Ax Au x)

By the continuity of A’x at the given u G, there exists a 6 > 0 such that for

II0 u < b we have A’x A’x F* and A’x A’xl < (1 2)e. Introducing
this into (1.15), we obtain by axiom (iv),

(1.16) ST(YC X) <(1--2)-’ Ax Ax < e.

The right-hand side of (1.16) is independent of T; consequently, by axiom (v),
-xF*and [l-xl[ =< e, i.e., Qfi Qu F* and [[Q-Qu =<e. Hence, Qis
continuous at u G. The proof of L-continuity follows the same pattern.

As for the last assertion of the theorem, choose u G* I’) G. If T @, we
have by (1.9) and (1.5),

IlxtT)ll < II(STAu)"xtT)- (STA,,)"OII + II(STA,,)"OII

--IST(A’x(T- ATO)I / ISTA’OII <= ; STX(T) / IISTATO
Since both xtT) and A’O are in F*, we have by axiom (iv),

IlxtT)ll __< ;llxtT) / Ilhm O
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Finally, X(T)-- STX STQU SO that

STOUt =< (1 2)-’liAr0

Thus, by axiom (v), Qu F* and the proof is now complete.
In many concrete situations the operator A has the form A(x, u) Bx + u,

where B is a product of a linear and nonlinear operator; of course, G F. Having
this in mind, we shall now prove a theorem similar to one stated by Sandberg [2].
In order to simplify its proof, several observations are in order.

For Te --, let Fr {x:x STy y e F} STF. Due to axiom (iii), FT is a
linear subspace of F*, and by fact (b) in the beginning of this section, ST is the
identity operator on FT.

LF.MMa 3. If FT is equipped with the norm of F*, then it is a Banach space.
Actually, FT is closed in F*, since if x, e FT and x, -+ xo e F*, the continuity

of ST implies that STX X STX0 X0 FT.
LEMMA 4. Let A F F and T -; then the operator STA has a unique fixed

point in F* if and only if it has a unique fixed point in FT.
LEMMA 5. Let K be a one-to-one operator from F onto F such that both K and

K-1 are causal with respect to 3-; then, for any Te -, the operator STK is one-
to-one from FT onto FT and (STK)- STK- 1.

The proof of these lemmas is obvious.
THEOREM 1.2. Let C, N F F be causal with respect to -, and let C be linear.

Assume that a scalar 2 exists such that
(i) I 2C is one-to-one from F onto F and (I 2C)- is causal with respect

to --;
(ii) (I 2C)-1C maps F* into itself and is bounded;
(iii) IIST{Nx Nx2 ,(X1 x2)}ll _-< llSr(x x2)ll for allxl,x2 F and

Te and some # > O;
(iv) I1(I- ,c)-XCll < 1.

Then the operator A(x, u) CNx + u has a resolvent operator Q and Q is causal
with respect to -.

Moreover, if
(v) (I-)C)-1 maps F* into itself and is bounded, then Q is L-continuous.

If, in addition, CNO F*, then Q maps F* into F*.
Proof. We can prove this theorem either by using results of [3] or by em-

ploying methods as in the proof of Theorem 1.1. We indicate the main steps.
Choose u F; referring to Lemmas 2 and 4, consider the fixed point in Fr

of the equation

(1.17) x(T) ST(U + CNx(T)).

By Lemma 5, (1.17) is equivalent to

(1.18) X(T) RuX(T),
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where the operator R,’F FT is defined by

(1.19) R,x ST(I- 2C)-IST{u + C(N- 2I)x}.
Using assumptions (i)-(iii), we can easily verify that

(1.20) R,x R,x 2 -<_ ’ Ix x 2

for every xl, x2 FT, where , I(I 2C)- CI/ < 1 hence, R, is a contraction
on FT. Consequently, A has a resolvent operator Q. The causality of Q follows by
the same argument as in the proof of Theorem 1.1.

Next, assume that (v) is satisfied and let u eF. Choose eF such that
ueF*, and let Qu x CNx + u, Qo yc CNYc + . Using Lemma 2

and (1.19), (1.20) it follows that

(1.21)

with 2* (1 )- [1(I 2C)- 1[l, i.e., Q is L-continuous.
The proof of the last assertion follows the same pattern as in the proof of

Theorem 1.1.
The condition (i) in Theorem 1.2 may be replaced by another assumption

(i)*, which will prove more convenient than (i) in our considerations in 2, and
which also can be tested more easily in specific situations.

To this purpose we consider causal operators on F* (rather than on F).
LEMMA 6. Let K" F F be causal with respect to , and let be its restriction

to F*. If is one-to-one from F* onto F* and - is causal on F* with respect to

3--, then K is one-to-one from F onto F, and K-1 is causal with respect to -.
Proof. First observe that / is causal on F*. Next, if TY-, then STI is

one-to-one from FT onto FT, and (ST/)-1-- ST-1. Indeed, both STg and
ST- map Fr into itself, while on FT we have STY-1ST--STg-lg ST
and STSTI STag-1 ST The statement follows on noting that ST is
the identity on FT.

Next, let y e F, and let Te -. By the above, there exists a unique x(T) e Fw
such that SwgX,(T) STY. Since/ K on F*, we have STKX(w) STY and note
that this equation is equivalent to x(r) ST{(I K)x(r) d- y}. Recalling Lemma 2,
it follows that there exists a unique x F such that x (I K)x + y, i.e., Kx y.
Since y e F can be chosen arbitrarily, K possesses an inverse K-.

In order to prove causality of K-1, pick y e F and let Kx y; choosing
T -, find F such that K Yr. Then STKX YT and STK YT; by the
causality of K, however, STKXw YT and STKT YT" Since both XT and T are
in FT and K /( on F*, we have XT YeT, i.e., (K-ly)r (K-lYw)w, and the
causality of K- is proved.

Using this result, we can deduce the following without further work.
THEOREM 1.3. The condition (i) in Theorem 1.2 can be replaced by the con-

dition (i)*; the restriction of I 2C to F* is one-to-one and onto F*, and -1
is causal on F* with respect to -.

Note that the converse of Lemma 6 is not true" causality of K and K- need
not imply that/ is one-to-one from F* onto F*.

We shall now discuss several specific examples which illustrate the ap-
plication of the above theorems.
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1.2. Let 92=R_, -= {[t]’tR"+, ti>O, i= 1,2,...,n}, where the
symbols R"+, t] have the same meaning as in the example of If t, R", we
shall write __< t’ whenever ti _-< t’i for 1, 2, ..., n. Next, let R1 and let F
be the set of all continuous functions on R. Finally, let F* be the Banach space
of all continuous bounded functions on R_ endowed with the sup norm.

Define ST for every T - as follows"

fx(t) for [z],
(1.22) (Stx)(t)

(x(2,t) for [r],

where the number 2, is such that 2tt is in the boundary of
It can be easily verified that all axioms (i)-(v) are satisfied. To construct an

operator A, let K(t, , #, r/o, r/l, ..., r/k), a function of 2n + k + 2 variables, be
defined and continuous for 0 =< =< t, tR and #, r/iR1, 0, 1, 2, ..., k.
Assume that for every z R"+ and a > 0, there are constants C’" >= 0, 0, 1, 2,
.., k, such that

I.e3) IKIt,,a, no,n, n) KI a,0,, )1 < Y C, In, 1
i=O

whenever 0 __< =< =< z, I1 _-< a and/i, Oi R1, 0, 1, k.
Next, let qg’R_ R be real continuous functions such that 0 _<

for any e R"+, 1, 2, ..., k. For x, u e F and R"+, A(x, u) is defined by

(1.24) [A(x, u)](t) f K(t, , u(t), x(), x(cp,()), x(cp2()), ", x(%()))d.
t]

It is clear that A’F F F. Applying Lemma 1, we see immediately that
the operator A, A(., u) is causal with respect to the scale - for any u 6 F,
and the same is true for A(x,.) with any x F. We are going to show that A
possesses a resolvent operator Q and Q is causal with respect to 3-, by applying
Theorem 1.1.

To do this, choose some u s F, It] --, and let X1,X2 F, a supt,tlu(t’)l.
If s [z], we have by (1.24) and (1.23),

I{A(xx, u) A(x2, u)}(t)l

=< {c,’"lxx()- x()l / C’"lxl(cpi())- Xz(Cpi())l} d.
t] i=

Using (1.22) and the property of the qg’s, it follows immediately that

I{A(x, u)- A(x2, u)}(t)l <__ tt2.., t,CTM Sti(x x2)

where the t;s are coordinates of and CTM =o C"’""For m > 1 we have

(t t2 tn)
(Cr,,a)m(1.25) I(A, Xl A, xz)(t)l <= (m!)" St(xl x2)

This is proven by induction in precisely the same way as the analogous inequality
for nonlinear Volterra operators. Recalling the definition of St we conclude from
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(1.25) that

(1.26)

where 2,. (cr’aT1T2 "cn)m/(m!)n.
On taking m sufficiently large we achieve 2,, < 1, so that the condition (1.5)

in Theorem 1.1 is satisfied. Consequently, A has a resolvent operator and this is
causal.

1.3. Now let R2", if R2, put It] (t + t22) 1/2 and define- {{t’t R2, ]t[ __< z}’z => 1},
the set of (closed) discs of radius >__ 1. Furthermore, let rg R, let F be the set
of all continuous functions on R2, and let F* be the set of all continuous bounded
functions on R2 with uniform norm. If T {t’t R2, It[ <__ z} -, define S, by

Ix(t) for

x t for

We can easily verify that axioms (i)-(v) are satisfied.
The following functions are defined in order to construct the operator A.

Let fi’R1 R1, 1, 2, be Lipschitz continuous functions, i.e.,

(1.27) If/(l)- f/(2)1 2i11 21
for all 1, 2 R1 and some 2’s, 1, 2. Let g F*, and let K(t, ) be a continuous
function on R2 x R2 such that

<_-Itl
IK(t, )l d <

Finally, for each x, u F, define A(x, u) by

Clearly, A maps F x F into F. Recalling again Lemma 1 we see that the
operator A(., u) is causal with respect to the above scale and also A(x,. has
the same property. We shall show that the operator A possesses a resolvent Q
which is L-continuous and maps F* into itself, provided that n2 [Igl[ + k22 < 1.
Of course, it will suce to verify the appropriate hypotheses of Theorem 1.1.

In order to prove it, choose u, x, x2 F and r 1; if , we have by
(1.28) and (1.27),

[{A(Xl, u)- A(x2, u)}(t)l Ig(t)l f 2x[x()- xz()l d

Using the definition of STz we easily obtain

IK(t, )1"/],21x1() x2()l d.

IIST(A(xx, U)- A(x2, u))ll (llgll2r -4- k2)llST(xx x2)ll,
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SO that (1.5) is satisfied with m 1, irrespective of u. Also, (1.28) shows that
A(x,.) is L-continuous. Hence, by Theorem 1.1, an L-continuous resolvent
exists for A.

Finally, for u F*,

{A(O, u)} (t) g(t)rtfx(O + f2(O)_Jlel-<ltl
Our assumption on K(t, ) shows that

K(t, ) d + u(t).

K(t, ) d F*.
l_-<ltl

Hence, A(O, u) F* and consequently, u F*.
Another example is obtained by modifying the previous one as follows" Let

all quantities have the same meaning as above, but assume that u is a fixed element
in F. Let G* R1, G (-1, 1), and define the operator ’F G --, F by

fl(x({)) d{ + fll _-< I,1
K(t, )f:(x()) d + u(t).(1.29) {(x, v)}(t) vg(t) fll=<

As above, it follows that 7 possesses a resolvent Q’F--+ F, provided
+ k,2) < 1.

Next, let x e F and let v, e (- 1, 1). From (1.29) we get

A(x()) de F*,

whence

{(x, ) A(x, v)} (t) ( v)g(t) fll _<1

IA-(x, )- T(x, v)ll I- vl. Ilgll fx (x({)) d
1_<1

Hence, A-(x,. is L-continuous on (- 1, 1), and consequently, by Theorem 1.1, (
is also L-continuous.

2.1. In this section we assume that F* is a real inner-product space, i.e., an
inner product (.,.) is defined on F* F* such that (x, x)1/2 Ilxll for every
x F*; naturally, it is understood that the norm I]" satisfies the axioms (iv) and
(v). We shall show that, if F* is endowed with a more specific structure of an
inner-product space, requirements on a quantity to be less than one can be traded
for certain positivity properties of operators involved.

First, we prove the following proposition.
THEOREM 2.1. Let A :F F be causal with respect to -, and assume that it

satisfies the following conditions:
(i) there exists a c > 1 such that

(2.1)

(2.2)

(Sr(x x2),ST(AX Ax2)) C ST(X X2) 2

for all x1, x2 u. F and T -,
(ii) for every T6 -- there exists a 2T > 0 such that

IISr(Ax Ax2)l < 2rllSr(xt x2)ll for all X1, X2 F.
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Then the operator defined by (x, u) -x + u possesses a resolvent Q which
is causal with respect to -.

If, in addition, there exists a 2 > 0 such that (2.2) holds for all x x,x2 F and
T ,Y-, then Q is L-continuous. Finally, if AO F*, then Q maps F* into F*.

Proof. Choose some u F. Referring to Lemma 2, choose a T 3-- and con-
sider the equation

(2.3) ST(--Axr)+ u)

on F*. If k > 0, then (2.3) is clearly equivalent to

T (T)(2.4) xr) Rx
where the operator Rr,’F F* is defined by

(2.5) TR,x =(1 + k) a{ST(kI-- A)x + UT}.

We are going to show that for a suitable choice of k > 0, R becomes a contraction
on F*. Thus, let Xl, x2 e F*; then we have by (2.5), (2.1) and (2.2),

r r 2 kSr(XlRux Rux2[ (1 + k) 2
X2 ST(AX1 Ax2)[[2

-(1 + k)-2{k2 Sw(xx x2)ll 2 / [ST(AX1 Ax2) 2

(2.6)
2k(Sw(x, xz), ST(AX, Ax2))}

_-< r(k)l ST(X1 X2) 2 (k)llx x2l 2,

where pr(k) (1 + k)- 2 {k2 2kc + 2}.
An obvious argument shows that there are values of k such that #r(k) < 1;

hence, there exists a unique x F such that x -Ax + u, i.e., A has a resolvent
Q. To prove causality of Q is already a matter of routine.

Next, if a 2 > 0 exists such that (2.2) holds for all x, x2 F and T -, we
find ko > 0 as above so that r r-R,x < -x [forallx x2F*Ru X 2 ]-’/0 X1 2 1,

and T e Y, where Po p(ko) < 1. Choose a e F with u e F* and let Te --.
Then the same argument as in the proof of Theorem 1.1 shows that

QO Qu < (1 x///to)-l(1 + ko)-lllo ul[,

i.e., Q is L-continuous.
The proof of the last statement is obvious.
Note also that the proof of Theorem 2.1 follows immediately from results in

[3] and Lemma 2.
Our next theorem is similar to a result of Sandberg given in [4] for the case

that F* L2. As in [4], the proof of our theorem is based on three lemmas"
7, 8 and 10 below. While the lemmas in [4] deal with L:, here we shall have to
prove analogous results for an arbitrary inner-product space F*.

First we have the following assertion.
LZMMA 7. Let M’F*--} F* be linear and bounded, and assume that there

exists a c > 0 such that

(2.7) (Mx, x) >= c Ixll 2 for all x e F*.
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Then the operator M is one-to-one from F* onto F*, and M- is bounded; in fact,
lira-all <__ c -.

Proof. The operator M is one-to-one, since Mxo 0, Xo e F* implies by
(2.7) that Xo 0. Also, M maps F* onto F*. To show this, note first that MF* is
closed. Indeed, suppose that y, MF* and y, y; then, for each n, there exists
a (unique) x, F* such that Mx, y’. However, (2.7) implies by the Schwarz
inequality that Mu >= c u Consequently, for any integers n, m,

IlM(x, Xm)ll IlY Ymll ClIx, Xm

hence, x, is a Cauchy sequence, i.e., there exists an x e F* such that x, ---, x. Thus,
Mx, y, Mx MF* and y Mx, i.e., MF* is closed.

Next, suppose that MF* 4: F*; then there exists a z - 0 such that z 2_ MF*.
By (2.7), however,

0 (Mz, z) > cllzll 2 > o,
a contradiction; hence, M is onto and M-1 exists. Finally, setting u M-ix in
the above inequality, we get Ilxll _-> cllM-xll, which completes the proof.

Note that Lemma 7 is true even without the assumption that M is bounded;
see [5.

LEMMA 8. For every Te - the operator Sr is self-adjoint, i.e.,

(Srx, y) (x, Sty) for any x, y e F*.

Proof. If 2 is any real number, we have by axioms (iv) and (i),

Srx 2y 2 STN 2Sty 2 O.

Hence,

22( Yll 2 Ily 12 22{(xr, y) (xr, Yr)} >= 0

for all 2, and consequently, (xr, y) (xr, Yr) 0. Interchanging x and y, we
get (Yr, x) (Yr, xr) 0, which completes the proof.

LEMMA 9. Let P be a linear operator from F* onto F* which is causal on F*
with respect to Y-. Assume that there exists a 1 > 0 such that

(2.8) (Px, x> >= #llxll 2 for all x e g*.

Then P-1 exists and is causal on F* with respect to -.
Proof. Inequality (2.8) shows that P is one-to-one so that P- exists. For any

y e F* and Te - we have (PSry, Sty) >-_ 1I STYli 2 in view of axiom (iii). Thus,
by Lemma 8 and the causality of P,

(2.9) la[lSry 2 (SPSy, Sry) (SrPy, Sry).

Setting y P-

(2.10)

x F* with x e F* yields

(Srx, SP- ix) lxlISP- lxlla
This implies that STP-lx 0 if STX 0 for some x e F* and Te -. The proof
follows now from the linearity of P- 1, axiom (ii) and Lemma 1.

Note that, due to a theorem by Phillips (see [5]), the assumption that P is
onto may be dropped.
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Remark. If we assume that the operator P is one-to-one, onto and bounded,
then Lemma 9 follows even if/ 0. To prove this, note first that P-1 is also
bounded by the closed graph theorem. If 0 < e < 1/2 ]P-1t -1, define P" F* F*
by P P + eI P(I / eP-1). Clearly, P possesses the inverse

Consequently,

p[1 I+ (-1)%(P-1)
k=l

(2.11) lip71 p-1ll liP-all U[[p-l[[k 2[ip-xll2.
U=I

On the other hand, P satisfies the hypotheses of Lemma 9, i.e., P- is causal on
F*. Thus, choosing x F* and T -, we have by axiom (iv) and (2.11),

II(STP- STP-1ST)X <= ST(P -1 PU1)xl

+ ST(P- n2- 1)STX + I(STP-1 STP- 1ST)Xl
__< 4e P- 1112. X [l"

Since e may be chosen arbitrarily small and x is arbitrary, it follows that
STP- STP- 1ST O.

LEMMA 10. Let M’F* F* be a linear bounded operator, and let a c >= -1/2
exist such that

(2.12) (Mx,x) >= c x z for all x F*.

Then (I + M)-1 exists and

I(I + M)-IMII =< {1 -(2c + 1)(1 + MII)-2} 1/2.

Proof. The existence and boundedness of (1 + M)-1 follows from Lemma 7.
Next, choose x F* and let y (I + M)-IMx; then y x (I + M)-ix. Thus,
setting z (I + M)-ix, we have y x z, and consequently,

yll 2 Ilxll 2 2(x,z) + Izl 2 ixll 2 2(z + Mz, z) + z 2

(2.13)
X 2 2(Mz, z) [Izll 2.

However, by (2.12),

2(Mz, z) + Ilzll 2 >__ (2c + 1)llzl12;

moreover, from x (I + M)z we get Ilxll _-< (1 / IIMII)llzll, i.e.,

z _>- (1 / M II)- all x II.
Introducing this into (2.13), we obtain the desired result.

We are now ready to state the main result of this section.
THEOREM 2.2. Let K, N :F F be operators causal with respect to -, let K

be linear and assume that the following conditions are satisfied:
(i) there exist constants k >= 0 and k2 >= 0 such that

(2.14) (ST(X1 x2),ST(NX1 Nx2)> >= kxllST(XX x2)]l 2
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and

(2.15) IIST(NXl Nx2)ll k211ST(Xl x2)

for all x 1, x2 F and T6 -;
(ii) the restriction of K to F* maps F* into itself, is bounded and there

exists a c > 0 such that

(2.16) (/x, x cllxll 2 for all x F*;

(iii) kl + c>0.
Then the operator A’F x F-, F defined by A(x, u)= -KNx + u possesses an
L-continuous resolvent Q, which is causal with respect to --.

If, in addition, NO F*, then Q maps F* into F*.
Proof. Referring to Theorems 1.2 and 1.3, we are going to show that, with

C- -K, there exists a 2 > 0 such that conditions (i)* and (i)-(v) are satisfied.
Let 2 > 0. Then the operator 2/ is linear and bounded on F*, causal on F*

due to causality of K, and satisfies the condition (2gx, x) >= /C[[X[[ 2 by (2.16).
Hence, according to Lemma 7, I + 2/ is one-to-one from F* onto F* and has a
bounded inverse. Since I + 2/ is also causal on F*, and ((1 + 2g)x,x)
>__ (1 //c)][x[[ 2 for all x F*, Lemma 9 shows that (I + 2/)-1 is causal on F*.
Finally, invoking Lemma 10 it follows that

(2.17) II(I + /)-x/ll2 2(I/ I- c)+ lgll 2

(1 / 11/11)2

Hence, condition (i)* in Theorem 1.3 is satisfied.
On the other hand, by (2.14) and (2.15) we have for every xl, x2 F and T -,
ST{NX Nx2 (X x2)}ll 2 IIST(NX Nx2)ll 2

/ ,2IIST(x1 x2)ll 2

(2.18)

where 2(2) k22 22kl + /2. Thus,

(2.19)

where

22(Sr(Nxl Nx2) ST(X x2))

_<- (,)II S(x x) ,

(22- 22k, + k22)Ell/ll 2 + 2(ll/ll- c)]
.(1 + llgll)2

=1-
22p +

and p(2) is a linear polynomial while p 2(kll[/ll2 .+. c)> 0 by assumption
(iii). Hence, (2) < 1 for sufficiently large 2. Thus, condition (iv) in Theorem 1.2
is satisfied, and the same is true for (ii), (iii) and (v). The proof of the fact Q" F* F*
under the condition NO F* is obvious.
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We now proceed to discuss some specific examples which employ the above
results.

2.2. Let f 0, oe) and put --= {0, z]’z > 0}, cg R". If at R", let [a[
denote the Euclidean norm of a. Furthermore, let

F x’x measurable, IX(t)[ 2 dt < o for every

F* x’x measurable, [X(t)l 2 dt <

and assume that F* is equipped with the inner product

(x, ;) x(t)y(t) at

(the superscript T signifies the transposition of a vector). If Sto, is defined by

(St’’x)(t)={:(t) elsewhere,fr0=<t=<z’
then all the axioms on Sr are satisfied.

Next, let M(t), N(t) be continuous n x n matrix-valued functions on [0, oe)
and let N(t) be symmetric, with a continuous derivative N’(t) on [0, o). Assume
that the matrices M(t), N(t) and -N’(t) are positive semidefinite for every __> 0.

The operator A is defined on F by

(2.20) (Ax)(t) M(t)x(t) + N(t) x() d.

It is obvious that A maps F into itself and is causal with respect to . Further-
more, if T 0, z] e - and x e F, then

(Srx, SrAx) xr(t)M(t)x(t) dt + xr(t)N(t) x() d dr.

Setting v(t) j’ x()d, it follows due to the symmetry of N(t) that

(Srx, SrAx) xr(t)M(t)x(t) dt + 1/2vr(z)N(z)v(z)

2
vr()N’()v() d >= O.

Denoting by IPI the norm of (the n x n matrix) P associated with the Euclidean
norm of an n-vector, we then have

SrAx <-_ f xrMrMx dt
1/2

Using the Schwarz inequality, we obtain

(2.21) SrAx <= sup IM(t)l +
[. o,1

tlN(t)l z dt STXlI.
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Since A is linear, inequalities (2.20), (2.21) show that the conditions (i) and (ii)
in Theorem 2.1 are met; hence, the operator defined by (x, u) -Ax + u
possesses a causal resolvent Q.

Moreover, if matrices M(t) and N(t) satisfy the condition

sup [M(t)[ / rlN(t)l d < ,
[o,o1

then clearly Q is L-continuous and maps F* into itself.

2.3. Now let f R2+, 3--= {[0, 1] x [0, z:J’rl > 0, re > 0}, and R 1.
Also, let

F x’x measurable, x(,)dd < for0 < r,r <

F* x’x measurable, X2(1, 2)d d2 <

and let the inner product on F* be defined in the obvious way. If T [0,
x [0, z2] e and if we define

t2) for (t l, 2) T,
(Svx)(tl, t2)

0 elsewhere,

then S satisfies the axioms.
Next, let W(tl, t2) be a real measurable function on R] such that

W [W(tl, t2) da d2 < @.

Also, let f() be a real function on R and suppose that 0 1 2 exist such that

(2.22) (1 2)2 (f() f(2))( 2) 2(1 2)2

for all 1, 2 R1; also, assume that f(0) 0. The operator A on F is now defined
by

(2.23) (Ax)(tl, g2) w(t l,t2 2)f(x(l, 2))dl d2.

Referring to Theorem 2.2, let

(.4
(x(t, t w(t ,t x(,1,
(x(t, f(x(t, .

From (2.22) it follows that If()l 11, and consequently N maps F into itself,
and F* into itself; moreover, we easily conclude that

(sAx x,sAx x) ls(x xlll
for all x, x e F and Te . Also, N is clearly causal with respect to .
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On the other hand, a routine application of the Schwarz inequality shows
that K maps F* into itself and that IIKxll <- WIIxll for all x e F*; since K is
clearly causal, it follows that K:F - F.

Next, let (ico, i602) be the Fourier transform of w(t,t2). Choosing an
x e F*, let 2(io, io92) stand for the Fourier-Plancherel transform of x. Then we
have, by (2.24), the theorem on transforms of the convolution, and Parseval’s
equality (the bar denotes the complex conjugate),

where we have set

X(tl, t:)(Kx)(t, t2) dt dt2

(2r) -2 2-(ico,, ico2)(x)(ioo, ico2) dco dco2

(2re)- 2 Re 2(Kx) dCOl dco2

(2/r) -2 Re 12lz dco dco2

>_ (2n)-2 I.l 2 da dco2

x2(t, t2) dt dr2

inf Re (ico, i(.02).
(01 ,02)eR

Hence, if >__ 0 and 1 + > 0, Theorem 2.2 shows that the operator (x, u)
-Ax + u possesses an L-continuous resolvent (2, which is causal with respect

to the scale and is such that Q" F* --, F*.
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ON FEEDBACK CONTROL OF LINEAR STOCHASTIC SYSTEMS*

ANDERS LINDQUISTt

Abstract. Feedback control of linear continuous-time stochastic systems of general type is
discussed. Various types of (classical) information patterns with both complete and partial observations
(white and colored measurement noise) are considered. The cost functional is quadratic. A class of
admissible control laws is defined which includes all linear and nonlinear control policies for which
our problem makes sense, i.e., existence, uniqueness etc. are secured. Then, we determine the optimal
control law by an imbedding procedure which amounts to solving a problem without a feedback loop.
We investigate under what conditions the optimal control law is linear in the data.

1. Introduction. In recent years there has been a considerable interest in
feedback control oflinear continuous-time stochastic systems. However, as pointed
out by Witsenhausen [20], the difficulties created by the feedback loop have
frequently been overlooked, and therefore many results have appeared which as
yet have not been rigorously justified. On the other hand, as one might expect,
many rigorous proofs suffer from undesired technical restrictions.

The most well-known problem of this type is the stochastic linear-quadratic
regulator problem with noisy measurements, for which various versions of the
"separation theorem" hold. These versions usually differ in the way in which the
set of admissible control laws is defined. By confining ourselves to control laws
which are linear in the data, we can easily avoid the difficulties mentioned above.
However, we usually want to compare them with nonlinear control laws even
when such a comparison rules in favor of a linear one. To the author’s knowledge
the first fully rigorous proof along these lines appeared in the book [16] by
Kushner, where only control laws satisfying a uniform Lipschitz condition in a
certain state estimate are admitted. The state estimate is assumed to be generated
by a linear Kalman filter to which the nonlinear feedback loop is added, but it is
shown that this estimate is indeed the expected value of the current state given
past observations, as long as we confine ourselves to admissible control laws. In
the well-known paper [21] by Wonham the class of admissible control laws is
defined in a more straightforward way, first excluding the possibility that the
"information" carried by the observation process is control-dependent by re-
quiring the control to be Lipschitz in this process. Then, the admissible control
laws are defined to be Lipschitz continuousfunctions ofthe conditional expectation
of the state given past observations. Moreover, the separation theorem is general-
ized to hold for nonquadratic cost functionals. (Also see [22] .)

Of course the Lipschitz conditions are imposed to insure that there exist
unique solutions of the feedback equations. Otherwise the problem would not

* Received by the editors May 2, 1972.- Institute for Optimization and Systems Theory, Royal Institute of Technology, Stockholm 70,
Sweden, and Department of Mathematics, University of Florida, Gainesville, Florida 32601. This
research was supported by the Swedish Board for Technical Development under Grant 71-196/U 126.
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make sense. Unfortunately, these conditions exclude many control laws which are
not sufficiently smooth but for other reasons are natural to admit. (See 3.) In
order to get rid of these technical restrictions, Davis and Varaiya 5] defined a
new concept of solution using a theorem of Girsanov [11 to eliminate the control
dependence. For other contributions in this spirit see Bene 2] and Davis and
Varaiya [6]. In a recent paper by Lindquist 17] on optimal control of linear
stochastic systems (primarily devoted to stochastic functional differential equa-
tions) most technical restrictions mentioned above are dispensed with without
renouncing the usual concept of solution. Also in a paper by Bensoussan 3] on
the separation principle for distributed parameter systems the set of control laws
is defined so as to avoid undesirable restrictions. However, contrary to [5] and
[21], in both these papers the cost functional is quadratic.

In this paper we consider feedback control of linear stochastic systems of
general type. Various types of information patterns with both complete and partial
observations are considered. The cost functional is quadratic, but it is of a more
general type than usually encountered in the literature. The approach is the same
as that of [17], but the objective of this paper is somewhat different. In [17] our
prime purpose was to determine explicit feedback solutions for linear stochastic
lime-lag systems. But, since for such systems the conditional expectation of the
current state given past observations is no longer a sufficient statistic, we could
not adhere to the approach of [21]. Thus we had to define our set of admissible
control laws with a minimum of technical restrictions. However, rather than to
discuss the problems of feedback, our main effort was to demonstrate that sto-
chastic time-lag problems of the most general type can be handled in a rigorous
way. Therefore, in this paper we shall present a more detailed discussion of our
feedback approach, and at the same time we shall be able to present some ex-
tensions. In order to avoid obscuring our exposition, we have used technically less
complicated examples than in [17] to illustrate our basic ideas. Nevertheless, in
certain aspects they will be more general.

In 3 we discuss the problems offeedback in a general context. We define the
concepts of stochastic open loop (SOL) problem and feedback (FB) problem. A
SOL problem is usually easy to solve but what we want is a solution of a FB
problem. Therefore, our basic method is to imbed our FB problem in a suitable
SOL problem, and to this end, in 4, we derive an identity for the cost functional.
In 5, we investigate what conditions we have to impose on the system in order
that the optimal control law be linear. This is to simplify the imbedding procedure
and also to enable the practical implementation of the optimal control law. Thus
we define our system so that among all nonlinear control laws which make sense
(conditions of existence, uniqueness, etc. are fulfilled) the optimal one is linear.
For stochastic systems of the type discussed above, this amounts to requiring the
perturbing noise process to be a martingale in the case of complete observations
and a Wiener process for partial observations. We may well be able to solve a
SOL problem without these conditions, but the solution is usually of limited
interest to us, since we do not know of any method to decide whether an arbitrary
nonlinear control law is admissible for our FB problem. Finally, in 6 we give
some simple examples to illustrate our method. For instance, we prove the sepa-
ration theorem for colored measurement noise and for time delay in the control.
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For more explicit control and filtering solutions of systems with delay in the
state process we refer the reader to [17] and [18].

2. Preliminaries. Let Xo(t) be a (fixed) measurable n-dimensional stochastic
process with bounded second order moments, and let K(t, s) be an n m matrix
function such that or IK(t, s)l 2 ds is bounded. (l" is the Euclidean norm.) We shall
define three vector functions taking values in Rm, R and Rk, respectively, namely
the input or control u(t), the state x(t), and the output or observation z(t). These
functions are related to each other in the following way"

(2.1) x(t) Xo(t) + K(t, s)u(s) ds,

(2.2) z(t) gx(t),

where H is a constant k n matrix. In the sequel, we shall often use the following
shorthand notation"

(2.1’) x Xo + Ku,

(2.2’) z Hx.

Therefore whenever u is a measurable stochastic process such that Elu(t)l < o is
integrable, x and z are also measurable processes, and they have bounded second
order moments.

Our object, however, will be to construct a feedback system. At each time t,
u(t) should be formed as a functional of observations received so far" {z(s);
0 _<_ s _<_ t} in such a way as to minimize

(2.3) EVo(x, u),

where

(2.4) V(x, u) x’(t)Q (t)x(t) da(t) + u’(t)Q 2(t)u(t) dr.

Here Q1 and Q2 are bounded matrix functions which are nonnegative definite
and positive definite respectively, denotes transpose and E expectation, and a is
a monotone nondecreasing bounded function which is continuous on the right
and thus defines a finite Borel measure t. Moreover, Q2 has a bounded inverse

In order to facilitate the formulation of this problem in more precise mathe-
matical terms, we shall define a few concepts" Let P be the set of all measurable
k-dimensional stochastic processes, and S the set of m-dimensional stochastic
variables. Then the function

’[0, T] x pk S

is a nonanticipative function of z if (t, z) is a function of {z(s) 0 s N t} only for

In this paper a measurable n-dimensional stochastic process will be a x -measurable function
[0, T] x R", where M and are the sigma fields of Borel sets and events respectively. Then we
have assumed an underlying complete probability space (fl, , P), where as usual fl is the sample
space with elements and P is the probability measure. As usual we shall write Xo(t) instead of
Xo(t, ). All deterministic functions defined in this paper are Borel measurable.
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each and defines an element in pro. The measurable process x is a stochastic
B-solution of the equation

(2.5) x(t) Xo(t) + K(t, s)r(s, Hx) ds

if for each e [0, T] it satisfies (2.5) with probability and EIx(t)l is bounded. In
this paper we shall make no distinction between equivalent processes, i.e.,
processes which for each are equal with probability 1.

Our model (2.1) of the controlled system is sufficiently general to include
linear dynamic systems such as stochastic differential equations and stochastic
functional differential equations. Since our prime interest is in differential systems
of this type, the technical assumptions of boundedness imposed above are natural
and convenient, but it should be pointed out that they are in no way crucial.

3. Feedback in linear stochastic systems. Let { ; 0 =< < T} be a
family of sigma fields and let ’ be the set of all m-dimensional stochastic processes
such that"

(i) u(t, o) is measurable (t,
(ii) j’ E HI 2 dt <
(iii) u(t) is t-measurable for almost all t.

Consider the problem of finding a u* ’ so as to minimize

E Vo(xo + Ku, u).

It will be shown in the Appendix that there indeed exists a unique u* for
which the minimum is attained. Following [17], such a problem will be called a
stochastic open loop (SOL) problem and ’ a SOL class. If all t 0, we have an
open loop (OL) problem, which is essentially an ordinary variational problem, but
in general the SOL problem corresponds to the situation where the available
amount of "information" (given by ,)varies (usually increases)with time but is
unaffected by the choice of u.

However, we are primarily interested in problems where information about
the state process is provided by the observation process

(3.1) z Hx.

The problem is to determine a control law, that is, to design a "black box" in
which the observations received so far are filtered and fed back into the system as
a control signal (Fig. 1). Then we have a feedback (FB) problem. The "black box"
will be described mathematically by a nonanticipative function zr’(t, z)--, u(t)

zr(t, z), and we shall use the shorthand notation"

(3.2) u zrz.

Of course, we have to define the set of admissible in such a way that there exists
a unique solution of the stochastic functional equation created by the feedback
loop. (To this end, Wonham [21] only admitted z for which a certain Lipschitz
condition is fulfilled. However, for technical reasons which will be revealed below
we do not choose to formulate our problem in this way.) To avoid these rather
intricate problems of existence, we could instead of our FB problem solve the



ON FEEDBACK CONTROL 327

o

FIG. 1. The FB problem

z o
o

FIG. 2. A SOL problem

SOL problem (Fig. 2)"

(3.3a) min EVo(Xo + Ku, u),
ea//o

where ’o is the SOL class defined by

(3.3b) , a{Zo(S);0 =< s _< t};

that is, the family of sigma fields generated by

(3.4) Zo Hxo.
Methods along these lines have been proposed [23], [24]. In fact, Zo can be

determined by subtracting HKu from z. However, a control system designed in
this way will not be a proper closed loop system, and it will obviously lack some
desirable properties associated with the concept of feedback. Also, the reader is
warned against exchanging zo for z in (3.3), for then we cannot a priori assume
that {,} is constant with respect to variations of the control, and moreover
questions of existence have to be settled.

Now, we define our class of admissible control laws in the following way"
I-I is the class of all nonanticipative functions

rt’[O, T] x P S

which are measurable in the sense that re(t, y) is a{y(s);O <= s <= t}-measurable for
all (t, y) for which r is defined, and which fulfill the following conditions"

(i) there exists a unique stochastic B-solution x of

(3.5) x Xo + KrcHx"

(ii) u rcHx, ?1o
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Then our problem is to determine a n* H which minimizes

E Vo(x, nHx),

but in general we do not know whether there really exists an optimal n. However,
if we define ’n to be the set of stochastic processes

(3.6) /n {nnx "n e H},
it is clear that n @o and that

inf EVo(x,, nHx,) inf EVo(xo + Ku, u)
(3.7)

n .
>= rain EVo(xo + Ku, u).

ealio

So if we can find an optimal u* for the problem (3.3) so that u* ’n, then we have
found a solution of our FB problem provided that we can also determine a
n* H such that u* n*Hx,.

At first sight it seems quite reasonable to assume that the class H of ad-
missible control laws includes all n for which our problem makes sense. The only
point on which this claim could be questioned is the condition that u(t) n(t, Hx)
be a{Zo(S); 0 < s =< t}-measurable for almost all t. However, it should be noted
that this condition is true whenever the solution x, of (3.5) is such that z Hx
can be constructed as the limit in probability of a sequence of (measurable) non-
anticipative functions of zo. Therefore, for all practical purposes we can safely
ignore all n which do not belong to H.

As an example let us consider the following stochastic functional differential
equation"

dx [A (t)x(t) + A(t)x(t h) + Ao(t, s)x(s) ds
(3.8) -+ Bl(t)u(t + B2(t)u(t h)]dt + C(t)dv fort > 0;

x(t) (t) fort =< 0,
where Ao, A1, A2, B, B2 and C are bounded matrix functions, B2 0for < h,
the delay h > 0, v is a stochastic vector process with orthogonal stationary in-
crement such that

(3.9) Ev(t) 0; E{v(s)v’(t)} I min (s, t)

and is a process with bounded second order moments. The processes and v
are independent.

Problems of this type have been studied under more general conditions in
17], where it was shown that (3.8)can be written in the following equivalent form"

(3.10) x(t) Xo(t + K(t, s)u(s) ds,

where

Xo(t O(t, 0)(0) + O(t, s + h)Az(s + h) + O(t, r)Ao(r, s) dr (s) ds
-h

(3.11)

+ O(t, s)C(s) dr(s),
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(3.12) K(t,s)-= (t,S)Bl(S + (t,s + h)B2(s + h)

and is the transition matrix function:

c(t, s) A (t)(t s) + Aa(t)(t h s) + Ao(t, z)(c s)dr
(3.13) c3t -h

(I)(s,s)= I; (t,s)=0 fort<0.

fort >_0:

Now we have transformed our problem into the type discussed above, and it is
not hard to see that the unique solution x of x Xo + KzrHx (re l-I) is also the
unique solution of the feedback equation obtained when u(t) r(t, Hx) is inserted
in (3.8). In fact, it is demonstrated in [17, Theorem 5.3] that the two equations can
be transformed into each other, so that any (stochastic B-) solution of one is also
a solution of the other.

Now, let yk be the space of all k-dimensional stochastic processes y which
can be represented in the following form:

(3.14) y(t) q(s) ds + D(s) dw(s),

where q is a measurable stochastic process such that EIq(t)l 2 is integrable, D is a
matrix function with square-integrable elements, and w is a stochastic vector
process of type (3.9) with orthogonal increments. Then, putting u 0 in (3.8), it
is clear that xo 6 Y" and zo 6 Yk. Define f to be the class of all functions

o:[0, T] Y-
such that

q)(t, y) f(t) + F(t, s) dy(s),

where f is an L 2 vector function and F is an L 2 matrix kernel (j’j" [F[ 2 ds dt < ).
If there is a stochastic B-solution xo of (3.8) with u qz, we must clearly have

xo Y" and consequently z0 Y.
LEMMA 3.1. For the dynamic system (3.8) we have C I-I.
Proof (cf. [17]). First observe that if O(t) is an L 2 matrix function,

(3.15) g/(s)q(s, y) ds tp(s)f(s) ds + /(s)F(s, ) ds dy(r)

a.s. for all y for which 0 is defined, that is, we can change the order of integration.
In fact, considering (3.14) we can divide the last term of (3.15) into two and apply
the usual Fubini theorem to the first term (for j" [q[2 ds < oe a.s.) and the stochastic
Fubini theorem ([7, p. 431], [10, p. 197]) to the second. Now, inserting

K(t, s)= B(s) + B2(s + h)O(t- s- h)+ F(:, s)dr

(where F is an L 2 matrix kernel such that F(t, s) (c3K/t)(t, s) for va s + h and
0 is the unit step function) into (3.10) and changing the order of integration, we
obtain

(3.16) x(t)= Xo(t) + B(s)u(s) + B(s)u(s h) + F(s, z)u(z)dz ds.
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Then after inserting u(t) (p(t, z) into (3.16), applying (3.15) and multiplying by
H we have an expression of the following type"

(3.17) dz=dzo+IflG(t,s)dz(s)+g(t)]dt,
where G is an L2 matrix kernel and g is an L2 vector function.

Now, let the L2 matrix kernel R be defined by the Volterra resolvent equation

(3.18) G(t, s) R(t, s) R(t, z)G(r, s) dr,

exchange G in (3.17) for the right member of (3.18), and change the order of
integration. Then we obtain

dz dzo + R(t, s) dzo + R(t, s)g(s) ds + g(t) dt

which inserted into (3.16) with u qz yields the unique solution xo. Evidently
q)Hxo e lo. (We consider a measurable version of q(t, z). See [7, p. 430] or [10,
p. 196].) This concludes the proof.

By prescribing some conditions of regularity on the sample functions of z
such as continuity or boundedness, we could define as a function of individual
sample functions of z rather than the whole stochastic process. For example, if z
has continuous sample functions, following Wonham [21] we could define the
class of all functions

0"[0, T] x CR

such that (t, () is a function of {((s) 0 s and satisfies a Lipschitz condition

I(t, 1) (t, 2)1 7111 C2]I,

where denotes the sup norm in the space C of continuous functions on [0, T]
with values in R. Let C be the space of all k-dimensional stochastic processes
with continuous sample functions, and define HL to be the class of all functions

(t, z) e [0, T] C (t, z) e S,
where @ . Then it can be shown that HLIP H. (See [21] and [22].) However,
for the control of systems of type (3.8), is often a very natural class of control
laws. Indeed, below we shall introduce some further conditions so that the op-
timal control law * , but in general we have to impose still further conditions
in order that * HL. In fact, HL, for usually a stochastic integral cannot
be defined samplewise. This is only possible the functions s F(t, s) are of
bounded variation (and z has continuous sample functions). Then we can integrate
by parts to obtain

O(t, z) f(t, t)z(t) F(t, 0)z(0) dsF(, s)z(s).

With a few additional conditions on F this control law will belong to .
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4. An identity. Let w(t) be a p-dimensional martingale2 with finite second
order moments, zero mean (w(0) 0) and incremental covariances"

(4.1) E{dw,(t) dwj(t)} d(t), i,

.0, j :/: i,

where w (i 1, 2, -.., p) are the components of w, and fl are monotone non-
decreasing bounded functions which are continuous from the right. In the Hilbert
space H, with inner product (, q) E{, q}, ofall (real-valued) stochastic variables
with finite second order moments, define H to be the subspace of stochastic
variables which are measurable with respect to

(4.2) , {w(s); 0 s t}
and , to be the closed linear hull of {w(s); 0 N s N t, i= 1,2,--., p} together
with all constants, i.e., the set of all stochastic variables which can be represented
in the following way"

+ f’(s) dw(s),

where is a constant, f is an L2 vector function, and integration is with respect
to the stochastic measure

U((tl, t2] w(t2)- W(t)

(cf. [10, p. 194]). Let Et and t denote the projections of H onto H and, respectively, i.e., the conditional and wide sense conditional expectations of
given {w(s); 0 s t}. Since , H,, we can form the orthogonal complement
Ht t of , in H,. Finally, let w be the SOL class with {t} given by (4.2).

LEMMA 4.1. If U w is given by

(4.3) u(t) (t) + u(, s)dw(s) + (t)
i=1

where I I()1 d < , lug(, s)l dg(s) d < (i 1, 2,..., p) and e is a

stochastic process such that i(t) e H for almost all (i 1, 2, ..., m), then

eVo(Xo + u, u Vo(, + (x (., st, u(., sll B(s + o(, I,
i=1 0

o, xi(’, s) and 2 being d@ned in the following way"

(t) o(t) + K(t, )() dr,

xi(t, s) mi(t, s) + K(t, r)ui(r, s) d,

2(0 2o(0 + K(t, )() d,

E{w(s)lw()’O t} w(t) for < s. Since EIw(t)l < , w(t) has orthogonal increments.
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where3 o(t)= Exo(t), mi(t, s)= (t/ti)E{xo(Ig)wi(s)} and YCo(t Xo(t Xo(t).
Proof(cf. [17]). According to Lemma B.1 (see Appendix),

o(t) o(t) q- mi(t S) dwi(s)
i=1

is (a version of) the wide sense conditional mean Exo(t). Then, inserting Xo(t)
o(t) + o(t) and (4.3) into Xo + Ku, we have"

x(t) o(t) + K(t, )() dr

+ mi(t s) dwi(s + K(t, ) Ui( S) dwi(s) dz
i"

(4.4)

+ 2o(0 + K(t, )() d

(t + x(t, sIw(sI +

where we have used the stochastic Fubini theorem.
Now due to the martingale property, (s)Z for almost all s N t, and

therefore (since 2o(0 2 ), 2(t) 2 . In fact, if

(4.5 f’(s w(sI,

where f is a vector step function, E 0, and therefore

for almost all s N t, for E EE and e. But each e @ can be rep-
resented as the limit in H of a fundamental {} of type (4.5), and therefore (for
almost all s N t) E{(s)} 0 for all such , and consequently (s) 2 @ .
But by definition, (s) 2 and hence (s) 2 , (for almost all s N t).

Since the terms of (4.4) are mutually orthogonal and the same is true for
(4.3) for almost all t, we have

evo(x, u o(, + eVo(Xw, uw + o(,,
where (xiwi)(t) xi(t, s)dwi(s) and uiwi are defined analogously. However,

+ u}(t, s)Q(t)ui(t, s) dBi(s) dt

T

0

where we have used (4.1) and Fubini’s theorem. This concludes the proof.

(/B)E{xo(t)w(s)} [(/)E{Xo(t)w(B? ())};=, (see Appendix).

(s) 2 B, means "all components of a(s) are orthogonal to ,
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Remark. If w is a process of type (3.9), i.e., fli(t) t, we have

mi(t s)= ---E
S {Xo(t)wi(S)}"

If Xo(t) Ht, we have

Xo(t) 2o(t) + i mi(t, s) dwi(s).

5. The imbedding proeelure. In order to exploit the identity derived in the
previous section, we note that for many stochastic systems of interest it is possible
to represent the uncontrolled observation process Zo defined in 3 in the following
way:

(5.1) Zo(t) o(t) / N(t, s) dw(s),

where w is an r-dimensional martingale defined as in 4, o is a bounded deter-
ministic function, and N is a k x r matrix function with columns N such that

f [Ni(t, s)[ 2 dfli(s are bounded. With n, o and w defined as in 3 and 4, we
obtain

(5.2) .ow
and therefore we have imbedded the set n of all control processes generated by
admissible control laws in the SOL class defined by a martingale process. The
following lemma will explain our basic method to construct optimal control laws.

LEMMA 5.1. Let u* be the optimal solution of the SOL problem:

(5.3) min EVo(xo + Ku, u).
u

If there is a * H such that

(5.4) u*(t) n*(t, zo + HKu*),

then there exists an optimal solution of the FB problem

min EVo(x, Hx)

and it is provided by *.
Proof. Let z* Zo + HKu*. Then, according to (5.4), u* *z* and there-

fore z* zo + HK*z*. But then z* must be the unique solution z, of z z0
+ HKg*z, and consequently u* *z,. Now, due to (5.2),

inf EVo(xo + Ku, u) EVo(xo + Ku*, u*);
uen

but since u* e n, equality holds. This concludes the proof of the lemma.
Ofcourse this procedure can only be successful if w is so defined that u* e n.

It is therefore desirable that 41 be as small as possible. If the transformation (5.1)
is causally invertible, i.e., w can be represented as a measurable nonanticipative
function of Zo, we have 0. Then (5.1) is a canonical representation and w
will be called an innovation process. (See, e.g., [4], [12], [13], [9], [14].) However,
in general it is no trivial problem to decide whether u* really belongs to n. Often
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a nonanticipative function expressing u* in terms of z* Zo + HKu* is quite
easily determined (e.g., in the form of conditional expectations), but it still remains
to show that this function belongs to H, i.e., that there exists a unique solution of
the corresponding feedback system. In order to reduce these difficulties and also
to make full use of Lemma 4.1, we shall investigate under what conditions on the
pair (Xo, w), the optimal SOL control u* is linear in w.

THFORFM 5.2. If the pair (Xo, w) fulfills the condition

(5.5) Etxo(t) tXo(t) la-a.e, on [0, T],

i.e., the conditional and wide sense conditional expectations of Xo(t given {w(s);
0 <__ s <__ t} coincide for #-almost all on 0, T], then the optimal solution u* of the
SOL problem (5.3) is given by

(5.6) u*(t) l*(t) -t- U(t, S) dwi(s),
i=1

where * is the optimal L2 solution of the problem

(5.7) min Vo(fo + KO, )

and u’(., s) (i 1, 2, r;0 <= s <__ T) are the optimal L2 solutions of
(5.8) min V(mi( s) + Kui( s), ui( s))

ui( ,s)

subject to the constraints ui(t, s) 0 for < s. Here,

fro(t) Exo(t and --Emi(t s)
i

{x(t)wi(s)}

Moreover, if x* Xo + Ku*, for all (z, t) [0, T] x [0, T] we have

(5.9) x*(t) x*(t) + x.*, (t, s) aw(s),
i=1

where f*= fo + Kft* and x.*, s)= mi( s)+ Ku.*, s).
Proof. Let and 2o be defined as in Lemma 4.1. Then, g(S) H c H for

almost all s < and therefore (K)i(t) Ht. Now, condition (5.5) implies that

EtYco(t) E,{xo(t) /,Xo(t)} Exo(t) ,Xo(t)= 0 p-a.e.,

and consequently 20(t) _1_ Hr #-a.e. Therefore 20(t) and (Kfi)(t) are orthogonal for
g,-almost all on [0, T], and hence

EVo(YC, )= EVo(o, O)+ EVo(K )>= EVo(o, 0),

where equality holds for t7 0. Therefore our assertion (5.6) follows from Lemma
4.1, for problems (5.7) and (5.8) indeed have unique solutions such that u* defined
by (5.6) is a measurable stochastic process (see [17]). To obtain (5.9), insert (5.6)
into x* Xo + Ku*, change the order of integration (stochastic Fubini theorem)
and apply Lemma B. 1. This concludes the proof.

Note that we do not a priori assume that u* is linear in w, but the linearity is
a consequence of condition (5.5) and the martingale property. It should be clear
from the proof of Lemma 4.1 that if we confine our set of admissible controls to
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those which are linear in w, we only need to assume that w have orthogonal
increments to insure that (5.6) is optimal.

COROLLARY 5.2. Either one of the following two conditions is sufficient for
(5.6) to be the optimal solution of problem (5.3):

(i) Xo(t) e fI, on [0, T];
(ii) Xo and w are jointly Gaussian.

When condition (i) holds, x*(t) can be obtained from (5.9) by putting z t, and when
condition (ii) is fulfilled, *(tlz) Ex*(t) is given by (5.9).

Proof. Both conditions are sufficient for (5.5) to hold. As for condition (ii),
see, e.g., [10, pp. 228-229].

Remark. Conditions (i) and (ii) can be weakened so as to exploit the fact that
(5.5) only needs to hold for p-almost all t.

Now, if u* is given by (5.6), we have

(5.10) z* Nw + HKu*,

(5.6’) u*= U’w,

where N and U* denote the affine transformations of (5.1) and (5.6) respectively.
Then, if we can eliminate w from this system to obtain a nonanticipative function
(5.4) expressing u* in terms of z*, there should be no problem in establishing
whether this control law really belongs to l-I, for it is linear in z*. Once the optimal
control law r* has been determined, there remains the problem of implementing
it. We shall refer to this problem as the filtering problem, since it often amounts to
constructing a linear filter whose transfer property is described by

As an example, let us return to the dynamic system defined by (3.8). It is clear
from (3.11) that if is a known (deterministic) function and v is a martingale, we
have a representation of type (5.1). Also, with w v, condition (i) of Corollary 5.2
holds and consequently u* is given by (5.6). Indeed, in 6, we shall use this rep-
resentation for the case with complete state information (H I), but in general
the SOL class @’v is too large. However, if v is a Wiener-process, is Gaussian,
{z(t) _<_ 0} is deterministic, and HC(t) is a square matrix with a bounded inverse,
we have an innovation process

(5.11)

where

(5.12)

dw(t) (HC(t))- l[-d_7o(t) H(t)

wlO) o,

(t)- E{q(t)lZo(S); 0 <_ s <_ t},

(5.13) q(t) A(t)Xo(t) + A(t)Xo(t- h) + Ao(,s)xo(s)ds.
-h

The innovation process w is a Wiener-process, w and zo are related to each
other by invertible and nonanticipative linear transformations, and the families
of sigma fields generated by the two processes are identical. (See, e.g., [14], where
other references are also given, or [17, Lemma 3.2 .) Therefore,

(5.14) O(t) 7:t(0 + Q(t, s) dw,
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where the L 2 vector function g/and L2 matrix kernel Q are given by Lemma A.2,
and hence z0 can be represented in the form (5.1). Moreover, since Xo and w are
jointly Gaussian, condition (ii) of Corollary 5.2 holds, and u* is given by (5.6).
Now, from (3.16) we have

u* + HB2u*(t h) + HF(t s)u*(s)ds dt(5.15) dz* dzo + HB

Then, inserting Zo given by (5.11) and (5.14) and u* given by (5.6) into (5.15) and
changing the order of integration, we obtain an expression of type

(5.16) (HC)- dz* dw + P(t, s) dw dt + p(t)

(where p and P are functions of the same type as ?/and Q). The resolvent technique
previously used for equation (3.17) can now be applied to solve (5.16) for dw,
which inserted into (5.6) yields

u*(t) *(t, z*),

where *5. Therefore, since q is contained in FI (Lemma 3.1), Lemma 5.1
implies that * is the optimal control law of our FB problem. We have not
bothered to determine g* explicitly but have only described how this can be done.
The reason for this is that n* is often more easily implemented by a linear filter
in which w is formed as an intermediate process. Such a filter contains linear
feedback loops, and we may ask whether the existence and uniqueness for the
complete feedback system is preserved. However, this is the case, for mathe-
matically these loops correspond to linear Volterra integral equations of either
ordinary type or type (5.16), and therefore they can be resolved by reformulation
using the resolvent equations. (Note that in this paper we allow no stochastic
processes whose sample functions are not a.s. square integrable.)

6. Examples. In order to illustrate our basic technique, we shall apply the
results of this paper to some simple and well-known problems, all of which will
concern systems of type (3.8). However, we shall not consider delay in the state
process since this would only introduce complications in notation without ex-
posing any new ideas which cannot be found in [17].

Example 1. Complete state information. Consider the system:

(6.1) dx(t) [A(t)x(t) + Bl(t)u(t + B2(t)u(t h)] dt + C(t) dw,

where x(0) a is a deterministic vector, w is a martingale of type (4.1), and the
matrix functions are defined as in 3. The observation z(t) is the state process x(t)
itself, and the problem is to determine a control law z "(t, x) - u(t) re(t, x) in the
class H which minimizes

(6.2) E{fro (x’Qx + u’Q2u)dt + x’(T)Q(T)x(T)}.
Here (6.2) is the cost functional (2.3) with e(t) for < T and e(t) + 1 for
t>T.
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Now, if is defined as in (3.13) with A A and Ao A2 0, we have

(6.3) Xo(t O(t, O)a + O(t, s)C(s) dw(s)

and hence condition (i) of Corollary 5.2 holds. Therefore, (5.6) is the optimal
solution of the SOL problem (5.3). The functions fro, mi and K in Lemma 5.2
are given by

(6.4) o(t) (t, 0)a,

(6.5) mi(t, s) (t, s)ci(s) for >= s,

(3.12’) K(t, s) (t, S)Bl(S + ((t, s + h)B2(s + h),

where ci is the ith column of C, and therefore problems (5.7) and (5.8) belong to the
family of problems

(6.6) min (x’Qx + u’Qu)d + x(r)Q(r)x(r)

when

dx
Ax + Blu(t + B2u(t h) for > s, u(t) 0 for < s,

dt

where for (5.7), s 0 and x(0) a, and for (5.8), x(s) ci(s). Now, according to
Appendix C, we have the following feedback solutions"

o*(t) Po(t)*(t) + Pl(t, "0fl*(’0 d’,
-h

u(t, s) Po(t)x.*, (t, s) + Pl(t, "c)u.*, (’c, s) d’c, >= s,
-h

which inserted into (5.6) yields, after applying the stochastic Fubini theorem,

(6.7) u*(t) Po(t)x*(t) + P(t, z)u*() dz,
-h

for x*(t) is given by (5.9) with r (Corollary 5.2), and u(t, s) =_ 0 for < s. Since

P is an La matrix kernel and almost all sample functions of Pox* are square
integrable, according to standard Volterra theory (see, e.g., [19]) there is an L
resolvent kernel Pa such that

(6.8) u*(t) Po(t)x*(t) + P(t, s)Po(s)x*(s) ds

which defines a nonanticipative function r* "(t, x*) --* u*.
Now we can use a similar argument to show that *e H, and therefore,

according to Lemma 5.1, (6.8) is an optimal FB solution. However, note that the
filter described by (6.7) might prove to be a more suitable implementation of re*.
(See Fig. 6.1.) In fact, (6.7) only requires storing u* on the interval (t h, t), while
in (6.8) we need x* on the whole interval (0, t). It should be clear from the dis-
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cussion above that this implementation preserves the existence and uniqueness
property of

Example 2. Separation theorem; white measurement noise. Consider the
stochastic vector processes y and z defined by

(6.9) dy(t) [A(t)y(t) + B(t)u(t)] dt + C l(t) dv l(t),

(6.10) dz(t) D(t)y(t) dt + d/)2; z(O)-- O,

where v is a vector Wiener-process of type (3.9), y(0) in Gaussian,
v

Ey(O) a, and v and y(0) are independent. All matrix functions are bounded. The
problem is to determine a nonanticipative function r’(t, z)--. u(t) r(t, z) so as
to minimize

(6.11) E{f o (y’Q3y+ u’Q2u) dt},
where Q3 is nonnegative definite and bounded.

Now, this is clearly a problem of the type discussed in 3. In fact, define x

to be () and H to be (O,I). Moreover, in V(x,u) define Qx to oQ3 00) and

put (t) t. Therefore, H will be our class of admissible control laws from which
a r minimizing (6.11) is to be selected.

For this problem we have an innovation process (5.11) given by

(6.12) dw dzo D(t)o(t dt w(O) O,

where Po(t) is defined as in (5.12), and, according to Corollary 5.2 (condition (ii)),
(5.6) is the optimal solution of our basic SOL problem (5.3) to determine a u ’w
so as to minimize (6.11). Now, let 0, *, g and y’ be the subvectors in "y-position"
of fro, *, mi and x’ respectively, and let K be the corresponding submatrix of K.
Then, if is defined as in Example 1, we have

(6.13) Yo(t) O(t, O)a,

(6.14) gi(t, s) d(t, s)P(s) di(s for >= s,

(6.15) K (t, s) (t, s)B(s),
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where di is the ith column of D’, and P is the conditional covariance

(6.16) P(t) E{[yo(t .9o(t)][yo(t)- Po(t)]’}.
In fact, since Yo and v2 are independent, we have

E{Yo(t)w’(s)} E{Yo(t)[Yo(Z .o(Z)]’}O’(z)dr

O(t, r)P(r)D’() dr,

for the two last terms in

yo(t) O(t, z)[yo(z) )o(Z)] + O(t, Z))o(Z) + O(t, )C1() dr,

are orthogonal to yo(Z) 9o(V), and therefore (6.14) follows from the definition
of mi(t, s). Then, (5.7) and (5.8) belong to the family of problems"

min (y’y + u’Qau) dt

(6.17) when
dy

Ay + Bu fort>__s,
dt

where s 0 and y(0) a for (5.7), and y(s) P(s)di(s for (5.8).
Hence, we have the following feedback solutions"

(6.18) a*(t) L(t)y*(t),

(6.19) u.*, (t, s) L(t)y.*, (t, s),

where L can be found in any textbook on the linear-quadratic regulator problem.
This inserted into (5.6) yields

(6.20) u*(t) L(t)9*(t),

where 33*(t) Ety*(t is given by (5.9) (see Corollary 5.2), and therefore satisfies
the stochastic differential equation

d*(t) [A(t)9*(t) + B(t)u*(t)] dt + P(t)D’(t) dw(t),
(6.21)

.9*(0) a.

Now, the innovation process (6.12) can also be written

(6.22) dw dz* D.f* dr,

for the control-dependent terms of z* and p* cancel out. Then, if W is the
transition matrix

(6.23)
--(t, s) A(t) + B(t)L(t) P(t)D’(t)D(t)]uf(t, s),

W(s, s) I,
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we have a nonanticipative function n* :(t, z*) -, u* which is defined by

(6.24) u*(t) L(t)(t, O)a + L(t)(t, s)P(s)D’(s) dz*(s)

and hence belongs to II (Lemma 3.1). Therefore, according to Lemma 5.1, among
all control laws in H, the function n* gives the smallest value to (6.11). However,
it should be clear from the discussion at the end of 5 that n* can safely be im-
plemented by the linear filter defined by (6.20), (6.21) and (6.22). Of course this is
an advantage, for in this way there is no need to store old z*.

Example 3. Separation theorem colored measurement noise. We shall consider
the preceding example (Example 2) modified in the following way: The obser-
vation process z is no longer defined by (6.10), but

(6.25) z(t) Hy(t) + n(t),

where H1 is a constant matrix and n is a colored noise term generated by

(6.26) dn(t) D(t)n(t) dt + dv
with n(0) 0. Also y(0) a is assumed to be deterministic.

Again we have a problem of the type discussed in 3, for define x to be ),
put H (H1, I), and let Q and be defined as in the previous example. There-
fore, the problem is to determine n H so as to minimize (6.11) when u(t) n(t, z).

Since HC I + HCa, we shall further assume that (I + HC1)- exists
and is bounded. Then, we have an innovation process (5.11) given by

(6.27) dw (I + HiC1)-dzo HiAodt Dhdt],

where w(0) 0 and Po(t) and h(t) are defined as in (5.12).
Now, apart from the definition of the innovation process, we have the same

problem as in the preceding example, and the optimal solution u* of our basic
SOL problem is given by (6.20) and (6.21). The innovation process can now be
expressed in terms of z* and 9""
(6.28) dw (I + HC)-l[dz* Dz* dt (HIA -k- HBL DH)9* dt],

for due to (6.20) and h(t)= z*(t) H lP*(t) which is an immediate consequence
of (6.25), we have only added terms which cancel out. Then, because of (6.20),
(6.21) and (6.28), we have

u*(t) L(t)(t, O)a + F(t, s)D(s) dsHa
(6.29)

+ F(t, s) + F(t, z)D(z) dr dz*(s),

where F and the transition matrix q are defined by

--( S) [Z -JI- BE PD’(I nt- n 1C1)- l(nlZ -- n1BE DH 1)klJ(t s)

q(s, s) I,

F(t, s) L(t)tP(t, s)P(s)D’(s)(I + H, C(s))- 1.
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To obtain (6.29) we have used the fact that

z*(t) H la + dz*

and applied the stochastic Fubini theorem. Now, (6.29) clearly defines a function
re* :(t, z*) u* which belongs to 5 = H. Therefore, according to Lemma 5.1,
is an optimal control law in the class H. However, as usual we will find it more
convenient to implement re* by the linear filter defined by (6.20), (6.21) and (6.28).

Appendix A.
LEMMA A.1. The SOL problem posed in the beginning of 3 has an optimal

solution which is unique up to a (t, co)-equivalence.
Proof. We introduce the following notation"

J(u)-- EVo(xo + Ku, u).

Now, there is a sequence u, ’, n 1, 2, 3, .--, such that

lim J(u,)= inf J(u)= p >__ O.

Then, for each e 0 the parallelogram identity yields

EVo(K(um Un), U Un)--- 2J(um) + 2J(u,) 4J( u" +2 u_

for sufficiently large m and n. Therefore {u} is a Cauchy sequence in L([0, T x fL
N x , 2 x P)(with norm I1o II- q El "1 dt)/; 2 is the Lebesgue measure)
defining a limit point u* which, due to completeness, clearly satisfies conditions
(i) and (ii) in the definition of ’. Moreover, since

lim IlUn U*I 0, lim Elu,(t)- u*(t)l 2 0

for almost all t, and hence u* satisfies condition (iii), too. Therefore, u* . It
remains to show that u* is optimal. However this is the case, for it is not hard to
see that IJ(u,) J(u*)l -<_ llu. u*ll, where 7 is a constant, and hence J(u*) p.
Moreover, if u ’ and J(u) -p, the parallelogram identity implies that
Ilu* ull 0, for

J
2

Therefore, u u* 2 x P-a.e., and hence the asserted uniqueness property is true.

Appendix B. Let y(t) be a stochastic vector process with finite second order
moments and mean E{y(t)} (t), and let w(t) be a vector process with zero mean
and orthogonal increments described by (4.1). The inverse functions --, -(t)
are uniquely defined except for at most enumerably many t. Then define

(B.1) hi(t, s) _--E{y(t)wi(-
fl
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for which we shall use the shorthand notation

Le(B.2) 1/li(t s)
i

{Y(t)wi(s)}"

Now, we can formulate a lemma which slightly generalizes results which may be
found in [13], [9] and [17], for example.

LEMMA B.1. The wide sense conditional expectation of y(t) with respect to

{w(s)" 0 <= s < z} is given by

(B.3) y(t) (t) + ni(t, s)dwi(s).

Proof (cf. [17, Lemma 2.1]). Since, by definition, y(t) must have a repre-
sentation of type (B.3), it only remains to show that n is given by (B.1). For
s <= r, wi(s and y(t) y(t) are orthogonal, and therefore

E{y(t)wi(s)} ni(t, ) dfli(’c),

or, with a- fli(s),

E{y(t)w(fl[ ())} hi(t, [t[-(0))dO,
(o)

which yields (B. 1).

Appendix C. Problem (6.6) has an optimal feedback solution

(C.1) u*(t) Po(t)x*(t) + Pl(t, s)u*(s) ds,
-h

where

Pl(t, s)= A(t, s + h)B(s + h)- e(t, , t)A(, s + h)dB(s + h),

Po(t) A(t, t) R(t, r, t)A(z, t)dz.

Here,
T

A(t, s) -Q- 1(0 K’(’c, t)Ql(’C)O(’c S)dz + K’(T, t)QI(T)O(T s)

where K is defined by (3.12) and R is the resolvent kernel given by

R(t, , s) P(t, ) P(t, )R(, , s) d

R(t, , s)P(, r) d
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with

P(t, s)= A(t, s)Bl(s + A(t, s + h)B2(s + h).

In fact, by the method used in [17, 4], we have

u*(t) + P(t, r)u*(z) dr A(, s)x*(s) + A(t, r + h)B(z + h)u*(r,) dr
-h

from which (C.1) follows by the same argument as in [17. (Also see [1] and [15
where versions of this problem are discussed in detail.)
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SOLUTION OF A DUAL PROBLEM IN OPTIMAL
CONTROL THEORY

EARL R. BARNES:

Abstract. We consider a fixed endpoint problem in optimal control theory. The problem is given
a dual formulation and an iterative procedure for solving the dual problem is described. The results
of two numerical experiments are discussed to illustrate how the method works in particular instances.

1. Introduction. Consider a control system governed by the linear differential
equation

(1.1) A(t)x + B(t)u(t), x(O) Xo.

x(t) e E, is an n-vector, u(t)e E is an m-vector, and A(t) and B(t) are continuous
matrices of dimensions n x n and n x m respectively.

Let f(t, x) and h(t, u) be continuous functions, defined for all x e E,, u e E,,,
and for all in an interval [0, T], T > 0. We assume further that f and h are convex
and twice continuously differentiable in the variables x and u respectively. Con-
sider the problem of minimizing the cost functional.

(1.2) c(u) If(t, x(t)) + h(t, u(t))] dt,

subject to the differential equation constraint (1.1), together with a terminal
constraint x(T)= xl imposed on x, and subject to the requirement that the
functions u allowed in the problem be measurable and assume values in a given
compact convex constraint set f c E,,. This class of u’s will be referred to as the
class of admissible controls, and will be denoted by (g. This problem is called a fixed
endpoint optimal control problem. We shall refer to an admissible control which
solves it as an optimal control. The existence of an optimal control is assumed
throughout our discussion.

According to Pontryagin’s maximum principle, in order that the control u*
be optimal for the system (1.1)-(1.2), it is necessary that there exist a function
and a nonpositive constant qo satisfying

(1.3) -AV(t)O rlo(t,x*(t)), 0 <= <= T,

such that

(1.4) max {B-(t)(t) u + qoh(t, u)} BV(t)t(t) u*(t) + qoh(t, u*(t)),
u6

for almost all e [0, T]. The symbol n- denotes transpose.- Received by the editors November 9, 1971, and in revised form July 2, 1972. Contributed at the
SIAM National Meeting held at the University of Washington, Seattle, June 28-30, 1971.

$ Visiting member of Mathematics Research Center, University of Wisconsin, Madison, Wiscon-
sin 53706, from IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598. This
work was supported by the United States Army under Contract DA-31-124-ARO-D-462.
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In what follows we shall make a normality assumption on our problem.
This is the assumption that the constant r/o appearing in the maximum principle
is <0. Then without loss of generality, we shall assume r/o 1.

With this assumption in force, let be as in the maximum principle and let
r/= q(T). Consider the minimization problem

min q (xl x(T)) + If(t, x(t)) + h(t, u(t)) dt,

where the minimization is taken subject to (1.1) and u cg. If we apply the maximum
principle to this problem and use the transversality condition, we see that its
solution is u*, the optimal control for the system (1.1)-(1.2). This discussion shows
that we can solve the optimal control problem for the system (1.1)-(1.2) as a free
endpoint problem, if we can determine the proper multiplier r/. An algorithm
for solving free endpoint problems has been described by the author in [13. We
therefore view the hard part of our control problem as that of determining the
multiplier r/. It is known (cf. [2, [3]) that q is characterized by the property that it
maximizes the continuously differentiable function g, defined for each 2 E, by

(1.5) g(2) min 2. (xl x(T)) + If(t, x(t)) + h(t, u(t))] dt.
u

Let u(t, 2) denote the admissible control which accomplishes the minimization
in (1.5), and let x(t, 2) denote the corresponding solution of (1.1). Then
(1.6) Vg(2) x x(T, 2).
This result is proved in [2, Theorem 2.1]. It is also shown there that the function g
is concave. Therefore, assuming that the function u(t, 2) (and hence the gradient
Vg(2)) can be determined for any given 2, it is conceivable that some of the gradient
methods from nonlinear programming theory can be used to maximize g, thus
giving the desired multiplier r/. The optimal control is of course given by u*(t)

u(t, ).
The problem

(1.7) max g(2)

is said to be dual to the optimal control problem formulated above for the system
(1.1)-(1.2).

The first attempt to solve optimal control problems by solving their duals was
made by Neustadt in 4] for a time optimal problem. This work was later extended
to fixed time problems similar to the one we consider here by Neustadt and
Paiwonsky in [3] and by Meditch and Neustadt in [5]. Other papers dealing with
computing optimal controls by dual methods include 6], [7], [8], and [9]. We shall
remark on the advantages of the dual method when we come to the numerical
results in 3.

Our purpose in this paper is to describe an iterative procedure for solving the
problem (1.7) for the case where h is a strictly convex quadratic form in u and f is a
strongly convex function of x. Without loss of generality we shall assume that
h(t, u) u .O(t)u, where D(t) is a positive definite rn rn matrix for each [0, T].

This assumption is merely a matter of convenience. It will be clear from our discussion that we

need only assume that h(t, u)is convex in u and satisfies 1/2VZh(t, u) >= D(t), [0, T.
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The requirement that f be strongly convex in x means that there exist positive
definite n n matrices C(t) and Cl(t) such that C(t) <= 1/2V2f(t, x) <= Cl(t) for all

1Vzc’tt x)[0, T] and for all x E,. The inequality 1/2V2f(t, x) >__ C(t) means that
C(t) is positive semidefinite.
A typical step in an iterative procedure for solving a problem of the form (1.7)

involves selecting an estimate 21 of the solution, and a direction s satisfying
s. Vg(21) > 0. An improved estimate 22 is then determined by the formula
22 21 + trls, where tr is defined by the requirement that

(1.8) g(21 + trlS)= max g(21 + as).
tr>0

In general, computing trl satisfying (1.8) is a very costly procedure. This is especially
true when the function g is hard to evaluate for a given value of the argument, as is
the case for our dual control problem. The special feature of our algorithm is that
it does not require the solution of a problem ofthe form (1.8) at each step. However,
in order to implement the method the matrix C(t) must be known.

2. The iterative procedure. Before presenting our iterative procedure we
describe how the function g can be evaluated for a given 2 e E,. Let J be the
functional defined on by

J(u) -2. x(T) + If(t, x(t)) + u(t). D(t)u(t)] dr.

The problem of evaluating g(2) and Vg(2) is equivalent to minimizing J on c.
Construct a sequence {Uk} qY as follows:

Step 2.1(a). Let u c be chosen arbitrarily.
Step 2.1(b). If ul, "., Uk have been chosen, choose t7k to be the solution of the

problem

min 2. x(T) + [Vf(t, x) x + u Du] dr.

Pontryagin’s maximum principle determines tk explicitly.
Step 2.1(c). Let Uk+ Uk + ek(k Uk) where ek is chosen so that

J(Uk + k(k- Uk))= min J(Uk + (k- Uk)).
0<at<l

Remark. It is not necessary to compute k satisfying (2.1c) with a high degree
of accuracy. In fact, we can take

-117 xll, / I1 ullo
where xk and )k are the solutions of (1.1) corresponding to uk and 1k respectively.
The norm II" Ilo is defined by

Ilull u(t) D(t)u(t) tit,

and I1" c, is defined similarly.
THEOREM 2.1. The sequence {b/k} constructed in (2.1) converges pointwise to

u(t, ). Moreover, the values J(ug) converge to J(u(t, 2)) at the rate of a geometric
progression.
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This theorem is proved in [1, Theorem 2.1]. It follows that the sequence
converges to u(t, 2) at the rate of a geometric progression, with respect to the norm
I1" Iio. And from this it follows that the values xl Xk(T) converge to Vg(2) at the
rate of a geometric progression.

We turn now to the description of our iterative procedure for solving (1.7).
Step 2.2(a). Select two constants 0 and fl satisfying 0 < 0 < 4 and fl > 1.
Step 2.2(b). Let 21 E, be chosen arbitrarily. If 21, "", 2k E, have been

chosen, choose 2k+ 2k + Oas where s is any vector in E, satisfying

su. Vg() >__ IVg()l , Isl 2 fllVg(2)l z,
and ak is defined by

IVg(2)l 2

a, .f, ([C-1/2(t)A-r(t)sul 2 -t- [D-1/2(t)BV(t)sk[ 2) dr"

TI-mORM 2.2. Let u* denote the optimal control for the system (1.1)-(1.2).
The sequence of admissible controls {u(t, 2)}, corresponding to the sequence {2}
generated in (2.2), converges to u* with respect to the norm 11.11o.

Before proving this theorem we must prove a lemma.
LZMM, 2.1. Let 7 and 2 be any two vectors in E, and let Ax(t) x(t, y) x(t, 2),

and Au(t) u(t, y) u(t, 2). Then

(2.3)

f (lC1/ZAxl z ID1/ZAul z) dt+

C-1/2A-(7 2) + D-/ZBV(7 2) dr.

Proof. Since the function u(t, 2) solves a convex free endpoint problem we can
characterize it by Pontryagin’s maximum principle. According to this principle
there exists a function if(t, 2) satisfying

(2.4) Av + -(t, x(t, 2)),

such that

(2.5)

0<= <= T, t(T, 2)= 2,

max {BV(t)(t, 2). u u. D(t)u}

BV(t)(t, 2). u(t, 2) u(t, 2). D(t)u(t, 2),

for almost all [0, T]. The same statement holds if we replace 2 by 7.
Let A(t) (t, 7) (t, 2), Ax(t) x(t, 7) x(t, 2) and Au(t) u(t, 7) u(t, 2).

Then

A.Ax =-AVAd/.Ax+Ax O-(t,x(t, )) (t,x(t,2)))
>= AvAq. Ax + 2Ax. C(t)Ax

A- (A:t BAu) + 2Ax. C(t)Ax.
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We rewrite this as
d
d-7(AO. Ax) _> BTAI//" Au -ff 2Ax. CAx

and integrate to obtain

(2.6) (, 2). (x(T, ) x(r, 2)) >= (BTAo. Au + 2Ax. CAx) dt.

According to (2.5) the expression

u(t) Du(t) SXO(t, 2). u(t) {u(t, 2). Du(t, 2) BTg/(t, 2). u(t, 2)}
(2.7) (2Du(t, 2) Svp(t, 2)). (u(t) u(t, 2)) + (u(t) u(t, 2)). D(u(t) u(t, 2))

is >= 0 for almost all e [0, T],. for any u e eft. In particular if we take u(t)
u(t, 2) + a(u(t, 9,) u(t, 2)) where 0 < a < 1, we obtain, by taking a sufficiently

small, that

(2Du(t, 2) STIp(t, 2)). (u(t, ) u(t, 2)) >_ 0.

This inequality clearly remains valid if we interchange the roles of 2 and ;;. This
result gives us that

STAo. Au u(t, 2). Du(t, 2) STp(t, 3;). u(t, 2)

(u(t, ). Du(t, ) BV(t, 7)" u(t, 7))

+ u(t, ). Du(t, 9,) STg/(t, 2). u(t, )

(u(t, 2)- Du(t, 2) BTO(t, 2). u(t, 2))

(2Du(t, ) STO(t, )). (u(t, 2) u(t, ))

+ (2Du(t, 2) STo(t, 2)). (u(t, ) u(t, 2))

+ 2Au. DAu

> 2Au-DAu.

Going back to (2.6) we now have

(.8) ( ;) (x(r, ) x(r, ,)) >= 2 (ax C/x + au Au) dt.

Furthermore,

(v ). (x(r, v) x(T, ,)) ( ). Ax(r)

[(7 2). AC- /2CX/2Ax + ( 2). BD- /2Da/ZAu] dt

T

[C-/2AV(y- 2). C/Zx + D-/2BV(y- 2).D/2Au] dt
0

[]c- /A(v )1 + I- /aB(V )1 t

[[C/2x[2 + [Da/2u[ 2] dt
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This inequality combines with (2.8) to give the result (2.3).
Proof of Theorem 2.2. For k >__ 1 we have

g(/l+ )- g()= g( + OsBd

/.1

| [Vg(2k + ZOSk)- Vg(2k)]" OakSkdZ
0

(2.10) + Vg(2k)"

Ix(T, 2k + ZOakSk) x(T, 2k)]" OakSk dz

+ OakSk" Vg(2k).

Let Ax(t, ) x(t, 2k + ZOakSk) x(t, 2k) and Au(t, z) u(t, 2k + ZOakSk)
u(t, 2k). Then, as in (2.9), we have

Ax(T, z). sk <-_ [IC- 1/2AVskl2 + ID- 1/2BVskl2] dt

t,T 1/2

[[C1/2Ax] 2 + ]D1/2Au[ 2] dt
o

And by Lemma 2.1, it follows that

Ax(T, Z)" Sk <= Oakz f2
([C- 1/2AVSR[2 + [D- 1/2BVSk[2 dt

Oz
2

IVg(k)12"

Putting this into (2.10) we have

g(2k+ 1) g(2k) -Oak Ax(T, z). skdz + Oaksk" Vg(2k)

f 02 akT"(2.11) > [Vg(/],k)[ 2 dz + 0aklVg(/k)[ 2

2

--Oak(1- )’Vg(,k)[ 2.

Let g(r/) max g(2), 2 E,. We then have

g(r/)- g(Al)>= [g(2k+ 1)- g(Ak)]
k=l

(2.12)

_04)>-_ Oak 1- [Vg(,k)l 2.
k=l

From (2.2b) it follows that

1
ak > 2AT[2 -1/2BY 2 > 0.

flj’’ ([ C-1/ + IV )aCt
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Equation (2.12) now shows that

(2.13) lim Vg(2k) lim (xl x(T, 2k)) 0.

Because of our normality assumption, the sequence {)k} is bounded. We shall
not prove this result here. The proof of an analogous result will be given in 10]
along with a geometric interpretation of the maximum principle and the dual
problem. The discussion in [10] adapts readily to the present situation. It now
follows from (2.13) and (2.8), with 7 r/and 2 ’k, that

f (U(t, 2k) u*(t)) O(t)(u(t, 2k) u*(t)) O,dt

as k . This completes the proof of Theorem 2.2.
Remark. If for some k the Sk in (2.2b) satisfies C-1/2(t)AV(t)Sk 0 and

D-1/2(t)B-r(t)Sk 0 for all e [0, T], then the scalar ak is undefined. But if this
happens it is clear from (2.9) that Ax(T, z). s 0 for each z 0, 1]. In this case
(2.11) implies that

g(’k 4- O0"kSk)- g(2k) >-- O0"k[Vg(,k)[ 2

for any pair of members 0, o 0. It therefore follows that either Vg(2k) 0 (in
which case u(t, 2k) is an optimal control) or g has no finite maximum value, which
is impossible if the original control problem has a solution, as we assume. This
shows that the iterative scheme (2.3) is well-defined if our problem has a solution.

Note. If the n n matrix

H - [A(t)C-l(t)AV(t) + B(t)D-l(t)BV(t)] dt

is nonsingular, we can obtain an algorithm for solving (1.7) which resembles
Newton’s method. This is obtained from (2.2) by replacing (2.2b) by

2k +1 /]’k 4- H-1Vg(,k)

Using this definition of 2k+ and proceeding as in (2.10)-(2.11) we obtain

g(2k+ 1) g(2k) >- EVg(2k + zH- 1Vg(2k)) Vg(2k) H- 1Vg(2k) dz

+ Vg(2k)" H- 1Vg(2k)

>= zVg(2k) H- 1Vg(2k) dz + Vg(2k) H- 1Vg(2k)

1/2Vg(2k). H-1Vg(2k).

From this it follows that limk Vg(2k)--0 and the convergence of u(t, )k) to
u*(t) with respect to the norm ]]. lID follows as in the proof of Theorem 2.2.

In the remainder of this paper we discuss the implementation of our algorithm
on a computer. There are two points to be examined. In the first place, it is clear
that the algorithm (2.1) for computing the gradients must be terminated after a
finite number of steps. We must give a criterion for terminating these iterations.
In the second place, we must show that the continuous problem (1.1)-(1.2) can be
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approximated as closely as we like by a discrete problem since a computer can only
solve discrete problems.

To resolve the first point, let 6j denote the approximation to Vg(2k) obtained
on the jth iterate of (2.1). It has been shown in [1] that

16#+ Vg()l z _-< 16- Vg(2)l z,
where is a computable constant between 0 and 1. It follows that

16j+1 6j[ ----> 16j Vg(Ak)l --IVg(Ak)- 6+ l
(2.14) (1 )16j- Vg(2)l.

Thus by comparing two successive iterates of the sequence {6j}, we can determine
how accurately we have approximated Vg(2).

THEOREM 2.3. For each k 1, 2, let j j(k) correspond to the iterate 6()
of (2.1) used to approximate Vg(2). If

Ij()- Vg(Ak)l < ,
k=l

then the algorithm (2.2) converges when 6jtk) is used in place of Vg(2k). Equation (2.14)
provides a method for determining when the condition of the theorem is satisfied.

Proof. If 6k) is used in place of Vg(2k) in (2.2), Sk will be computed from the
requirements

(2.15) Sk" IOjt)l 2, Isl 2 ljt)l 2,

The other formulas in (2.2) remain as they are with 6jtk) replacing Vg(2k). Equation
(2.10) and the first equation in (2.11) remain valid. Let ek 6jtk)- Vg(2k). Then
from (2.11) we have

g(2+ ) g(2) -0 Ax(r, r).s dr + Os. Vg(2)

(2.16) 0
4- + Os.( e)

The vectors Oes 2+ 2 are clearly uniformly bounded. It therefore follows
from the hypothesis of our theorem that the series

Os.e
k=l

converges. By summing the left-hand side of (2.16) we see that lim( 0.
Finally, since

Vg(2) ( e,

we have lim Vg(2)= 0 and it follows as in the proof of Theorem 2.2 that
lim lu(., 2) u*ll 0. This completes the proof of Theorem 2.3.

Remark. Theorem 2.3 does not indicate that the gradients Vg(2) need to be
approximated with a high degree of accuracy for small k. However, we have found
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that for best results, all gradients should be computed at least as accurately as it is
desired to have the constraint x(T) x satisfied.

The problem of approximating the continuous problem by a discrete problem
is discussed in the next section.

3. Some computational results. We can compute the sequence 2k} generated
in (2.2), and the corresponding sequence {u(t, 2k)}, at least approximately, with the
aid of a computer. In this section we give computer results for two examples.
For simplicity we takef to be a quadratic function x. Cx in each case. For purposes
of the computer, the problem (1.1)-(1.2) must be discretized. We accomplish this
in our examples by replacing (1.1) by the difference equation

x(1) Xo,
(3.1)

x(i + 1)= x(i) + hA(i)x(i) + hB(i)u(i), i= 1,...,N- 1,

and the functional (1.2) by the finite sum
N-1

(3.2) h {x(i)-C(i)x(i) + u(i). D(i)u(i)},2
i=1

where N > is a positive integer and h T/(N 1). The optimization problem
is now to minimize (3.2) subject to (3.1), the endpoint constraint x(N) xl, and
u(i)ef for 1,... N 1.

The results of and 2 adapt readily to the system (3.1)-(3.2), but here a word
of caution is in order. In computing k(i), 1, ..., N 1, according to (2.1b),
we must use the discrete maximum principle. This principle says that for each
i, k(i) is determined by the requirement that

(3.3) max BV(i)O(i + 1). u- u. Du BV(i)/(i + 1). lk(i lk(i Dlk(i),
u

where

and

O(J) 0(J + 1) + hA-r(j)O(j + 1)- 2hC(j)xk(j),

j-- 1,..., N- 1. The point is that one must be careful to use the advanced
argument + of in (3.3).

Remark. The optimization problem for the system (3.1)-(3.2) is a convex
quadratic programming problem with convex constraints on the variables u(i).
In the case of linear constraints, there are already quadratic programming
algorithms which are particularly tailored for solving such problems (cf. [11], [12]).
However, in the case of nonlinear constraints, there is no universally accepted
way to proceed. One tries to select a method that is well suited to the particular
form of his constraints. But in any case, it has been observed that in general the
difficulty in solving a nonlinear programming problem grows with the size of the
problem. For a discussion of this see [13]. In some cases, a given convex program-
ming problem can be given an equivalent dual formulation which reduces the

In (3.1) and (3.3), and in the sequel, we use the argument where, strictly speaking, we mean
(i- 1)h.
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problem to a sequence of smaller problems. This provides the motivation for
studying computational methods for dual problems in nonlinear programming
and in control theory. This decomposition of a large problem into a sequence of
small problems is exactly the benefit we gain here. In place of the problem (3.1)-
(3.2) we have substituted a sequence of significantly smaller problems of the form
(3.3). We use our method for the solution of two example problems below. The
advantages of the decomposition technique are more apparent in the second
example where we have nonlinear constraints on the control variables u(i).

In our initial experiments with the algorithm (2.2), the convergence turned
out to be discouragingly slow. We took this to mean that it is probably not wise to
ignore the problem of optimizing the step size, as in (1.8), at each iteration. We
found that by sufficiently increasing the step size 0rk predicted in (2.2b) we could
significantly reduce the number of iterations required for convergence. This
suggested a method of modifying our algorithm to possibly increase efficiency.

This method involves selecting two constants r and r2 between 0 and 1,
and a large value of 0, and iterating according to (2.2). If at some stage IVg(2k+ 1)1
>= rllVg(2)l, replace 0 by max {2, r20} and continue the iterative procedure.
r should always be chosen close to 1, since even when the step size is computed
according to (1.8), the ratios 12+ ql/12 r/I can be very close to 1. There is no
reason to suspect that the ratios IVg(2+ 1)l/IVg(2k)l will behave differently. Also,
rz should not be chosen too small, since then, our search technique may fail to find
a value of 0 close to the optimum. This modified version of (2.2) clearly converges
since it reduces to (2.2) if the values ]Vg(2)l fail to converge to zero at the rate of a
geometric progression.

In the discrete versions of our examples we took h .1. Also, in computing
u(i, 2) according to (2.2) we used u(i, 2_ 1) as our initial approximation of u(i, 2)
for k >= 2. This provides a good initial approximation for large k as the numerical
results show. In Example 1 we took N 21 corresponding to T 2, and in
Example 2 we took N 61 corresponding to T 6. In both cases convergence was
defined by the criterion that the L-norm of the gradient vector Vg(2k) be less
than 10- 3. Calculations were done on a UNIVAC 1108. The computing time for the
first example was 1.62 seconds. The second example is a much larger problem
because of the greater number of x variables involved, and because of the larger
number of discrete variables that appear because of the longer time interval. The
additional difficulty presented by the nonlinear constraints was easily resolved
by our decomposition technique. This problem required 4.61 seconds of computer
time. In both cases the ascent directions were taken as s Vg(2), and the
algorithm (2.1) was terminated when two successive iterates satisfied 169+ 6j[
< 10 -4. Faster convergence could undoubtedly be obtained by a more clever
choice of ascent directions. On this point the reader should see [14].

Example 1.

Minimize [.5(x + x)+ O(u + u)] dr,

subject to

X1

X2 .5 x2 2 //2



354 EARL R. BARNES

and subject to the initial and terminal conditions

x,(0) x(0) .5, x1(2) XE(2)= .5

on the x variables. The u variables are required to satisfy ]ui(t)] =< .2, 1, 2.
The results of our numerical experiment for this example are reported in

Table 1. We used the modified version of our algorithm starting with 0- 40.
This is significantly larger than the value of 0 predicted in (2.3). We also used
r .9 and rE .5.

TABLE l(a)

No. iterations of
og Step size

m/ax i (A) ’k (2.2) required to
0o"

compute Vg(2k)

1.6533 40 3.48 (.000, .000) 7
2 .5419 40 2.24 (1.990, 5.769) 11
3 .5680 20 1.09 (.844, 4.552) 8
4 .2841 20 .83 (1.464, 4.094) 5
5 .1341 20 2.01 (1.227, 4.005) 7
6 .0479 20 1.24 (1.179, 3.735) 7
7 .0360 20 2.24 (1.136, 3.677) 6
8 .0242 20 .79 (1.141, 3.596) 5
9 .0081 20 1.85 (1.121, 3.592) 4

10 .0038 20 1.89 (1.117, 3.577) 3
11 .0018 20 1.67 (1.115, 3.570) 3

12 .0009 (1.114, 3.567) 2

TABLE l(b)

xl(i) x2(i) u1(0 uz(i)

.50 .50 -.20 -.15
2 .56 .37 -.20 -.09
3 .60 .25 -.20 -.05
4 .62 .14 -.20 -.12
6 .58 -.04 -.20 .02
7 .53 -.04 -.20 .05
8 .46 -.12 -.16 .07
9 .40 -.18 -.13 .09
10 .33 -.23 -.09 .10
11 .27 -.26 -.06 .11
12 .20 -.28 -.04 .11
13 .15 -.27 .00 .11
14 .10 -.25 .01 .11
15 .05 -.22 .03 .10
16 .02 -.19 .04 .10
17 .00 -.15 .05 .09
18 -.01 -.11 .05 .08
19 -.02 -.07 .06 .07
20 -.01 -.03 .06 .06
21 .00018 .0009
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Example 2.

subject to

Minimize

d
dt

X 0 1 0 0\/Xl\ 0 0

o o o
0 -.5 -2 O/\x4/

and subject to the initial and terminal conditions

ux),

x1(0)=.2, x2(0)--.25, x3(0)----.5, x,,(0)=.25,

x(6) 0, 1,..., 4,

on the x variables. The u variables are required to satisfy the constraints

u(t) + u22(t) <= .1.

The results of our numerical experiment for this example are reported in
Table 2. Again we started the modified version of our algorithm with 0 40,
rl .9, r2 .5.

We conclude this section with a proof that the solution of the discrete problem
(3.1)-(3.2) converges to the solution of the continuous problem (1.1)-(1.2), in an
appropriate sense, as N . In (3.2) the function f(t, x) is assumed to be a
quadratic form. However, our proof uses only the convexity property of f.
Therefore our result holds for a wider class of problems, and in particular, for the
problem (1.1)-(1.2).

THEOREM 3.1. Let u u(1), ..-, u(N 1) denote the solution of the discrete
problem (3.1)-(3.2). Let u also denote the admissible control for the continuous

TABLE 2(a)

No. iterations of

(2k) Step size )]’k (2.2) required to- Oak compute Vg(2k)

.3503 40 7.49 (.000, .000, .000, .000) 7
2 .2291 40 8.21 (.883, -2.138, -2.623, -.573) 5

3 .1495 40 8.71 (1.472, -3.461,-4.506,-.710) 5

4 .0968 40 9.23 (1.843, -4.222, 5.809, -.708) 5

5 .0618 40 9.93 (2.067,-4.636, -6.703,-.684) 5

6 .0387 40 10.90 (2.191, -4.845,-7.317,-.660) 4

7 .0236 40 12.11 (2.254, -4.936, -7.740, -.649) 4

8 .0140 40 13.33 (2.282,-4.964,-8.027,-.644) 4

9 .0077 40 14.78 (2.290,-4.964,-8.214,-.644) 3

10 .0040 40 16.10 (2.290, -4.952, -8.329, -.645) 3

11 .0019 40 17.24 (2.287, -4.939, -8.394, -.645) 2

12 .0009 40 (2.284,-4.930,-8.427, -.646) 2
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TABLE 2(b)

xi(i x2(i x3(i x4(i) (i) u2(i

.20 -.25 -.50 .25 .17 -.23
6 .09 -.12 -.29 .59 -.05 -.31

11 .06 .02 .02 .62 -.01 -.31
16 .09 .11 .28 .31 -.07 -.22
21 .15 .08 .35 -.08 -.05 -.07
26 .17 -.02 .25 -.34 -.02 .27
31 .14 -.12 .07 -.35 .11 .29
36 .06 -.15 -.07 -.19 .16 .17
41 .00 -.11 -.13 .00 .15 -.01
46 -.04 -.02 -.10 .11 .08 -.15
51 -.03 .03 -.04 .10 .00 -.19
56 -.01 .04 .00 .03 -.08 -.11
61 .0001 -.0002 .0009 -.00002

problem defined by

u(t) =u(i) for (i- 1)h__< < ih, i= 1,2,...,N- 1.

Let u* denote the optimal control for the problem (1.1)-(1.2). Then u converges to u*
with respect to the norm II" IIo.

Proof. By Lee’s lemma [15, p. 242],

(3.4) c(u) c(u*) >_ BvO u* u* Du* {BVO u u. Du} dt,

where is the function defined by (1.3). If in (2.7) we take 2 r/, the solution of
(1.7), we have (t, 2) if(t), u(t, 2) u*(t) so that the expression (2.7) is precisely
the integrand on the right in (3.4). Since

(2D(t)u*(t)- BV(t)(t)) D(t)(u(t)- u*(t)) >= O,

we have, by (2.7) and (3.4),

c(u)- c(u*) >= (u(t)- u*(t)). D(t)(u(t)- u*(t)) dt.

Cullum [16, Cor. 5.1] has shown that the cost c(u) approaches c(u*) as N ---, .
It therefore follows from (3.5) that

lim u u* o 0.
N--*

This completes the proof of Theorem 3.1.
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EXTENSIONS OF THE CONCEPT OF REGULAR SYNTHESIS
AS A SUFFICIENT CONDITION FOR OPTIMALITY*

THOMAS G. HACK-

Abstract. A generalized regular synthesis is defined and examined using the approach of Bol-
tyanskii [2]. Special attention is given to the action of the marked trajectories on the lower order
manifolds. The yield of this analysis is twofold. First, sufficient conditions for the general autonomous
control problem are obtained. In addition, the notion of a modified regular synthesis is exhibited as a
second sufficient condition for optimality. The subsequent discussions show how the latter result can
be applied to differential games.

1. Introduction. In [2] Boltyanskii introduces the notion of a "regular
synthesis" as a sufficient condition for the time optimal control problem. Mirica,
in [5], applies the methods of Berkovitz [1] to obtain a more general sufficiency
theorem. His underlying assumptions differ slightly from those of Boltyanskii but
the fundamental hypothesis required is the regular synthesis.

Our purpose in this paper is to define a regular synthesis for the general
autonomous control problem and to examine its "marked trajectories" employing
a broader approach than that used by Mirica and Boltyanskii. In this way, we
not only generalize Boltyanskii’s results (to the general autonomous control
problem), but also establish a basic set of properties of the synthesis which can be
used in the solution of other problems. The investigation of regular synthesis
is carried out in 3.

The method of attack is the same as in [2], but the argument is executed in a
generalized setting--a situation which gives rise to some new insights. The most
interesting of these is the equation which relates the derivatives of the value
function with the dual variables on the lower order manifolds.

Unfortunately the concept of regular synthesis in its original form cannot be
applied to differential games. In 4 we introduce a slightly weaker hypothesis
which we call a "modified regular synthesis" and obtain sufficient conditions for
optimality in a restricted class of admissible controls. The modified regular
synthesis can also be used to obtain sufficient conditions for saddle points in
differential games (see [4]).

Section 5 contains a comparison of regular synthesis and modified regular
synthesis as they apply to differential games. The reason for our adoption of the
notion of modified regular synthesis for differential games is made clear by the
explanation of the failure of regular synthesis in that area.

2. Statement of the problem and preliminary notions. In this paper, we shall
be concerned with control processes which can be described by a system of
ordinary differential equations:

(2.1)
dx

f(x, u),
dt
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where x(t) in R" is a vector defining the state of the system at each instant of time t.
The control variable u occurring in (2.1) may take any value in a given control
set U = Rr.

In addition, we are given a region V contained in R" and a k-dimensional
smooth manifold T lying in V or on the boundary of V. The set T is called the
terminal manifold. Here k < n and we allow the possibility of T being a single
point. For each x in V, the set A(x) is defined to be the set of all piecewise con-
tinuous controls u(t) taking values in U which transfer the phase point moving
in accordance with (2.1) from the position x to the terminal manifold T; the
phase point is required to remain in V. If u A(xo), u is said to be an admissible
control transferring Xo to T and the solution x of (2.1) is called the admissible
trajectory corresponding to u. For u A(xo), we define

(2.2) J(u) g(x(tl)) + f(x(t), u(t))dt,

where g is a real-valued function continuously differentiable in a neighborhood
of T, fo is a real-valued function satisfying certain smoothness requirements
which we shall state explicitly in 3 and 4, and [to, 1] is the domain of definition
of u. The basic problem we shall consider is the following" given Xo e V, find an
admissible control u which transfers Xo to T and minimizes J over all u A(xo).

The control u which solves this problem and its corresponding trajectory x
will be called optimal in V. Clearly, if the region V is changed, this control may
cease to be optimal.

The well-known necessary condition (see [7]) for our basic problem is the
maximum principle which may be stated as follows"

In order that a control u and the corresponding trajectory x be optimal, it is
necessary that there exist a nonzero absolutely continuous vector function

.(t) (20(0, 2(t)) (20(0, 21(t), ..., 2"(0)

satisfying (2.3) through (2.6)"

d2 d2
(2.3)

dt
Hx(i’ x(t) u(t)),

dt
0

where

(2.4)

H(., x, u) f(x, u), f (fo, f).

U(.(t), x(t), u(t)) max H((t), x(t), u), o <= <=
uU

(2.5) H(i(t), x(t), u(t)) O; 20(0 const. __< 0.

(2.6) The vector 2(tl)gx(x(tl)) 2(tl) is orthogonal to T.

In this paper we shall present additional relations which when satisfied along
with the maximum principle guarantee optimality. These relations will take the
form of a regular synthesis or a modified regular synthesis, concepts which are
defined in 3 and 4 respectively.



360 THOMAS G. HACK

It is convenient at this time to present the following lemma, due to Boltyanskii
[2], which plays a fundamental role in the proof of our results. We use the notion
of a piecewise-smooth set as defined by Boltyanskii in [2].

LEMMA 2.1. In the region V let there be given a piecewise-smooth set M of
dimension <=n 1 and the function S(x), continuous in V, continuously differentiable
in V- M which satisfies the condition

(2.7) S,(x)f(x, u) <= f(x, u).

Then if u(t), o <= <= x, is a piecewise continuous control taking values in U and
transferring the phase point from position Xo to Xx in accordance with (2.1), and if
x(t) is the corresponding trajectory,

(2.8) f(x(t), u(t)) dt >= S(x) S(xo).

3. Regular synthesis. In [2], the notion of regular synthesis is presented in
relation to the fixed endpoint problem, that is, T is a single point in V. We now
generalize that concept to fit our basic problem.

DEFINITION 3.1. Let N be a piecewise-smooth set of dimension _<_n 1 and
pk, "", p, be piecewise-smooth sets, such that

(3.1) pk pk + p,= V.

Let T be a k-dimensional smooth manifold lying in V or on the boundary of V.
In addition, let v(x) be a function defined in V and taking values in U. The sets
(3.1) and the function v(x) effect a regular synthesis for (2.1) in the region V if the
following conditions are satisfied"

(A) If T V, we set pk-X T; if T O V, we set pk- . Note that in
the former case, k- 1 does not indicate the dimension of T. Every component
of the set P (P- U N), k,-.., n, is an /-dimensional smooth manifold.
We call these components/-dimensional cells. The function v is continuous and
continuously differentiable on each cell and has a continuously differentiable
extension defined on a neighborhood of the closure of the cell.

(B) Each cell is designated either as a cell of the first kind or a cell of the
second kind. All n-dimensional cells are cells of the first kind and all k-dimensional
cells are cells of the second kind. If a is any/-dimensional cell of the first kind,
then there exists a unique (i- 1)-dimensional cell n(a) such that the following
condition is satisfied" if x z a, there exists a unique trajectory of the equation

(3.2)
dx

f(x, v(x))
dt

passing through x, which leaves the cell a after a finite time. At this time of de-
parture, it strikes n(a) at a nonzero angle and approaches it with a nonzero velocity.
If a is any /-dimensional cell of the second kind, there exists a unique (i + 1)-
dimensional cell of the first kind E(a) such that from each point x e a, there issues
a unique trajectory of (3.2) which moves in the cell E(a) and intersects a only at
the initial point x. We also assume that v is continuously differentiable in
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and can be extended to a continuously differentiable function in a neighborhood
of a U X(a).

(C) The functions fo and f are continuously differentiable in some open set
E containing V U.

(D) From each point of the set N, there issues a trajectory of (3.2) (not neces-
sarily unique) which remains in V and reaches T in a finite time. This trajectory is
said to be marked.

(E) For x V N, condition (B) ensures that the trajectory of (3.2) passing
through x may be extended from cell to cell. We further require that it remain in
V, reach T in a finite time after traveling through at most a finite number of cells
and not be tangent to T. This trajectory is also said to be marked.

(F) All marked trajectories satisfy the maximum principle.
(G) The functional J defined in (2.2) computed along these trajectories is

assumed to be a continuous function of the initial point Xo in V. In particular, if
xo 6 N, the value of J computed along the various trajectories transferring xo to
T must be the same.

DEFINITION 3.2. For each 7 V- N, the unique trajectory transferring 7 to
T in a regular synthesis will be called the marked trajectory originating at 7 and
denoted by $(t, 7). For 7 N, each of the trajectories transferring 7 to T will be
called a marked trajectory originating at ,. For convenience in notation, we let
$(t, y) denote one of the trajectories.

We consider each marked trajectory as starting at time to, an arbitrarily
chosen constant. This is permissible because we are dealing with an autonomous
system. The time at which the marked trajectory originating at 7 strikes T is
designated by ts(7). Thus we have

(3.3) 4(to,

(3.4) (tAT),) T, 7 V.

DEFINITION 3.3. For 7 V, we define

ft() o(w(7) g($(tj-(7), 7)) + f $(t, 7) v(d?(t, 7)))dr.
to

The function w is called the value function.
Note that condition G of Definition 3.1 states that w is continuous in V.
THEOREM 1. If a regular synthesis for (2.1) is effected in the region V, then the

marked trajectories are optimal.
Since the argument is rather long, the proof ofTheorem 1 will be broken down

into a series of lemmas. To further simplify the exposition we make the following
assumption concerning the cells of a regular synthesis: each m-dimensional cell a
is given parametrically by equations

where 5 (6x, 3m) ranges over some open set N in m-dimensional space,
that is, cr X(N). This type of representation is assumed solely for the purpose
of making the argument less cumbersome; the existence of a regular synthesis
alone is sucient to establish the validity o[ Theorem 1 (see [4]).
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Let tr denote an arbitrary m-dimensional cell, k =< m __< n. Then by conditions
(B) and (E) of regular synthesis, the marked trajectories originating in a pass
through the same sequence of cells of the first kind, try, tr2, ..., aq. Here we have
set 31 tr if t is a cell of the first kind and tr E(a) if a is a cell of the second
kind.

DEFINITION 3.4. For each 6 N, we define t(6) to be the instant of time at
which b(t, X,(6)) strikes n(ai). Note that tq(6)= ty(X,(6)). In addition, xi(6) is
defined to be the point at which O(t, X(6)) strikes n(a); that is,

(3.5) xi(6 b(ti(6), X(6)), 6 6 U, 1,..., q.

LEMMA 3.1. The functions ti, xi, 1,..., q, are continuously differentiable
on N.

Proof. For 1,..., q, condition (A) of regular synthesis asserts that
has an extension (denoted by vi) which is continuously differentiable in a neighbor-
hood Gi of tYi. In Gi, we let y(t; s, 7) denote the solution of the system

(3.6)
dx
dt f(x, vi(x)), x(s) 7.

For each 6 e N,, it follows that

(3.7) qS(t, X(6)) yi(t ti_ x(6), x,_ (6)),

i_x(6) < <= ti(6), i= 1,..., q.

Let 3o be any point of N. We shall first show that the functions t1(6), Xx(,)
are continuously differentiable in a neighborhood of 60 and thus are continuously
differentiable in N. Setting 1, we have for 6 s

(3.8) (t,X(6)) y(t;to,X(6)), to <= <= t(6).

There exists an e > 0 such that the solution y(t; to, X(6o)) of

dx
at f(x, Vl(X)) X(to) Xa((o)

can be extended in G to the interval to- <= < t(6o)+ . Now from
standard theorems on the continuity and differentiability of solutions of dif-
ferential equations with respect to initial conditions (see [6]), we obtain the
existence of a positive number r such that for

o-0 < t< t(6o)+0, Is- tol < r, 16- 6ol < r

the solution y(t; s, X(6)) of

dx
f(x, v(x)), x(s) X(b)

dt

is a continuously differentiable function of each of its arguments.
Let a have dimension m. Then rt(a) is an (m- 1)-dimensional smooth

manifold and xt(5o)e rt(a). Since t(a) has the representation

x x,(fl’, tim- ,), X, =-- X,,,
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there exists a point/30 (flo, fl’-1)such that

x(6o) x(o).
From (3.5) and (3.7), we have the equality

x1(6o) b(tl(6O), X(6o)) yl(t1(6o); to, X(6o)),
and thus

(3.9) Xl(flo) yl(tl(6o); to, X(6o)).

For 6 in a neighborhood of 6o, we consider the equation

(3.0) x(/, ...,/- ) y(t; to,X(6))

which defines t, ill, ..., fl,,- as implicit functions of 6. The solutions t(6),/3(6) of
(3.10) will give the time and place at which ch(t,X(6)) strikes r(al).

The functional matrix of the equations (3.10) is

(3.11)
dt

At t1(6o), fl rio, 6 6o, the matrix in (3.11) has rank m since the trajectory
4(t, X(6o)) is not tangent to r(0-1) and does not approach r(0-1) with a zero velocity.
Now by the implicit function theorem, we conclude that

(3.12) tl(6),fll(6), /m-l(6) C(1)(Nl(6O)),

where N1(6o) denotes some neighborhood of 6o. Also, clearly

(3.13) x(6) X l(jl(6), /m- 1(6)) + C(1)(Nl(6o)).

It follows from (3.12) and (3.13) that

(3.14)

Now r(0-1) is either a cell of the first kind (0"2 (0-1)) or a cell of the second
kind (02 Y(r(o))). In any event, we direct our attention to the flow of tra-
jectories in 02 and let y2(t;s, ) be the solution of the system

(3.15)
dx
dt f(x, Vz(X)), x(s) 7;

then for each 6 N,

dp(t,X(6)) Y2(t; tl(6),xl(b)) t1(6 <= <_ t2(b).

From (3.14) and standard theorems on the continuity and differentiability of
solutions of differential equations with respect to initial conditions, we deduce the
existence of an a2 > 0 such that y(t; t(6),x(6)) is a continuously differentiable
function of and 6 for

t1(6o) (x2 < < t2(bo) + (z2, ( N2(bo)
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where N2(6o) is a sufficiently small neighborhood of 6o. First, let us assume that

0"2 (0"1)" Then we must have that r(0"2) is an (m- 2)-dimensional smooth
manifold. Since r(0"2) has the representation

x (0X 2

there exists a point 0o (0,

In addition we have that

0 2), X2 Xrt(az),

0- 2) such that

X2(60)--- X2(Oo)

X2(0o) y2(t2(6o); t,(bo), xl(bo)).

For 5 e N2(6o), we consider the equation

(3.16) X2(01 0m-2) y2(t’, tl(a),

which defines t, 0, 0 2 as implicit functions of 6. The solutions t(6), 0(6) of
(3.16) will give the time and place at which O(t, Xa(6)) strikes rt(a2).

The n x (m 1) functional matrix of the equations (3.16) is

(3.17) (c302-dy2dt

At t2(6o), 0 0o, 6 6o, the matrix in (3.17) has rank m 1 since 4(t,
is not tangent to rt(0-2) and does not approach rt(a2) with a zero velocity. Thus if
we apply the implicit function theorem to m- 1 of the equations in (3.16), we
can conclude that

(3.18) t2(6), 01(6), 0m-2(6) e

where N3(6o) is a neighborhood of 60 contained in N2(6o). We also have

(3.19) x2(6) X2(01(6), 0m-2(6)) e C(1)(N3(60)).

By (3.18) and (3.19), we arrive at the desired result,

(3.20) x2, 2 e C )(N,).

The second case occurs when re(o-l) is a cell of the second kind. In this situ-
ation, 0-2 (g(0-x)) is a m-dimensional cell and r(0-2) is an (m 1)-dimensional
cell. The proof of (3.20) is the same as the above, except that (3.17) is an n m
matrix of rank m.

We continue in this fashion treating each of the cells 0"i similarly. The final
result is

(3.21) Xi, tie C(1)(Na), 1, q,

and thus the proof of Lemma 3.1 is complete.
In what follows, we denote the gradients of xi, ti by xia, tia, 1, ..., q.
LZMMA 3.2. For any cell 0", w*(6)e CI)(N,), where w*(6) =- w(X,(6)), 6 e N,.
Proof. Let 0" be any m-dimensional cell and let 0", xi, ti, vi, Gi, 1, ..., q,

be defined as before. Now, by definition, we have for 6 e N,,

(3.22) ty(6) tq(6).
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This fact and (3.5) yield

(3.23) xq(6) dp(tf(6), X(6)), 6 e N,.

By assumption, g is continuously differentiable in a neighborhood of T. Hence
Lemma 3.1 and (3.23) imply that

(3.24)

Recalling that

g(qb(tf(6), X(6))) 6 C X)(N).

(3.25)
q(6)

w*(6) g(O(tf(6), X(6))) + f(dp(t, X(6)), v(dp(t, X(6)))) dr,
to

we need only show that

(3.26) X(6)), v(b(t, X(6)))) dt e C(1)(N).

But we can rewrite (3.26) as follows"

(3.27)

a)

f((t, X(6)), v(b(t, X,(5)))) at

f(y(t; t_ (), x_ ()), v(y(t; ti_ (), x_ (6)))) dt
"ti

by expressing ok(t, X(6)) as in (3.7). Now if we make use of the fact that vi,

1,..-, q, are smooth functions of their arguments, Lemma 3.1, and standard
theorems (for example, [3, Chap. VII, Thm. 11]), we may conclude that each
term of the sum in (3.27) is continuously differentiable in N. This implies (3.26),
which completes the proof.

It is convenient at this time to introduce additional notation. Condition (F)
of regular synthesis requires that each marked trajectory satisfy the maximum
principle. For each 7 e V- N, tk(t, 7) defined in to =< t(7) denotes a marked
trajectory. We let i(t, 7) on to <= <= tf(7) represent the absolutely continuous
function associated with 4)(t, 7) by the maximum principle. For reference, we list
the properties of 2(t, 7)"
(3.28) i(t,7) 4=0, 2(t,7)=<0, to=<t=<

d2o
=0,

dt

(3.29) --d2 (t, 7) Hx(i(t, 7), b(t, 7), v(dp(t, 7)))
dt

2i(t, 7)f/((t, 7), v(dp(t, 7)))-
i=o

(3.30) max H(.(t, 7), 4(t, 7), u) H((t, 7), 4(t, 7), v(c(t, 7))) 0,
uU

The vector 2(ty(7), 7)gx(b(tf(7), 7)) 2(ty(7), 7)
(3.31)

is orthogonal to r at 4(ty(7), 7).

to < <
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The next lemma establishes the relationship between the partial derivatives
of the value function w and the multiplier functions 2(t, ,/). The reader is invited
to compare this result with those of Berkovitz [1] derived under the assumption
of a "regular decomposition."

LEMMA 3.3. Let be any cell of the regular synthesis. Then for any 6 N,
the vector

((o, x()), ,(o, x())())
is a constant multiple of (1, w(6)).

Proof. Let 6o be an arbitrary but fixed point of N. We shall show that there
exists a constant c such that

(3.32) (2(to, X(6)), 2(to, X(6))-(6)) c(1, w(6)).

To verify (3.32), it is sufficient to show that if (Po, P 1,"’, Pro) is any vector
orthogonal to (1, w’(fio)), then/3 is also orthogonal to

(o, x(o)), (to, x(o))7(o), ato x(o))-(o)
Here m is the dimension of the cell . This is the task we undertake at this time.

Let/3 (Po, P l, P,,) be a vector satisfying

(3.33) Po + pw’(6o) O,

where p =_ (p,..., Pro)" Let b(t) qS(t, 7o), that is, b(t) is the marked trajectory
starting from 7o X(6o). Further, let b,(t) qS(t, X(6o + ep)). Using the
notation introduced above, these trajectories pass through q cells of the first kind
a, ..., %, striking rc(aj) at points xj(6o) and xj(6o + p) at times tj tj(6o) and
t =_ t(6o + p).

We are going to calculate the limit

lim 1[w*(6o + ep)- w*(6o)]2(to, 7o).
eO

Since we know that the limit exists by Lemma 3.2, we may choose any sequence
e, 0 to calculate it. Thus for each j 1,..., q, we may assume that either

tj, >= tj, n 1, 2,..., or tj, =< tj, n 1,2,.... We shall give the proof for the
case tj,. >__ tj, n 1, 2, j 1, .-., q. The proofs for the other possibilities are
similar. To simplify the notation we shall drop the subscript n, assume tj >= tj.
and take the limit as e 0. Setting to to and recalling that 2(t, Yo) is constant
on to _-< __< tq, we have

1
-[w*(o + p) w*(o)],(to, o)

f(dp=(t), v(=(t))) dt f(qb(t), v(dp(t))) dt
O "to

+ g(xq(6o + aP))- g(Xq(aO))]2(to, 7o) (cont.)
_1
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[f(b(t), v(r(t))) f(c(t), v(r(t)))]2(t, ?o)dt
(X j=l j- 1,o

+ [f((t), v((t))) f(c(t), v(r(t)))]2(t, ?o)dt

1
+-[g(Xq(5o + P))- g(Xq(6o))]2(tq, o)

+ f(4(t), v(4(t)))dt2(tq, o).

Evaluating the limits of the terms in the second sum, we obtain, forj 1, ..., q 1,

lim
1

[f((t), v((t))) f((t), v((t)))](t, o) dt
(3.34)

t(5o)p[f((t), v((t))) f((t), v+ x((t)))](t, o),

where t tg/. Here we have made use of the fact that for t < < t,
(t) e ag+ and (t)e ag. Similarly, we have

3.35) lim
1

f((t), v((t)))gt t(5o)pf((t), v((t)))(t, o).
0

Since F(x) fo(, v()) is continuously differentiable on a and can be extended
to a continuously differentiable function in a neighborhood of g, we can write

[f(4(t), v(4(t))) f(4(t), v(4(t)))]2(t, 7o)dt

1G(t)[4(t) 4(0] dt

where 4(t) lies on the line segment joining 4(t) and 4(t) and

6(t) [Hx(i(t, o), (t), v((t))) 2(t, o)((t), v((t)))]

+ [H,(i(t, o), (t), v((t))) 2(t, 7o)f,((t), v((t)))]v((t)).
Now it easily follows from Lemma 3.1 that there exists a constant C such that

(3.36)

for e suciently small.
Moreover, the function G(t) is bounded on t_

for e suciently small. As e 0, the function (1/e)G(t)[4(t)- (t)] converges
almost everywhere to

O(t, X(o))p{[Hx(i(t, o), 4(t), v(4(t))) 2(t, o)f(4(t), v(4(t)))]

(3.37) + [H,(i(t, o), 4(t), v(4(t))) 2(t, o)f,(4(t), v(4(t)))]v(4(t))}.
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We note that

Hu(.(t, 7o), (t), v(dp(t)))vx(qb(t))-(t, X(6o))p 0,

since by the maximum principle the function (considered as a function of 6 alone,
that is, with fixed)

I4(,(t, o), ok(t), v(4(t, x(6))))
has a maximum at 6 5o.

Taking this into account and using the dominated convergence theorem, we
obtain

lim
1

[f(4(t), v(d(t))) f(d(t), v(4)(t)))]2(t, o)dt
a- O O

j-

(3.38) [Hx(2(t, 7o), dp(t), v(dp(t))) )(t, o)f,(ck(t), v(ck(t)))
j-1

2(t, 7o)j(qS(t), v(O(t)))v(dp(t))]-(t, X(bo))p dt.

Rewriting (3.38) with the help of (3.29) we find that

lim
1

[f(4(t), v(d(t))) f(4(t), v(4(t)))]2(t, 7o)dt

-, -(t, o)(t, x(o))p

(3.39) (t, yo)[f(b(t, X(6o)), v(dp(t, X(5o))))]pt dt

(t 7o)-(t, X(6o))p dt

(t;- 1, ?o)-l,tj-,, Xa(bo)) /(t-, )’o)-(tj-, Xa(bo) p,

j=l,...,q.

Set Xo(6) X(fi). The following relations can be obtained by straightforward
calculation"

c3b (tf X(ao) ta(bo)f(dp(tj, X(ao) vj+ ,(qb(t3, X(ao))) +

(3.40)
j=0,...,q- 1,

---(t-, X(bo) tja(bo)f(dp(t, X(6o)), vj(dp(tj, X(bo))) + xja(bo),

j=l,...,q.



REGULAR SYNTHESIS 369

Thus from (3.34), (3.35), (3.39) and (3.40) we have

lim-1 [w*(o + p) w*(6o)]2(to, 70)

q

2 {2(t;_ , ’o)[-- tj_ 1,5(o)f(dp(tj_ , Xa((o)), vj(dp(tj_ 1, Xo.((o))) + xj_ 1,6(o)]p
j=l

2(t, 70)[-- tja(6o)f((tj, X(6o)), v((tj, X(6o)))) + xja(fo)]P}
q-1

+ 2(tj, 7o)[f((tj), vj((tj))) f((tj), vj+ ((tj)))]tj(6o)p
j=l

+ 2(tq, yo)f((tq), vq(tq))tq(fo)p + 2(tq, 7o)g(xq(6o))Xqa(fo)p

By (3.30),

q-1

[),(tj, 7o)f(dp(tj), vj+ l(b(tj))) + ),(tf 7o)f(dp(tj),vj+ l(dp(tj)))]tja(bo)p
j=l

q-1

+ [,0(tj, ]o)fO(4)(tj), Vj(d(tj))) + )(t;, ?o)f(dp(tj), vj(di)(tj)))]tj6((o)p
j=l

+ 2(t, 7o)f(dp(ta), v(dp(ta)))t,(bo)p + 2(t, ?o)f(dp(ta), v(dp(tq)))ta(bo)p
q

+ [/(t;_ 1, O)Xj_ 1,(0) (t-f, o)Xjs(o)]p
j=l

2(t, ?o)f(b(to), v ,(dp(to)))to(bo)p + 2(tq, ?o)g(Xq(bo))Xq(bo)p.

H((t., ?o), ck(tj), vj+ l(q(tj))) O,

H((t;, ?o), dp(tj), vj(dp(tj))) O,

to(bo) 0,

so that

1
lim-[w*(6o + ap)- w*(bo)]2(to, o)

q

Z [(t;-1’ 70)Xj 1,(0) (t-f 70)Xj(bo)]p + O(tq, ]O)gx(Xq(bO))Xq(bo)p
j=l

ax.(ao)=at-,,o a P

The last equality follows from (3.31) and the fact that

(3.41) 2(t7, o)Xja(6o) 2(tj-, o)Xa(6o), j 1,... q.

Now since (Po, P l, "’", P,,) was assumed to be orthogonal to (1, w’(6o)), it follows
that

(3.42)
ax(ao)Po).(to, 70) + P2(to, o)- - 0.
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Thus/3 (Po, P l, "’", Pro) is orthogonal to the vector

,(to, ,o), ,(to, ,o) aa
and this completes the proof of Lemma 3.3.

LEMMA 3.4. Let a be a cell of dimension m, k <= m <= n. If m < n, we make the
following assumption" for each 7 tr, 2(t, 3’) < 0 for o <= < tf(7). Then if (x, u) is
an admissible pair transferring Xo to x in tr,

W(Xo) w(xl) < f(x(t), u(t)) dt,

where X(to) Xo X(t l) x 1.

Proof. Note that the assumption made concerning 2(t, 7) holds auto-
matically if tr is an n-dimensional cell, since, by Lemma 3.3, 2(t, 7) 0 for some
would imply ,(t, 7) 0, which is impossible. In tr we define

,(to, )
2"(7) --2O(to, 7)"

Consider the closed interval [to + , ]. Since x(t) a for these values
of t, there exists a partition to + So < s < < sr of [to / ,

] and functions 6i, 1, .-., r, absolutely continuous on [si_ 1, si], such
that

(3.43) x(t) X,(f,(t)), s_ <= <= s.

Since w(X(6))e C(1)(Na) by Lemma 3.2, w(x(t))= w(X(Si(t))) is absolutely con-
tinuous on si-1 <= <= s, 1,..., m. Setting w*(6) w(X(6)), we obtain

(3.44)

w(x(s,)) w(x(s_ ))

(s, t3w*(fi(t)) dfi dr.
Ls,_ c6 dt

From Lemma 3.3,

(3.45)
X(to, x(a,(t)))

W i( --6-)
si <_t<s

Also

(3.46)
dx ax(a,(t)) d6,(t)

c dt
s_l <=t=<s, i= 1, .,m.
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Thus from (3.44) through (3.46),

w(x(s_ ) w(x(s)l
si-1

Therefore

’ .(to, X(bi(t)))
,_, 2(to, X(ri(t))) f(X(8(t)), u(t)) dt

<= f(X(6,(t)), u(t)) dr.
si-

w(x(to + a)) w(x(t, o0) < f(x(t), u(t)) dt.
to+

Letting e 0, we get

tl

W(X(to) W(X(tl)) f(x(t), u(t)) dt.

We are now in a position to complete the proof of Theorem 1. Put
M P"-1 U N. Then M is a piecewise-smooth set of dimension n 1. The set
V- M consists precisely of the n-dimensional cells. From Lemma 3.3, we have
for any n-dimensional cell a:

2(to, )
’x(])) /O(to ])),

W e C(1)(V M).

From the maximum principle the following relation obtains"

2(to, y)
wx(y)f 7, u) 2-t-o- -) f(y u)

_<_ f(7, u), y e a, uU.

Now, from L.emma 2.1, it follows that if (x, u) is an admissible pair in V, trans-
ferring Xo to x e T,

that is,

tl

W(Xo) w(xl) < f(x(t), u(t)) dt;

tl

W(Xo) <= g(xl) + f(x(t), u(t)) dt.

This proves Theorem 1.

4. Modified regular synthesis. In 3 we showed that the existence of a
regular synthesis insured the optimality of the marked trajectories. Unfortunately
the concept of regular synthesis cannot be directly applied to differential games
because the continuity assumptions on f0 and f are too strong. Even the simplest
examples fail to satisfy these requirements. This phenomenon will be explained
more fully in 5.
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Forced to relax our continuity assumptions if we are to deal with this situ-
ation, we introduce the notion of a modified regular synthesis.

DEFINITION 4.1. Let N be a piecewise-smooth set of dimension =<n 1 and
pk, ..., p, be piecewise-smooth sets, such that

(4.1) pk pk + p,,__ V.

Let T be a k-dimensional smooth manifold lying in V or on the boundary of V.
In addition, let v(x) be a function defined in V and taking values in U. The sets
(4.1) and the function v(x) effect a modified regular synthesis for (2.1) in the region
V if the following conditions are satisfied"

(A) If T V, we set pk-1 T; if T V, we set pk-1 . Every com-
ponent of the set pi_ (U-1 U N), i= k,.--, n, is an /-dimensional smooth
manifold. Every component of N- (N f’l T) is a smooth manifold in V of
dimension =<n- 1. As before, we call these components /-dimensional cells,
where refers to the dimension of the manifold. The function v is continuous and
continuously differentiable on each cell a and has a continuously differentiable
extension defined on a neighborhood of ft.

(B) Same as condition (B) of regular synthesis.
(C) Corresponding to each cell a, there exist an open set E containing

o x Cff U and functions j ( u), f(x, u) in 1)(E) such that

f(x, u) f(x, u), f(x, u) f(x, u), x , u e U.

(D) We do not require that the trajectories issuing from points in N be
unique, but for each point x N we must be able to select one of the trajectories
issuing from x so that the family of trajectories thus chosen satisfies condition (B).

(E) Same as condition (E) of regular synthesis.
(F) As in 3 we denote the marked trajectory originating at 7 by 4)(t, 7),

to =< =< ti(7). Let a be any cell of the synthesis. For each 7 , there exists a
function

(t, ) (/(t, 2), ,l(t, ];), /n(t, )),

absolutely continuous on

i_(() (= <= ti(b), i= 1,..., q,

where 7 X(6) and ti, 1, ..., q, are defined as in 3. In addition, the following
relations are satisfied"

d2

(4.2) dt
-H(.(t, 7), c/)(t, ). v(qb(t, 7))),

where 2 (21, ..., /],,).

(4.3)

fori 1,..., q.

i_ 1(() ti((),

2(t, 7) const. < 0, i_l(b) (__ <= ti(6

i= 1,...,q,

(4.4) /(t/-((), ;)Xi6(( /(t/+((), ;)Xi5((
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fori=l,.-.,q- 1.

(4.5) H(2(t, 7), b(t, 7), u) < H(2(t, 7), qb(t, ?), v(b(t, 7))) 0

for u e U, to _-< __< t(6). The vector

(t(), )g(x()) (t(), )
is orthogonal to T at

(G) Same as condition (G) of regular synthesis.
The existence of a modified regular synthesis implies the optimality of the

marked trajectories but only in a restricted class of admissible trajectories. The
inability to use Lemma 2.1 under the assumption of modified regular synthesis
accounts for the weaker result. This will be explained more fully below, but first
we shall present a few lemmas that parallel those of 3.

In what follows we use the notation introduced in 3. The next three lemmas
are reformulations of Lemmas 3.1 through 3.3 for the case of a modified regular
synthesis. The proofs are the same.

LEMMA 4.1. In a modified regular synthesis, the functions ti, xi, 1,..., q,
are continuously differentiable on N.

LEMMA 4.2. For any cell of a modified regular synthesis, w*(3) C()(N),
where w*() w(X(6)), 6 N.

LEMMA 4.3. For any cell of a modified regular synthesis and any 6 N,
the vector

(to, x()), (to, x())

is a constant multiple of (1, w*(6)).
LEMMA 4.4. Let a be an m-dimensional cell in a modified regular synthesis,

k <= m n. Then if (x, u) is an admissible pair transferring Xo to X in a,

W(XO) W(X1) f(x(t), u(t)) dt,

where X(to) Xo x(t) x
Proof. First we note that for each 7 6 a, 2(t, 7)< 0 for to t t(7) by

(4.3). The proof of Lemma 3.4 now suffices.
DEFINITION 4.2. Let C and C2 be any pair of curves such that the final

point of Ca coincides with the initial point of C2; then the curve C made up of the
two adjacent arcs C and C2, in that order, is called the fusion of C, C2.

Lemma 4.4 deals with curves lying entirely in a single cell. By repeated
application of Lemma 4.4, we can handle curves which are finite fusions of curves,
each of which lies entirely in one cell. Thus we have the following sufficiency
condition.

THEOREM 2. Under the assumption of a modified regular synthesis, the marked
trajectories are optimal in the class of curves obtained by the operation of finite
fusion on curves each of which lies entirely in one cell.

5. Further remarks. Earlier it was mentioned that the concept of regular
synthesis was not suitable as a sufficient condition for differential games. The
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reason for this is that the continuity assumptions on f(x, u) and f(x, u) are too
strong in a regular synthesis. In differential games, there are two control variables,
say u and v. One is to be chosen to maximize J, the other to minimize. Thus in
this situation f0 and f are replaced by h(x, u, v) and h(x, u, v) and we look for a
saddle point (u*, v*) of

subject to

J(u, v) g(x(t 1)) -- h(x(t), u(t), v(t)) dt

dx
h(x, u(t), v(t)).

dt

Assuming that v*(x) is an optimal strategy, the differential game reduces to a
control problem in u with

f(x, u) h(x, u, v*(x)),

f(x, u) h(x, u, v*(x)).

Even in the simplest examples v* is discontinuous across cell boundaries.
The same then is true of fo and f and we must relax the continuity requirements
if we are to solve the differential game problem by a reduction to a control problem.
This is what we have done in 4 and this theory is applicable to differential games.
See [4, Chap. 3] for a more detailed treatment of differential games.

As an alternative, one may use the repairable decomposition approach to
attack this problem. The concept of a repairable decomposition was introduced
by L. C. Young in [8] in relation to the time-optimal control problem. The ap-
plication of this theory to differential games, which depends heavily on Theorem 2,
can be found in [4].
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KANTOROVICH ESTIMATES FOR SOME CONVEX PROGRAMS*

A. A. GOLDSTEIN]" AND R. A. TAPIA:

Abstract. If C is a closed convex subset of a Hilbert space H, andfa real-valued function defined
and twice Fr6chet differentiable on C, we consider whether, given a point Xo e H, it is possible to
determine if a local minimizer offin C lies nearby, and if so, to estimate its distance.

Let C be a closed convex subset of a Hilbert space H, and let f be a real-
valued function which is defined and twice Fr6chet differentiable on H. The
problem we consider is the following"

Given a point xo H is it possible to check whether a local minimizer off in
C lies nearby, and if so, to estimate its distance?

We denote by P the projection operator for C, viz. P(x) C and liP(x) x[[
=< []y-x] for allxHandyC. It follows that P(x)-P(y) <= x-y for
all x, y H and IIP’(x)ll whenever P’(x) exists. In this paper, differentiable
means Fr6chet differentiable.

THEOREM. Given xo H and r > O, suppose that f is twice differentiable in
S {x" IJx Xol] -< r} and P is differentiable in S {x cVf(x)’x S], where
6 satisfies"

(i) 0 < 6 <_ 1/[[ f"(x0)[[.

Suppose further that f"(x) f"(x, .,. satisfies
(ii) f"(xo, h, h) >=/[Ihl[ 2 for some la > O, all h H, and

(iii) if(x) f"(Y) Lx [Ix Yll for x, y S.

Finally, assume that

Let

and

(iv) liP’(x) P’(y)II Lzllx y[[ for x, y in Sa.

K cSL + L2(3 + 6rL1)2

Ilxo P(xo csVf(xo)[I.

Then if h=(Krl/(bp)2) <1/2 and ro =(6p(1 x/1 2h)/K) <=rI, the sphere
So (x" IIx Xotl <= ro} contains a local minimizer for f in C which is unique in
the larger sphere {x" x xo =< min (r, cSp(1 + x/1 2h)/K)}.

Proof By the formulaf"(x, l, m) (Q(x)l, m) we identifyf"(x) with a bounded
linear self-adjoint operator Q(x).
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By (ii) and (iii), we have for x e So that ((Q(x)l, 1)/Ill 12) -/ L1 I.,X xoll
>= It Llro >- px/1 2h > 0, since h < 1/2and L16/K =< 1. Let 0 =/x/1 2h/2.
By continuity the set D {x[ H "((Q(x)l, l)/[[ll[ 2) >= } contains So in its interior.
If xSo and x P(x Vf(x)), then there exists e > 0 such that B {yell"
IIx yll _-< } D. From [3, p. 122] fis strictly convex on any convex subset of
D; hence on B f’l C. Since x P(x- Vf(x)) and x e B f-I C, the projection of
x- Vf(x) onto B f] C is also x. It follows from [3, p. 123] that x is a global
minimizer offon B f-I C. This means that x is a local minimizer offon C.

Now, x P(x Vf(x)) if and only if x P(x vVf(x)) for any v > 0.
Let T(x) x P(x 6Vf(x)). The point x will be a local minimizer of f on C
if T(x) O.

Suppose A is a linear operator from H to itself and IIA[I < 1. Then (I A)-
exists and II(I- A)-I[ < (1 IA I) -1. It follows that T’(Xo) has an inverse if

II 6Q(xo)ll < max {11 6l,I1 6[IQ(Xo)ll l} < 1, and this is so because
0 < 6 =< 1/ f"(Xo)[. Moreover, 11T’(xo)-I =< (6g)-1. A further computation
shows that T’(x) Y’(y) _-< KIIx yll if x, y e S, and finally Y(xo)ll . The
theorem follows now by application of the Kantorovich estimate (see, for example,
[3, p. 143] or [4, p. 3]).

Remark 1. If Sa C we can set L2 0, since P restricted to C is the identity
operator.

Remark 2. Newton’s method can be used to find the local minimizer.
Remark 3. In the case of unconstrained minimization, i.e., C H, we have

P I and Lz 0; hence the conditions of the theorem reduce to

]7 L Ig/(xo)l/2 < and ro =/(1 x//1 2h)/L <= r.

It is interesting, but not surprising, that due to cancellation we do not have
to specify a value for 6. This special case of the theorem has been obtained inde-
pendently by J. E. Dennis Jr. (see [2, p. 450)].

Remark 4. The reader familiar with the statement of Kantorovich’s theorem
will obviously question the strict inequality (h < 1/2) in the above theorem. The
following example shows that the theorem is not true if h 1/2. Let C H R
and f(x)= x3. Choose Xo r 1/2, kt 3 and L1 6. It follows that r/= 1/4;
hence h 1/2 and r0 r. However, f has no local minima. Clearly the theorem
fails because we can no longer guarantee, when x is on the boundary of So, that f
is convex on an open set containing x.

Remark 5. Let xo be a local minimizer offin C and assume the hypotheses of
the theorem above at Xo. Then if 92 is sufficiently close to Xo, the conditions of the
theorem will hold at 92.

Proof. Observe that for some neighborhood containing Xo, K will be bounded
above and c5/ will be bounded below. Also r/ can be made arbitrarily small by
choosing 92 in this neighborhood sufficiently close to xo.

Remark 6. Assume that Xo is a local minimizer offon the unit sphere of H.
Assume that fsatisfies the same conditions as the theorem, namely f" exists on S
and (ii) and (iii) hold. Assume that ]lxoll and Vf(xo) 0 do not hold simul-
taneously. Then if 92 is sufficiently close to Xo the hypotheses of the theorem can be
fulfilled at 92.
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Proof Clearly P(x) x/max(l, Ilxll). The operator P is not differentiable at
x if Ilxll 1. However, if Ilxll < 1, then P’(x, h) h and if Ilxll > 1, then

-1
P’(x, h)

Ix ’3(x(x’ h) h(x, x))

and

-1
P"(x,h,k) 5[(x,x)(x(h,k) + h(x,k) + k(x,h))- 3x(x,h)(x,k)].

x

If follows that P"(x) =< 6 if IIx = 1.
Let Q(6) Ilxo V/(xo)ll 2 1 211g/(xo)ll2 2Xo, Vf(xo) / (llxoll 2

1). Clearly Q(6) 0 for at most two values of 6, unless of course both IlXo
and Vf(xo) 0, but this case has been excluded. We may therefore pick r, 6 > 0,
such that x-aVf(x) - and 6__< 1/ f"(x) whenever X-Xo <r. The
remark now follows from an argument similar to the one used in the previous
remark.

Remark 7. In constrained minimization it is usual for a local minimizer to lie
on the boundary of the convex set C and for the gradient not to vanish there. As the
previous remark implies, projection operators are seldom differentiable on the
boundary. Hence the important role 6 plays in the theorem is to move the set Sa
away from the boundary of C. We now illustrate these points and the theorem with
an example.

Example. As before let H R and f(x) x3. We are interested in minimizing
f on the closed convex set C [1, + ). Let r + , / f"(xo)l, -/-a
and L1 6. The projection operator is differentiable everywhere except x 1;
also we may choose L2 0. Now, since 6-1= 6Xo we have that So {y’y

x x2/(2Xo), < x < +} and So is strictly outside of 1, + ) if x0 < 2.
It is also not difficult to show that h 11- Xol/lxol, ro Ixol(1- /1- 2h)
and h < 1/2 if- < Xo < 2. Hence the conditions of the theorem are satisfied for any
Xo in (, 2) and we can guarantee the existence of a local minimizer x* offon C,
satisfying

Xox//1 2h =< x* =< Xo(2- w/1 2h).

Acknowledgment. The authors would like to thank the referee for his
comments and suggestions.
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NEW CONDITIONS FOR EXACTNESS OF A
SIMPLE PENALTY FUNCTION*

STEPHEN HOWE?

Abstract. We consider penalty function methods for finding the maximum of a functionf over the
set

S {xeR":gi(x) <= 0 for 1, m and hi(x) 0 forj 1,... p}.

New conditions, extending earlier work done by Pietrzykowski, are presented under which the penalty
function

P(x, I) tf(x) g/+(x)- Ihj(x)]
i=1 j=l

is locally exact. The relationships among the new conditions, Pietrzykowski’s conditions, and Kuhn-
Tuckcr constraint qualifications arc cxplorcd.

1. Introduction. Consider the constrained maximization problem with
objective function f and constraint set

S {xR":gi(x) <= O, 1, ..., mandh(x) O,j 1, ...,
where f, gx, "", gin, h x, ..., hp are continuously differentiable real-valued
functions on R". Much recent work has been devoted to the reduction of this
problem to a single unconstrained maximization. Several advances in this direction
have been made using the penalty function defined, for/ > 0 and x R", by

e(x,)- f(x) g[ (x)
i=1 j=l

where

g/+(x)= {gi(0x) if gi(x)>O’

otherwise.

In 1967, Zangwill [4] presented an important result for the constrained
problem having inequality constraints only: if this problem is convex (i.e., f is
concave and each gi is convex), if it satisfies Slater’s condition (for some x e R",
g(x) < 0 each i), and if the problem has a solution x*, then for any # sufficiently
small P(., #) has a global unconstrained maximum at x*. In this case we say that
the function P is globally exact. Note in Zangwill’s result the use of Slater’s
condition, which is a constraint qualification validating the Kuhn-Tucker necessary
optimality criterion for convex, inequality-constrained problems.

In the general case, where the problem also has equality constraints and is no
longer assumed to be convex, one is interested in the possible existence of local
constrained maxima. In 1969, Pietrzykowski [2], [33 proved a theorem, similar
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to Zangwill’s result, for such points" Iff has an isolated (strong) local maximum Xo
on S such that the set of "active gradients"

{Vhj(xo),j 1,..., p and Vgi(xo) for each i, where gi(Xo) 0}
is linearly independent, then for/ sufficiently small the function P(., #) has an
unconstrained isolated local maximum at Xo. In this context we say that P is
locally exact. Again, note in this theorem the presence of a constraint qualification
(linearly independent active gradients) validating the Kuhn-Tucker criterion.

In this paper a new condition guaranteeing local exactness of the function P
is given. The new condition, unlike that of Pietrzykowski, depends upon the
objective function f. The differences between these conditions are further illustrated
in the first two examples of 3. This paper also deals with the relationship, suggested
by the results of Zangwill and Pietrzykowski, between constraint qualifications and
exactness of the penalty function. The last example of 3 discounts this suggested
relationship.

2. Result. Let the general constrained maximization problem, and the penalty
function P(x, l), be defined as in the Introduction.

THEOREM. For some point Xo S, let I {i’g(xo)= 0}, and suppose the
following condition is satisfied"

G" For every nonzero y R", such that Vgi(xo)Vy <= 0 for each I and
Vhi(xo)vy 0 for each j 1, p, it follows that Vf(xo)vy < 0.

Then there is a kto > 0 such that ifO < l <= !% then P(x, !) has an unconstrained
isolated local maximum at xo.

Remark. It can be shown that, under these conditions, xo is an isolated local
maximum off on S.

Proof. Since g, ..., g,, are continuous, there is a 6 > 0 such that gi(x) < 0
for every x e B(xo, 6) and I. Here B(xo, 6) is the open ball of radius 6 about Xo.
Now suppose, to get a contradiction, that there is a sequence {#,} of positive scalars
such that #,--, 0 as n---, oe and where P(x, #,) does not have an unconstrained
isolated local maximum at xo for each n. Then for each n there is a point
0 <

x, Xo for each n, and note that y, 0 as n- oe. Consider the sequence
{Y,/IlY, ofvectors in the compact set {z e R"’llz[I 1}. This sequence must have a
subsequential limit Yo e R" such that IlYoll 1. Assume without loss of generality
that

We shall now show that Vgi(xo)VYo <_ 0 for each e I. Suppose, conversely,
that Vgr(Xo)TYo > 0 for some r e I. Then for each n,

Vg(x0)T Y, o(lly, ll)

This last expression converges to Vgr(xo)n-yo as n ---, o, thus for n sufficiently large
g,(x,) > 0 so that g+(x,) gr(x,). But then it follows that, for n sufficiently large,

P(x,, #,) P(xo, #,) <= #,[f(x,) f(xo)] gr(x,),



380 STEPHEN HOWE

or, equivalently,

y. Vg(xo)V y. o(1
[P(x,,, #,,) P(xo, #,)] < #,Vf(xo)T

IlY, [l,[[ + lY,

But the latter right-hand expression converges to -Vg,(xo)VYo < 0 as n m,
implying that for large n, P(x,, ,) < P(Xo, ,). This contradiction establishes the
claim that Vg(xo)VYo N 0 for each I.

Similarly, it can be shown that Vha(xo)VYo 0 for j 1, ..., p. Hence, from
the assumption that G holds, it follows that Vf(xo)VYo < 0. But then

y. o(
f(x.)- f(xo)] Vf(xo) +

W(xo)VYo <0 asnm,

implying that for n sufficiently large f(x,) < f(xo) and hence P(x,, ,) < P(xo, ,).
This final contradiction establishes the theorem.

3. Examples.
Example 1. Let f, g, gi’R R be defined byf(x) x,g(x) x, g2(x -x.

Both constraints are active at Xo 0, which is the only feasible point and hence the
constrained maximum. Since there is no nonzero y e R such that yg’(0) 0 for
i= 1, 2, G holds trivially, but the gradients g’(0)= 1 and g(0)= -1 are not
linearly independent. Thus the new condition G may hold when Pietrzykowski’s
condition does not.

Example 2. Let f, g’R R be defined by f(x) x, g(x) x. The constraint
is active at the constrained maximum Xo 0. Note that g’(0) 1, and that for
y -1, yg’(0)= -1 0 but yf’(O)= 0. Therefore, Pietrzykowski’s condition
does not imply G.

Example 3. Let.l g, g2" R2 R be defined by

f(x, y)= y + x,
gl(X, Y) y,

gz(X, y) y3 _+_ X6,

-2 -1

-3

-4

FIG.

g2=0

f-0
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(see Fig. 1). Consider the weak constraint qualification, shown by Gould and
Tolle [4] to be both necessary and sufficient for validation of the Kuhn-Tucker
criterion. It can be verified that this constraint qualification holds at the isolated
local constrained maximum (0, 0). It is not true, however, that for # sufficiently
small the point (0, 0) is a local constrained maximum of P((x, y), l). To see this,
define h :R R by h(x) P((x, 0), #) #x

4 x6 for any # > 0, noting that h
has a local minimum at x 0 for any/ > 0. Hence, for an isolated local maximum
x0, it is not true that any Kuhn-Tucker constraint qualification will guarantee
local exactness of’the penalty function P(x, l).
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STABILITY OF LINEAR SYSTEMS WITH
CONTROL DEPENDENT NOISE*

U. G. HAUSSMANN-

Abstract. Consider a system described by the autonomous stochastic differential equation

dx (Ax- Bu) dt + C(tl)dw + D dw2,

where C(. is linear in the control variable u and wl, w2 are two independent Wiener processes. It is
known that if the pair (A, B) is stabilizable and if C(. is sufficiently small, then there exists a control
u b(x) such that the corresponding diffusion process x(. possesses an invariant probability measure
with finite second moment, and hence there exists a control which minimizes the expected value with
respect to the invariant measure of a quadratic cost functional. In the present work necessary and
sufficient conditions on the structure of the system are given such that, without requiring C(-) to be
small, a control exists which induces an invariant probability measure with finite second moment.

1. Introduction. Consider a system described by the stochastic differential
equation

(1.1) Ax Bu C(u)fv + DRY2,

where x is the n-dimensional state vector, u the m-dimensional control vector,
l’;1, 22 are independent Gaussian white noise processes and C is linear in u.
Equation (1.1) could be rewritten as

(1.2) :t Ax- [B + C(l)]u + D2

so that C can represent linear random disturbances in the control matrix B.
Wonham has shown [1] that if the pair (A, B) is stabilizable and if C is sufficiently
small, then a linear feedback control u exists for which the corresponding process
x(. possesses an invariant probability distribution with finite second moment.
We shall say that the control u stabilizes x. In this case a control can be found which
minimizes the long-run average (i.e., the expectation with respect to the invariant
measure) of a quadratic cost functional [1], [2], [9].

In some recent work [2], the author proved that under certain conditions
on the structure of the system, C did not have to be small in order for a stabilizing
control (hence an optimal control) to exist. Now the "best" conditions have been
derived. Loosely speaking they are the following. Assume that the system (1.1)
can be decomposed into a sequence of coupled subsystems, and that for each
subsystem a stabilizing control which does not produce any noise in that subsystem
exists if the interactions are neglected. Then a linear feedback control u can be
found which stabilizes the whole system no matter how large C is. This is proved
in 3, after the problem has been precisely stated in 2.

* Received by the editors February 10, 1972, and in revised form June 16, 1972.
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The converse is established in 4. If in the above procedure one of the sub-
systems cannot be stabilized without producing noise in that subsystem, then C
can be chosen so large that no control can stabilize the system, provided A has
no purely imaginary eigenvalues and DD’ is positive definite. D’ denotes the
transpose of D. The basic tool in the proof of the converse is an instability theorem
due to Wonham I10]. His proof employs the partial differential equations
approach. It is interesting to observe that a more direct proof using probabilistic
arguments can also be given.

Two examples in 5 conclude the article. It should be mentioned that
Krasovskii has considered a related, but simpler problem I3].

2. The stabilization problem. Let us first state the problem precisely. Consider
the stochastic differential equation

(2.1) dx Ax dt Bu dt C(u) dw + D dw2, >= O,

where x is a vector in R", Euclidean n-space with norm x {Z7--1 Ixil2} 1/2,
n _>_ 2, u is in Rm, and wl, w2 are independent Wiener processes of dimension d and
do respectively. C(u) is given by

(2.2) C(u) , Ciui,
i=1

and A, B, C, D are real constant matrices of corresponding dimensions.
If in (2.1) u has the form u b(x) with

(2.3) b(x)- b(y) =<k x-y x, yeR",

then (2.1).is an equation of It6’s type, so that if the random variable x(0) is in-
dependent of the increments of w, w2, then (2.1) determines a diffusion process
(see [4])

(2.4) X, {x(t)" >__ 0).
We shall say that p, a probability measure on the Borel sets of R", is invariant

provided that whenever x(0) has distribution p then x(t) has distribution/ for
every > 0. Moreover a diffusion process is stable if at least one invariant
probability measure exists, and for any invariant measure #,

(2.5) g,{ x 2} = x 2/t(dx)< oe.

Finally, the control u 4(x) stabilizes the system (2.1) if b satisfies (2.3) and the
corresponding process (2.4) is stable.

The problem is to find conditions under which stabilizing controls exist.
The significance of the problem lies in the fact that in [1 it is proved that a control
which will minimize a quadratic cost functional in the steady state can be found,
provided a stabilizing control exists.

Let 9 be the differential operator given by

(2.6) 2’uV(x) 1/2 tr {C(u)’Vx,,C(u + D’V,xD + (Ax Bu)’V,,,
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where tr A is the trace of A, V, denotes the vector V/cx and Vxx denotes the
matrix c?2V/cx2. If we assume u b(x) where b satisfies (2.3), then u 2’e is
the differential generator of X4. The next theorem is basic.

THEOREM 2.1. If there exist two real constant matrices K and P with P >= 0
(i.e., P is symmetric and x’Px >= 0 for all x R") and positive scalars 2 and p, such that

(2.7) q4,V(x)
where V(x) x’Px and dp(x) Kx, then dp stabilizes (2.1).

Proof. The result follows directly from Theorems and 2 of [8].
In [2 we proved that if the range of any matrix C is contained in the "stable"

part of R", then (2.1) can be stabilized no matter how large C is. In the next section
we determine the weakest conditions which C must satisfy in order that the same
conclusions hold.

3. Stabilization with arbitrary noise intensity. For any n x n matrix F let
(2; F) be the minimal polynomial of F. It factors into

0(2" F) + (2" F)a_ (2" F),

where all the zeros of +(2" F) lie in the closed right half-plane, and those of
_(2" F) in the open left half-plane. For any m x n matrix K, we set

E+_(K) {x e R"" e+_(A BK A BK)x 0}.
As z+ and 0_ are coprime it follows that R"= E+(K) E_(K), although the
direct sum is in general not orthogonal. E_(0) and E+(0) correspond to the
asymptotically stable and unstable modes ofA respectively. Let T___ be the projection
of R" onto E_(0) along E_v(0). Then T+A AT+_ =_ A+_. It follows that A_

restricted to E_(0) is stable, i.e., has all its eigenvalues in the open left half-plane.
Suppose we set y T+ x, z T_ x, T+ C(u) C +_ (u), T+_ B B +_, T+_ D D +_

then (2.1) splits into

(3.1) dy (A+y B+u)dt C+(u)dw + D+ dwz,

(3.2) dz (A_z B_u) dt G_(u) dw + D_ dw2.

This leads us to the next result. Let us write ,+ and - for the differential
operators associated with (3.1) and (3.2) respectively, cf. (2.6).

LEMMA 3.1. If there exist matrices P+ >= 0 and K+ and positive constants

2+, p+ such that with u K+y,

(3.3) ,+(y’P+y) <_ 2+ p+lly 2, y E+(0),

then there exist P, K, p, 2 as required in Theorem 2.1, so that (2.1) can be stabilized.

Proof. The proof is very similar to that of [2, Theorem 4.1]. As A_ is stable
on E_(0), it follows that there is a matrix P_ => 0 and a positive constant 2_,
such that with u 0,

(3.4) 2(z’P-z) __< 2_ [z 2, z e E_(0)"
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see [2]. If we set V(x) (y’P+y + z’P_z) with fl > 0, then for fl sufficiently small
and u K + T+ x, it follows that

V(x) + + fl_ Pl xl] 2

for some p > 0; see [2, Theorem 4.1. Now Theorem 2.1 gives the result.
We write span {A for the span of the columns of A. Let us define

RB[A span {B, AB, AZB, A"-IB}.
We now have the following theorem.

THEOREM 3.2. If A is an n n matrix with no eigenvalues with negative real
part, and if B is an n rn matrix, then"

(i) for any m n matrix K, E_(K)
_
RBA]"

(ii) there exists a matrix Ko such that E_(Ko) Rn[A].
Proof. Since R[A] is invariant under A and under A BK, then there exist

induced maps J. and A BK on Rn/R[A]. Moreover A BK. Let E_(K)
be the set in R"/Rs[A] induced by E_(K). Then

Hence

E_(K) {X" a_(A BK’A BK) O}
{x._(;2)x }
e_(o)

E_(K)
_

RB[A].

To prove (ii) we observe that by controllability on Rs[A], there exists Ko
such that (A BKo) on R[A] is stable. Hence E_(Ko)

_
R[A] and the result

follows.
We now give a decomposition of R which will yield the stability result.

At each stage of the decomposition we look for controls in the kernel of the noise
matrix. We. make the following change in notation"

yl x, u u, A A, B B, C(u) C(u),

D -D, E+ E+(0), m =m.

Our equation is then

(3.6) dy Aly dt Blu dt C(ul)dwl + D dw2.

With TI_+ T+, yl_+ Tyl, equation (3.6) becomes

(3.7) dyI A[y1_ dt T1Blul dt T_Cl(ul)dwl + T[D dw2,

(3.8) dyl+ A+y+ dt Tl+Ulul dt Tl+Cl(ul)dw, + TI+D dw2.
Set C+(u 1) T+ Cl(u 1) for u 6 R’n’, and let dV 1, the kernel of C+, have dimension
ql. With m2 m ql we define the map $1 as follows" $1 maps R’n’ onto Rq’

such that it is an isomorphism between dV"1 and Rql with kernel dV_, the orthogonal
complement of V’1. Let S be the generalized inverse of $1. Then Bl+ =_ TI+B1S
maps Rq’ into E+, and we have the following result.
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LEMMA 3.3. The largest (over all matrices K mapping El+ into ,/V1) subset of
El+ consisting only of stable modes of (A+ TI+B1K 1) is the subspace RB+[A+].

Proof. S maps Rql onto 4/’1, so we may consider the matrix AI+ TI+B1SIK
where K maps El+ into Rql. But this matrix is A l+ BI+K. Now Theorem 3.2
yields that for some Ko the set of stable modes is RB+[A+J, and no other K can
do better. Hence the best K is S 1Ko.

LEMMA 3.4. If R,+ [A 1+] E+,I then there exists a control u which stabilizes
(2.1) no matter what C is.

Proof. By Lemma 3.1, we need only consider (3.8) but not (3.7). If we restrict
ourself to controls u e fl, (3.8) becomes

dyl+ Al+yl dt Bl+t; dt + TI+D dw2, v6 Rql,

and (AI+, BI+) is controllable. It follows that P+, K+, 2+, p+ satisfying (3.3) with
equality exist. Hence the result follows by Lemma 3.1.

Lemma 3.3 tells us that this is the best we can hope to do using the present
decomposition. The other extreme is that Rz+[A+] is {0}. In that case we shall
show later that instability results for suitable C.

IfR,+ [A 1+ lies between these two extremes we can continue the decomposition.
However, let us now proceed in general giving a definition by induction.

(3.9) dy Aiy dt Biu dt Ci(ui) dw + D dw2, U Rm’.

Set E {x U+-" z+(A"Ai)x 0} and let T be the projection of U+- onto

E along E%. With y T+y’, TA AiT A we have from (3.9),

dyi_ Ai_yi_ dt Ti_Biu dt Ti_Ci(ui)dWl + Ti_D dw2,

(3.11) dye+ Ag+ y+ dt Ti+Biu dt Ti+ Ci(ui) dw1 + Ti+D dw2.

Set Ci+(ui) Ti+Ci(ui), and let yi, the kernel of C/+, have dimension qi. Then

mi+l mi qi. Define $i, to map Rm’ onto Rq’, Rm’+ 1, respectively, such that
$i is an isomorphism between yi and Rq’, $/ is one between L, the orthogonal
complement of i, and R"’+1, and they have kernel /, i respectively. Let
Si, S be the generalized inverse of $i, , respectively. Then B+ =_ T+BiSi maps
Rq’ into E’+ and we have as in Lemma 3.3, that R,+[A+ is the largest set of modes
in E+ which can be stabilized without introducing any noise through C’+. By
Theorem 3.2 there exists K mapping U+ into Rq’ such that the stable modes of

-B+Ki) are RB+[A+]. Then with ui= SKiyi+ + Su(Ai+1 A’+ B+Ki, Bi+l T’+ i, ci+ l(ui+l D 1__ Ti+Di,B S+/- Ci+(Silui+ 1), +

yi+ y/+, (3.11) becomes

(3.12) dyi+ Ai+ yi+ dt Bi+ lb/i+ dt Ci+ l(ui+ 1) dw -k- Di+ dw2.
Finally we define the following sets"

(/) {Bu" u Rm, span {C(u)} F)
{Bu’ueRm, Cjuet/’,j 1,2, ..., d},

where (Cj)m C. Then
d

() B Cl
j=l
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i.e., the image under B of the intersection of the inverse images under Cj of
Let Go E_, the stable modes ofA, and let i span {Ni_ 1, RfA]’x e(t_
> 0. It follows that the Nk are an increasing sequence of subspaces of

LEMMA 3.5. If ’k k-1’ then k+l k-1" k+l k for k >__ rank B.
Proof. If Nk k- 1, then k+ span {Nk- 1, R,[A]" x e/{(k- 1)} k"

Hence the first conclusion follows.
If i+1 4: i, then ,1+1 = i and dim i+1 => + dim i. This increase

in dimension is due to an increase in the dimension of //(), i.e., dim
>__ 1 + dim///(i). As /g(i)- span {B}, then we can increase the dimension
at most rank B times. The result follows.

LEMMA 3.6.

N span {E_’j 1,2,..., + 1}, >= 0.

Proof. Certainly Go Ek. Assume the result holds for k 1. As

{u" span {C(u)}
___
k_l } {u" T+ T+-1 T C(u) 0}

span {V Slay2 2 y},"’’, SIS_ .skj_

then

span {Rx[A]’x e/g(l_ 1)} span {R,,[A]" span {C(u)}
_ ,_ 1}

r--1

span {R,,[A’u 1-I SUr, r 1,2,..., k}
/=1

k-1

span {R,[A], RBu[A]’x (3[(,_k_2) U . H Si/[/’k}
/=1

Hence,

, span {k-1, Rx[A]" x /[(_ 1)}
k-1

span {’k-1, R,,[A]’u I-I sll’k}
/=1

k-1

span {Nk-1, Tk+ Tk+-1 T+R,,[A? "u I-I Sk}
/=1

as,_l span {E, E2_, ..., E}.But TI+R,[A] RT+,[TI+A]
asU_+1 R,,+ [A/+ then T++ 1B+ 0, orAl++1 T++ 1Ai+l T++ I(A+ B+Ki)

T++ 1A+. Hence Rr+ r,+,,[A2+] TZ+Rr,+,,[AI+]. We conclude that

k-1

T+ Tk+-1... T+ span
/=1

span {Rx[A+]’x T+ T+BS S-l/-k}
span {Rr+,kskv[A+’v Rqk}

R,+ [A+] E’+ 1.
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Hence

k span {’k- 1, E--+
and the lemma is proved.

THEOREM 3.7. If m R", then there exists a linear control u which stabilizes
(2.1) no matter how large C is.

Proof. By assumption R" span {El, E2__, ..-, E

_
}. By Lemma 3.1, if there

exist pl+, KI+, 2+, p+ such that (3.3)is satisfied on E[ then (2.1) can be stabilized.
But E E2_ ( E2+, and so again by Lemma 3.1, pl+, K+, 2+, p+ exist if
p2+, K2+, 22+, p2+ exist and satisfy (3.3)on E2+. This continues on up to the necessity
of finding U+-1, K+ 1, 2+-1, p+-i satisfying (3.3) on E-1. However U+-1 U_

Rz,_,[A+ 1], so that on U+-1 the system is controllable with controls that do
not produce any control dependent noise. Hence U+-1, K+ 1, 2+-1, p-l=
can be constructed as in the case C 0. This establishes the theorem.

We observe that if ,,--R" then at some stage, R,+[A] {0} and so
U_/1 {0}. However, since U+ {0}, U++1 - {0}, and so some unstable modes
remain. If C is sufficiently small on these modes, then the system can still be
stabilized; however, we shall show that if C is sufficiently large on these unstable
modes, then no control can stabilize.

If we restrict the decomposition of R into subspaces spanned by the co-
ordinate axes, rather than the kernel of C and its orthogonal complement, we
derive a useful corollary.

Set
So

Sk+l i Sl’span{Ci} _span{gk,RbJ[A]’jeSk
l=

where b is the jth column of B and C is as in (2.2).
COROLLARY 3.8. If e Uk’--1 Sk, then (2.1) can be stabilized no matter how

large C is.

4. Instability. We begin with a general instability theorem due to Wonham
[10]. Wonham uses the partial differential equations approach to prove the
result;however, this is not very intuitive, and so we shall give a probabilistic
proof. We consider now

(4.1) dx(t) f(x(t)) dt + a(x(t)) dw(t), O.

Assume
(i) x, f are in R, a is an n x n matrix.
(ii) {w(t):t > 0} is an n-dimensional Wiener process.

(iii) x(0) is a random variable, independent of the increments of w(t).
(iv) f and a are Lipschitz continuous.
(v) There is a constant c > 0 such that

y’(x)(x)’y cllyll 2

for all x, y in R".
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It follows that the unique solution of (4.1) is a continuous strong Feller
process X {x(t): _>_ 0). Observe that condition (v) was not required in the
previous section; however we are going to use a result from [5] which does require
this condition. Next we assume that the process X determined by (4.1) is positive;
i.e. for any nonempty, connected, bounded, open set G with boundary F,

for any x in the complement of G, where zv is the first time F is reached. It is known
[-6] that under assumptions (i)-(v) positivity is equivalent to the existence of an
invariant measure #, and moreover this probability measure is unique.

Wonham proved the following result [5, Lemma 3.2].
LEMMA 4.1. Assume L(x) >= 0 is locally H61der continuous, as well as all the

above hypotheses. Then

d{L(x)} < ov

if and only if

gx L[x(t)] dt < oe, x e R’.

Now we have an instability theorem established originally by Wonham.
THEOREM 4.2. Let X be the diffusion process determined by (4.1) under the

preceding assumptions (i)-(v), and let be its differential generator. Let L(x) >_ 0
be locally HOlder continuous, and assume there exist two real-valued functions
V1, V2, such that:

(a) For some r < , V1 and V2 are defined and are twice continuously differ-
entiable for x r.

(b) There exists asequence {x,} with Ilx, m such that VI(Xn) as n .
(c) V(x) 0 llxll r.

max {Vi(x)" Ixll p}(d) lim sup 0
,- min Vz(x)" x P}

(e) =Vl(X) - 0, V2(x) L(x) for Ilxll r.

If X is positive with stationary measure kt, then

{L(x)} + oe.

Proof. Let F, {x: Ilxll- n}, F {x: Ilxll r}, and write z, for zv., and
r for rr. Also let ?, min {r, r,}. By considering the process obtained by stopping
the positive process X at {,, it can be shown for any function V satisfying (a), that

(4.2) {V[x(,)]} V(x) G LfV[x(s)] ds

if r < ]]x]] < n. We call this domain D,.
Let z, Pr {?, ,}, fl, Pr {g, }. By (e) and (4.2) we have

(4.3)
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and

(4.4)

as L(x) O. We call the last integral I(x). By the lemma it suffices to show I(x) + o
for some x (hence for all x).

From (d) it follows that given e > 0, there exists N such that if [[x[I n > N,
then Vl(X) __< e Vz(x). Hence (4.3) and (4.4) yield

I(x) >_ 5x{Vz[x(’c)]l,, "c}fl, Vz(x)

----[VI(X x{Vl[X(T)]i,n T}n].

Because of (b) we may conclude that Vl(x) __< 0 for x e F, but Vl(X > 0 for some
x with lix[I > r. Finally using (c), we observe

VI(X)
I(x) > Vz(x

Now let e 0 to conclude I(x) + . This proves the theorem.
Remark. Observe that (b) could be weakened to:
(b’) Vl(X) =< 0for ]lx]l r, and there exists x with I]xll > r such that Vl(X) > 0.
Let us now apply this result to an equation of the type of (2.1). If P is an

n n matrix, we let F(P) be the matrix with ijth entry

Fu(P tr {C"PCJ}.

If we consider controls u 4)(x) satisfying (2.3) then conditions (i)-(iv) are satisfied.
Moreover if DD’ > 0 (i.e. DD’ is real, symmetric and x’DD’x > 0 for all x # 0),
then (v) is also taken care of. Hence if an invariant measure exists it is unique and
the process is positive. We let L(x) x’x Ilxl12o

THeOreM 4.3. Assume all the eigenvalues of A lie in the open right half-plane,
and assume that the kernel of B contains the kernel of C. If there exists P > 0 such
that

(4.5) u’F(Q)u > u’B’QP- 1QBu

for any u not in the kernel of B, where

(4.6)
0

Q etA’P etA dt,

then no control u satisfying (2.3) can stabilize (2.1).
Proof. If no invariant measure p exists, then the result is obvious, so assume

that the process is positive.
Let V2(X OX’X. If u 4(x) satisfies (2.3), then uV2(x) 0k 1(1 + x 2)
X

2 for x >= r, some r > 0, provided 0 > 0 is sufficiently small. Let
Vl(X) (x’Qx)q. If 0 < q < then (a) through (d) of Theorem 4.2 are satisfied.
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If ,V1 >_- 0 for Ilxl => r, then our result follows by Theorem 4.2.
From (4.6) it follows that

A’Q+QA=P.

Hence for Ilxll > 0,

,V(x) q(x’Qx)q- {u’F(Q)u + 2(q 1)u’F(Qxx’Q)u/(x’Qx)

+ tr (D’QD) + 2(q 1) tr (D’Qxx’QD)/(x’Qx)

+ x’Px- 2u’B’Qx}.

But from the positivity of Q and the Schwarz inequality, it follows that F(Qxx’Q)
<= (x’Qx)F(Q). Also tr (D’Qxx’QD) IID’Qxll 2 <__ (x’Qx) tr (D’QD). Then

2’uV(x) >= q(x’Qx)q-x{(Zq 1)u’F(Q)u + (2q 1)tr(D’QD)+ x’Px 2u’B’Qx}.

If q > 1/2 we may drop the trace term, and then complete the square to find

(4.7) 5ouVl(X) _>_ q(x,Qx)q-l{y,y + u’[(2q- 1)F(Q)- B’QP-1QB]u},
where

From (4.7) we see V(x) >= 0 provided

(4.8) (2q 1)F(Q) >= B’QP-1QB.
We demand also of course that > q _>_ 1/2.

Since u’F(Q)u tr {C(u)’QC(u)} then the kernel of F(Q)is the same as the
kernel of C. Now by considering (4.5) on the orthogonal complement of the null
space of F(Q) we conclude that (4.8) holds for > q _>_ 1/2. This completes the proof.

Finally we can deduce the converse of Theorem 3.7; however we must assume
that A has no eigenvalues lying on the imaginary axis, and that DD’ > 0. We use
the notation of the previous section.

THEOREM 4.4. Assume that DD’ > 0 and that A has no eigenvalues lying on
the imaginary axis. Ifm # R", then for C sufficiently large, no control u dp(x)
satisfying (2.3) can stabilize (2.1).

Proof If m # R", then the decomposition breaks down at some stage.
Hence for some k,

R,+ [A] Ek_+’ {0}
so that B+ 0, i.e. T+Bku 0 for any u in Y, the kernel of C+. Moreover from
(3.11) we have

(4.9) dye+ A+ y+ dt T+Budt C+(u) dw, + D+dw2

Now (4.9) has the form (2.1) and the kernel of C+ is contained in the kernel of
T B. Moreover Ak has no eigenvalues in the open left half-plane, and by hy-+ +
pothesis none on the imaginary axis. We can almost apply Theorem 4.3.
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Suppose u gives rise to an invariant measure/. Then t projected on E+ is an
invariant measure for (4.9). Call it/; i.e., as ?k-1 is a complement of U+, then
for A in E+,/(A) #(A x k_ 1). Hence if (4.5) holds, then

2(/y) +Y o,

and if x y + z, y e U+, z e k- 1, then

. x 2u(ax)= | (v + z)12u(ax)

= 2()= +

But with P I, (4.5) becomes

(4.10) tr {C(u)’QC(u)} > QTBUuI] 2

for u not in the kernel of TB. It is evident that this inequality can be satisfied
for all u if C(u) is sufficiently large, i.e. each of the matrices C has a sufficiently
large norm. This proves the theorem.

Suppose now that such a subspace E exists on which (2.1) cannot be
stabilized if C is large, i.e. if (4.10) is satisfied. But let us examine the case when
u Kx, i.e. u is assumed to be linear in x. Moreover we neglect controls in the
kernel of B, so assume the range of K is disjoint (except for 0) from the kernel of B.
Also assume (A, B) is stabilizable [7]. We set A BK and put

T(P) et’K’F(P)Ket dt.

For convenience we identify (4.9) with (2.1). Then it is known [1], [2], that u Kx
stabilizes (4.9) if

y(1) < .
Using a proof similar to that of Theorem 4.3 except putting for A and K’F(I)K
for P, we see that u Kx does not stabilize (4.9) if

’v[y(i)] > ’v(1),

or

(4.) ’v[y(I)- i] > 0.

As the null space of B contains that of F we conclude that (4.11) holds if and only if

y(1) > I.

Hence we see that for n 2 there is a possibility that we cannot decide the stability
of (2.1).
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5. Examples.
Example 5.1.

C1 (x

2

1 0

1 -1

1 0

0 2 0

0 0 -1

C2 x

1 0

0 0

01

2 2 3

0 2 C3 fl 1

-2 4 -1

4

2

0

With 7 -fl/ we have

span

0

0

1 span

0

0

////(Go) span 7

1+7
47

//(1)-- span 7

1+7

and so this system can be stabilized no matter how large o and/3 are (provided
o).

Example 5.2.

A= 0

0

IfT= -o(fl, fl#O,

C1 o{

Go span

0

2 1

0 -1

2

2

-1

0

0

7 1+7
span 3

-1

for all 7, and the system can be stabilized.

0

0

1 0

1 2

2

-1

7

{(o) span

4+7
5

1

0

0 =R3
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Observe that if fl 0, then

/(N0) span 0

0

1 span

0

0 0

0 1

But now /{(N1)= /(N’o) and so 2 --,-,1 R3, and the system cannot be
stabilized for e large. Hence the elimination of some noise leads to instability.
The point of course is that it is no longer possible to obtain the same linear com-
binations.

Finally it should be noted that most of the results hold in the more general
case when a term F(x)dw3 is added to the right side of (2.1), provided F satisfies
certain restrictions. Here F(x)= =iFixi. For example, Theorem 4.3 holds
with (4.5) modified to

(4.5)’ u’F(Q)u > u’B’QEA(Q) + P]-IQBu,

where A(Q) is a matrix constructed from F in the same way F(Q) is constructed
from C. On the other hand the problem of giving conditions which guarantee
that a stabilizing control exists no matter how large F is, is more difficult and
probably less interesting since sufficient conditions will be very strong. For some
results see [2].

Acknowledgment. I thank a referee for pointing out the present simpler proof
of Theorem 3.2.
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ERRATA" PERTURBATIONS OF LINEAR CONTROL SYSTEMS*

JERALD P. DAUER"

A portion of Theorem 6 and its proof are not valid. The sentence "If B is
constant we can choose D constant." should be deleted from Theorem 6. This
can be seen from the following example, due to G. Franklin (Stanford University):

2 /,/.

Constant 2 x 1 perturbations of this system are not completely controllable in L.
Proof of Theorem 6. Under the transformation z(t) X-(t)x(t), system (1)

becomes

c(t)u,

where C(t) X-l(t)B(t). Let D1 be a measurable n x m matrix function whose
rows are linearly independent over I and such that

IC(t)- D(t)l < /llXlloo
for all s I. Let f be the function defined continuously on the compact set
S {y*:[y*] 1} by

f(Y*) ;t [Y*Dx(s)l ds.

We have f(y*) > 0 for all y* in S, hence

inf f(y*) > 0.
y*S

Theorem 1 then shows that the system

Dl(t)u

is completely controllable in L. This is equivalent to the system-- A(t)y + X(t)D(t)u

being completely controllable in L. Hence define D(t) X(t)Dx(t) on I.

* This Journal, 9 (1971), pp. 393-400. Received by the editors September 28, 1971.- Department of Mathematics, University of Nebraska, Lincoln, Nebraska 68508.
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LION AND MAN" THE BOUNDARY CONSTRAINT*

JAMES O. FLYNN-

Abstract. We consider a generalization of Rado’s pursuit problem. A pursuer, moving in a circular
arena with speed bounded by 1, tries to get as close as possible to an evader, moving along the circum-
ference with speed bounded by w >= 1. Using the approach of Ryll-Nardzewski and Varaiya and Lin,
we formulate this problem as a differential game. Then we determine the value and construct optimal
strategies for both players. Our results are compared with Isaacs’ on pursuit in the half-plane.

Introduction. A lion L and a man M, confined to a circular arena, move with
speeds bounded by and w >__ 1, respectively. L and M, continually aware of each
other’s position, have contrary objectives. L wants to get as close as possible to M
who wants to keep as far away as possible from L. One can view this conflict, quite
naturally, as a differential game with a payoff from the lion to the man equal to the
"smallest" distance between the two.

In this paper we adopt that viewpoint and find a solution for the special case
where the man is forced to stay on the boundary of the arena. An informal description
of that solution takes up the first section. In the second, we formulate the problem
as a game using the approach developed by Ryll-Nardzewski [6, pp. 113-126 and
Varaiya and Lin 8. Then in the third, fourth and fifth, we construct optimal
pursuit and evasion strategies. Finally, in the last section, we compare our problem
with pursuit in the half-plane. Our method of solution involves separating the game
into a min-max pursuit part and a max-min evasion part. This technique, tracing
back to the control theory approach of Pontryagin I5], is motivated largely by
Halpern [2 and Varaiya and Lin [8 and justified, for the most part, by results in
Varaiya and Lin F83. That this method has limited applicability is indicated by the
examples in 6.

We wish to thank L. Dubins and D. Blackwell for introducing us to the
general problem (described in the first paragraph) and for stressing the importance
of a rigorous approach. We wish to thank L. Dubins and Ronald Stern for their
helpful comments and criticisms of an earlier version of this paper. We have
benefited from Isaacs’ I3] solution to pursuit in the half-plane and from Gerald
J. Smith’s [7] unpublished results on the problem of pursuit in the circle. In closing,
we note that the general problem is a generalization of R. Rado’s Lion and Man
problem [41 and Isaacs’ game ofpursuit in the half-plane [3, pp. 261-265]. Apparently
Isaacs was the first one to formulate it [3, pp. 265, 270]. Our solution to the general
problem is in the process of being submitted for publication.

1. Results. In this section we describe the trajectories and the payoff which
result when both players use optimal strategies. For the present we assume an
intuitive grasp of the problem leaving the formulation for the next section.
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We begin by replacing the arena by the unit circle with center O. Some
definitions follow. Let (x, y) denote L’s position in a rectangular coordinate system
with origin O and M’s position fixed at (1, 0) (see Fig. 1). Define arc tan (y/x)
as the angle between OL and the X-axis, 0 arc tan y/(1- x) as the angle
between the line LM and the X-axis and p I(1 x)2 + y211/2 aS the distance

The term speed always refers to the norm of a player’s right-hand velocity
vector. Such a vector, of course, need not exist. However, when L’s right-hand
velocity vector does exist, we denote by 4 the angle which it makes away from the
direction LM. For 4) positivity corresponds to measuring in a clockwise arc, e.g., 4)
is positive in Fig. 1. It follows from a result of Smith [7], than whenever L and M
travel at maximum speeds,

(1)
dx/dt cos (0 + 4)) ,wy,
dy/dt -sin (0 + 4)) + bwx,

where b + if M moves clockwise and , if M moves counterclockwise.
The best way to describe M’s optimal strategy is to draw a picture. Examine

the unit circle depicted in Fig. 2. Let A be an arbitrary point on the circle, B the
point on the line segment OA whose distance from O is l/w, and C1 and C2 the
points of intersection of the circle with the perpendicular to OA at B. M, starting
at A, plays optimally by obeying the following rule. If the distance p < (w 1)/w,
move directly to Ca or C2 at maximum speed, selecting C1 if 0 < 0, C2 if 0 >= 0.
(The selection for 0 0 is, of course, arbitrary.) if p > (w- 1)/w, wait until
p (w 1)/w and then act as directed above. Upon reaching Ca or C2 continue
with the rule which applies to A.

L

FIG.
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C

F1

A

FIG. 2

L, starting at O, plays optimally by staying on the radius OM until his distance
from O is 1/w. As indicated by (13), L can achieve such a position in a finite time
regardless of M’s motion. What L should do afterwards, however, depends on M.

Some historical remarks are appropriate. Radial pursuit strategies first
appear in J. Littlewood’s [4, pp. 135-136] exposition on the case of equal speeds.
More recently they appear in Gerald Smith’s [7] attack on the problem of pursuit
in the circle. Smith establishes that, for any e > 0, L is a radial strategy which
brings him to a point Q on OM which satisfies [OQ[ >= (1/w)lOM[ . He attributes
that result to a suggestion given by Dubins. In this paper we obtain a stronger
result (see (13)) by exploiting the fact that M is restricted to the boundary.

Turn to Fig. 2. Suppose B and A denote the respective starting positions of L
and M. Then, if M moves at full speed toward C1, optimal play directs L at full
speed along BC1, while ifM moves at full speed toward C2, optimal play directs L
at full speed along BC2. The minimum value of [LM[ occurs when M reaches
C1 or C2. (This fact is verified in the proof of Lemma 3.)

Using elementary arguments we can show that if L and M play as described
in the above paragraph, then the minimum distance is achieved when to
=_ (1/w)arccos(1/w). At that time p v* and ]0l =/3, where

(2) v* (1/w)[(w2 1) 1/2 arc cos (l/w)]

and

(3) fl arc sin (l/w).

The resulting (x, y)-path satisfies

x(t) (1/w)(cos (wt) + wt sin (wt)),
(4)

ly(t)l- (1/w)(sin (wt) wt cos (wt)) for 0 =< =< to.
The sign of y(t) depends, of course, on the direction M chooses. Note that (4) is
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FIG. 3

the parametric representation of a section of the involute of a circle with radius 1/w
and center O.

In Fig. 3, we divide the (x, y) representations into the sets
and c (1 U c,1. We will obtain different results for each set. Let P correspond to
p (w 1)/w and 0 0, Q to p v* and 0 =//, PQ to the curve traced by
(x(t), ly(t)]), and QS to an arc of the circle having radius v* and center M. 5 is the
closed set included within the arcs QS, SM and the line QM. c is the closed set
included within the lines QM, PM and the curve PQ. 5’ and c, are the reflections
of and 1. And is the set of points in the circle not included in,1,5’ or ’.

We are going to describe optimal trajectories which start from positions in
We begin by considering points on the line segment PM (see Fig. 3). Turn to Fig. 2.
Let E be a point on the radius OA where distance from O is at least 1/w. Let F and
F2 be the two points on the circle satisfying OFIE DFzE fl included
within the minor arc CC2. Suppose L starts at E and M starts at A. Then, if M
moves at full speed toward C, optimal play directs L at full speed along EFt,
while if M moves at full speed toward C2, optimal play directs L at full speed
along EF2. This time the minimum value of ILM] occurs when M reaches F or F2.
This fact will be used later;its verification is left to the reader.

Now we consider points in c which do not lie on PM. The situation irv c,1 is,
of course, analogous. In Fig. 4, E and A denote the respective starting positions of
L and M. B, C and C2 are defined as before, and F is the unique point on the
minor arc AC2 satisfying 4 OFE /3. If M moves at full speed toward C2, then
optimal play directs L at full speed along EF. As before, the minimum value of
ILM] occurs when M reaches F. Again, the verification of this fact is left to the
reader.

We can easily show that if L and M, starting from a position in if, play as
described above, then the minimum value of [LM] is W(x, y), where (x, y) denotes
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C

0
B

A

FIG. 4

the starting position and W(x, y) satisfies (6). Also, while L and M remain in
their directions 0(t) and (t)(see (1)) satisfy

(5)

+1 for O(t) > O,

p(t)= +_1 for0(t)=0,

for O(t) < O,

(cos O(t) p(t))(pz(t) 2p(t)cos O(t) + cos2/)1/2
__

sin IO(t)[ sin fl.Jarc cos
p2(t) 2p(t)cos 7+-

and

sgn O(t) sgn (t).

In 5 we will describe optimal play by L versus arbitrary play by M. When
both L and M play optimally, a position in ff leads to a position in 5. As shown
in Lemma 2, L is unable to stop ILM[ from increasing in . Eventually the game
drifts into . Given a position in , L’s optimal strategy takes him to the center and
then along the radius line to the point P (see Fig. 3) which is in ft.

The optimal payoff or value V is a function of the initial (x, y)-position.
Specifically V W(x, V), where

v* for (x, y) ,
((1 x)2 + y2)1/2 for (x, y) 5,

(6) W(x, y)-- u* (1/w){[w2(x2
nt- y2)_ 11/2

-arc cos [x/(x + y2)1/2]

-arc cos [1/w(x + y2)1/2]} for (x, y) e (6.
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With a little patience one can verify that Isaacs’ main equations [3, pp. 67, 69] hold
on the interior of q3 for the value function W(x, y) and the directions 4 and
satisfying (5). However, we do not use this fact to support any of our results.

One closing remark is appropriate. The idea behind L’s strategy in if--that L
heads directly towards a point F, where g OFLI =/3--generalizes Isaacs’ results
on pursuit in the half-plane [3, pp. 260-265-]. We will discuss the relationship be-
tween pursuit in the circle and pursuit in the half-plane in the last section.

2. Formulation. Let _R represent the real numbers and let _R 2 represent the
space _R R with the metric determined by the norm II" II, where

(r2 + r2) 1/2. Denote the unit circle in _R2 by _C, the closed unit disc in
and the time axis [0, ) by _7. Define"

L(I) {/I/’T --’ 0,!(0) and II/(t’) /(t")ll It’ t"ll
for all t’,t"T} forlO,

()= {/[’,l(O)= and (t’)- (t") a w t’- t"

for all t’,t"e} fore,

= U (1), U ()andPq,l)= inf (t)- (t)[]
leD eC teT

for ,)L x .
_L(1) and _M(/) are trajectories for L and M originating from the respective positions
and , while P(_/, _2//{) is the payoff from L to M when L uses /and M uses

Using Ascoli’s theorem, one can show that _L and _M are compact metric spaces
with respect to the topology of uniform convergence on each compact subset of T.
Clearly, P is a continuous function on the compact space _L _M.

We adopt the approach of Ryll-Nardzewski [6, pp. 113-126] and Varaiya and
Lin [8] in defining strategies. Let (I, m)e _D C_. A mapping 7r’ _M()-- _L(I)is a
pursuit strategy at (l, ////) if it satisfies the information constraint" for any

" e M_(//), _/’(t) _#/["(t) for 0 <= <= t’ implies that rr(_ ’)(t) r(_/")(t) for
0 <__ < t’. In much the same manner we define evasion strategies. Denote by
H(/,////) and H(l,////), respectively, the sets of pursuit and evasion strategies at
(/, ).

Remark 1. We would like to define the outcome resulting from L choosing
z e H(/,//) and M choosing rt e H(l, ) as any pair , _/) e _L(l) _M(//) satisfying
(_) /and r/) _. Unfortunately, as in the first example in 6, that system
might not have a solution. We can guarantee existence (but not uniqueness) if we
require that and r/ are continuous. However, such a restriction is much too
stringent. Varaiya and Lin [8] propose the following definition to resolve this
difficulty.

DEFINITION. , _/) _L(l) _M(////) is an outcome of (r, r/) H(I,//) x H(I, /)
if there exist sequences !,)2=1 c _L(l) and _,),%1 c _M() such that lim,!,

lim, rc(_ff,) J and lim, _2/g, lim, r/,)
We denote the set of outcomes of (c, r/) by O(r, q). Because of the compactness

of _L(1) _M(///), we can use the arguments of Varaiya and Lin [8] to show that
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O(Tr, r/) is a nonempty compact subset of _L(1) _M(#). Then, using the con-
tinuity of P, we can show that

(7) sup P(n(_ ), ) >= P(l., ) >= inf P(_/, r/q))

holds for every H(l, /{), rl H(l, /{), and Q, ) OOz, r/).
We define the game F(/, #) as in Varaiya and Lin 8, p. 150. L selects a

n e l-I(/, ///) while M independently selects an r/ H(l, d). The payoff from L to M
is PQ, _rid), where , _rid) is an arbitrary point in O(n, rl). If n*e 1-I(l, dd) and
rl* H(l, rid) satisfy

max P(./, _ff) __< max P(./,
(t_,)eo(*,) (t_,

_
o(*m*) (t_,)eo(*,*) (_t,_)eo(,n*)

(8)

for all e l-I(/, //) and r/e H(l, ), then u* and t/* are optimal pursuit and evasion
strategies, and the value of the game, which we denote by V(l, //), is the value of
P(./, _ff) common to (./, _ff) O(*, r/*).

Because of (7), we can replace our game with two simpler problems. In the
first, a min-max pursuit problem (see Halpern [2]), L announces a strategy
u e[I(/,//) to M who selects ;/e _M() and receives P(u(/),/) from L.
Similarly, in the second, a max-min evasion problem, M announces a strategy

H(l, //1) to L who selects ./e _L(l) and pays P(_/, r/Q)) to M. If the optimal payoffs
in these two problems are equal, then their solutions can be combined to form a
solution to the game. We have the following theorem.

THEOREM 1. If rr* FI(I, /d/) and rl* H(I, //() satisfy

(9) sup P(rc*(_ff), /) inf P(/, r/*q)),

then they are optimal pursuit and evasion strategies and

V(l, ) sup P(Tr*(_/ff), ).
_M()

Proof. By (7), (9) implies (8). (For additional details, see Theorem 7 of Varaiya
and Lin [81.)

Remark 2. The continuity of P is essential. In 6 we give an example of a
discontinuous P for which (7) does not hold.

3. The program. Eventually we will show that the rule described in paragraph
4 of defines an optimal evasion strategy for every (l, /) 6 D_ C_. We denote
that strategy by r/* (or more properly q*[/, //). In 4 we prove the following
theorem (see (6)).

THEOREM 2. inf_6(t) PQ, r/*l, //g ()) W(x, y), where (x, y) represents (I, #).
Then, in the next section, we define a mapping n*l, //] e H(I, ) and prove

Theorem 3.
THEOREM 3. sup4,ta) P(n*[l, //[] (_/), ) W(x, y), where (x, y) represents

(, //)
Our principal result follows easily from Theorems l, 2 and 3.
THEOREM 4. The game corresponding to (1, #) D_ x C_ has an optimal pursuit

strategy, n*[l, d, an optimal evasion strategy, r/*[/, //dl, and a value equal to

W(x, y), where (x, y) represents (I,
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4. Evasion. Assume that M uses r/*. Let (I, .)e D_ x C_. L’s objective is to
minimize P, r/*Q)). We call (l, ) an attack position (AP) if p =< (w 1)/w and a
nonattack position (NAP) if p > (w 1)/w. Starting from any NAP, L can always
reach an AP by going to the center and walking along the radius OM. Hence we
call any position where p (w- 1)/w and 0 0 a reachable attack position
(RAP).

Let (1, ///) be any AP and let /e _L(I). Define

Zo(, /) inf {tlQ(t), 7*)(t))is a NAP}.
L stays in an AP up to time ZoQ,////). We have the following lemma.

LEMMA 1. Let (1,///[) be an AP and let e L_(1). If 0(0)>= O, 0(0)< 0 then
O(t) >= O, O(t) < O, respectively, for all 0 <= <= o, ).

Proof. The line OL cannot rotate as rapidly as the line OM unless the distance

lOLl <= 1,/w.
Again let (1, //) be an AP. Define

Q, /)= inf {Ill(t)- r/*)(t) [0 _<_ _<_ :o, )}.
Let (l*, ////*) be any RAP and let

Q*= inf Q, *).

One can easily show that

(10) inf PQ, q*[/,///](J.))= min{Q*, inf QQ,///)}.

We call (/, ) a bad attack position (BAP) if

inf QQ, //) > Q*.

Clearly the optimal payoffs at a NAP, a BAP and a RAP are equal to Q*.
One important consequence of the next lemma is that 10(0)1 =>/3 implies

Qq, ///) p(0) for every ! e _L(I). Another is that L can do nothing to prevent m
from increasing in .

LEMMA 2. If (1,///[) represents an AP, ! e L_(I) and 0 <= t’ <= t" <= o, /[), then
either (a)[0(t")] =< IO(t’) fl or (b)IO(t’) >= fl implies (c) p(t") >= p(t’).

Proof. Assume 0(0) >= 0. It follows from the arguments of Lemma that e(t)
is nondecreasing, e(t) > 0 and O(t) >= 0 for 0 <= < :oQ, /). Also, a simple
geometric argument establishes that O(t’) <= and !(t’)

_
(t’) <= (w 1)/w

imply z(t’)+ O(t’)< r/2. But the latter, e(t")>= z(t’) and O(t")<= O(t’) imply
p’(t") > p(t’). Hence, (a) implies (c). Finally, since M’s velocity component along
the line !(t)_(t) is w sin O(t), p(t) can decrease only when O(t) <= . The latter and
the fact that (a) implies (c) tells us that (b) implies (c). Similar arguments work
when 0(0) < 0.

As before let (l*, ///*) be a RAP. In the proof of the next lemma we will show
that the trajectory which directs L at full speed towards F minimizes Qff,/*)
(see Fig. 5). We will exploit this fact later. For the present, note that the trajectory
in question is identical to the one described in paragraph 7 of and that the
resulting (x, y)-coordinates trace the curve PQ depicted in Fig. 3.

LEMMA 3. Q* v* (see (3) and (10)).
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(t)
F

FIG. 5

Proof. Take any /e _L(I*) and <__ ZoQ,////*). If < to (1/w)(rc/2 [3), then

!(t)- (t)l >= (1/w)(w2 2wcos wt + 1) 1/2 t,

the distance between L and M which results when L moves at full speed along the
line joining 1" and _////(t). One can show that the latter > v* when < to. If /
directs L at full speed towards F, then {(to)= F and I/(to)- ////(to)ll- v*.
Hence, II/(t) _/A/(t)l >- v* for _<_ to with possible equality at to.

Suppose > to. Denote by C’ the circle having radius 1/w and center O.
Draw a line through _//’(t) tangent to C’ such that the point of tangency G lies to
the right of M as M standing at _///{(t) faces O (see Fig. 5). Clearly, L cannot head
directly towards /(t) without passing through the interior of C_’. But L cannot
pass through the interior of C’ without violating =< *oQ, //*). It is not difficult
to show that the trajectory where L moves along the arc l*G and then heads
toward ///(t) on the line G//(t) minimizes Ill(t) (t)l among all! e _L(I*) satisfying

=< o, //*). But under that trajectory, p (w 1)/w and 0 0 when L is at G.
Hence, !(t)- (t) >= v* fort => to.

Let (l, /) be an AP, where [0[ __< ft. It follows from the remarks preceding
Lemma 3 that (l, //{) is a BAP unless its (x, y)-representation lies in region
(see Fig. 3). The next lemma applies to that region.

LEMMA 4. If (1,//) is a position where (x, y) e (#, then min_/_L/) Q(_/,///) W(x, y)
(see (6)).

Proof. By the arguments of Lemma 3, we need only consider straight-line
trajectories. By Lemma 2, we only have to consider paths along which dO/dt > O.
From (1)

dp/dt w sin 0 cos qS,

dO/dt (1/p)(w(cos 0 p) sin b)
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and

dO
=F(dp)= - -.

The last expression is, of course, defined since dO/dr > 0. We want a function 4(t)
which minimizes F(4) for all in [0, Zo(./, )1. By Lemma 3 we can assume that
(p, O) ((w 1)/w, 0).

Using routine but lengthy calculus arguments we can show that O(t) satisfying
(5) attains the minimum.

Now we can prove Theorem 2.

Proof. Let (l, ) be any position with representation (x, y). For (x, y)e N,
the result follows from (10), Lemmas 3 and 4, and the fact that v* W(x, y).
For (x, y) , the result follows from (10) and Lemmas 2 and 3. Finally, Lemma 2
and the remarks preceding Lemma 4 imply that

{NAP} U {BAP},
taking care of (x, y) e N.

5. Pursuit. Let (l,)eD x C have the representation (x,y). We will
construct a mapping * (or more precisely *[/, ]) that satisfies

(11)

and

(12)

rr* e H(/, )

sup P(rr*(_ff), Z) W(x, y)

(see Theorem 3).
The construction presents no problems when (x, y) q c5. Certainly any strategy

will suffice when (x, y)e c. When (x, y)e let L move to the center O. Once at
O let him employ the strategy rr*, where

(1/w)(sin wt)(&/(t)), 0 <= <= 7r/2w,
(13) rc*(_//ff)(t)

(1/W)_ (t), >= r/2w,

for _//// _M. Under 7r*, L arrives at a RAP at time rc/2w. Note that (13) is
written in standard polar coordinate notation. The reader should verify that
r* 6 H. We have reduced (x, y) e to p (w 1)/w and 0 0. We break (x, y) c5
into three cases.

Case 1.

(14) p <(w- 1)/w and 0= 0.

We return to the usual rectangular coordinate system. Rotate coordinates
so that l= (1,/2)=(1 -p, 0) and (//ffl,//ff2)=(1,0). Define rq)

inf{t (t) 1} for (1). zQ)is the first time that hits the boundary.
Let (’-ffl, /2) ()’

For Case we define * by

(15) *(Z) !p Q, !),
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where

j’l /9 4-(l/w(1 p))(w2(1 /9)2 1)1/2t,

!t(T1QP)), T 1Qp),

and

(1/w2(1 p))arc sin (2(t)), 0 "FIQP),
!(t)

!(T1QP)), 27 Ip).

Turn to Fig. 2. Represent L’s starting position by E and M’s by A. If L uses
z* and M moves at full speed towards C or C2, then L moves at full speed towards
F1 or F2, respectively. The distance ILMI is minimized when M reaches F1 or F2

(see 1, paragraph 10).
LEMMA 5. 7Z* (Case 1) satisfies (11) and (12).
Proof. By using p < (w 1)/w, one can show that

where / and / satisfy (15). Hence (11) holds. We assert that the best that M can
do against r when (14) holds is to go to F or F2 at full speed. This follows from
a direct geometric argument which uses the fact that (O/dl > 0 when
p < (w- 1)/w. The rest follows from the remarks preceding this lemma and
paragraphs 10 through 12 of 1.

Case 2.

(16) (x,y) e and 0-0.

We assume (x, y)e cd (see Fig. 3)" the case (x, y)e c’ is similar. Turn to
Fig. 4. Let E denote L’s starting position and A, M’s. Denote by /p,0 the trajectory,
where L moves at full speed along the line segment EF. Let e _M(//d). Define

Z’2(g’ inf {ti!P’(t)lies on the radius O_/d(t)}.

Clearly, (l"(Zz(_ff)), _d/l(z(_dd))) satisfies (14) whenever Zz(_/d) < oo (see Case 1).
Now we define r* for Case 2. Let rc*(_ff)= !"’ if :2(_d4’)= oo. Otherwise,

let rr*()(t)= l"(t) for 0 =<t=< :2(_). Then, at time :2(_dd), let r* select a
trajectory according to the procedure specified by (15) for Case 1.

If L uses 7z* and M uses q*, then M moves at full speed along the minor arc AC
while L moves at full speed along the line segment EF (see Fig. 4). By using
L benefits from any deviations on M’s part.

LEMMA 6. re* (Case 2) satisfies (11) and (12).
Proof. (l is immediate. For (12), observe that Ldoes better when Zz(_//d) <

The remarks preceding this lemma and paragraphs 11 and 12 of take care of
(12) when r2(/’) O0.

Case 3.

(17) /9=(w-- 1)/w and 0=0 (RAP’s).

RAP’s present special problems. Our first impulse is to define a strategy by
(15). Unfortunately, !q(t) 1/w for all when p (w 1)/w, so there is nothing
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to prevent M from staying within a small arc about H. We get around this problem
by defining an appropriate sequence of strategies.

Because of (13) we can assume that w > 1, since if w then (13) implies
that v* 0. Let k be the smallest integer >= 1/(w 1). For each integer n >__ k
we will find a strategy rr" and a real number t, that satisfy

(18) min n"()(t) _H(t)[ _<_ v* + 1/n
O<_t<--tn

for every _M(H). Given such objects we can construct an optimal strategy
rr* as follows.

L begins with rr, then, at time t, he heads toward the center O. Once at O,
he returns to a RAP by employing (13). Observe that the first return to a RAP
takes less than t + + r/2w time units. After L’s nth return to a RAP, he employs
rr"+ for t,+ units of time, heads back toward O and then, using (13), returns to
a RAP for the (n + 1)st time. As before, the (n + 1)st return to a RAP takes less
than t,+ + + r/2w time units. Evidently, rr* satisfies (11). That rr* also satisfies
(12) follows easily from

min rr*(_f[)(t)- (t) <= v* + 1/n
O<=t<=An

for every _//4’ e _M(H), where

A, (tj +1 +r/2w) < .
j=k

Our construction of rr" involves allowing a delay of time 1/nw in L’s informa-
tion about M’s position. Suppose M chooses _////e _M(////). Define _//g" by

/ for 0 <= <= 1/nw,
_"(t)=

_
(t- 1/nw) fort>__ 1/nw.

Under the strategy rc", L starts by moving at full speed towards the point H. He
continues on this path until time 1/nw when he reaches a point on the radius O/
whose distance from H is (w 1)/w 1/nw. Thereafter, he follows the trajectory
which pursues " according to the rule (15).

LEMMA 7.7r* (Case 3) satisfies (11) and (12).
Proof. We have to show that re" satisfies (18) for some finite t,. Using (15) and

Lemma 5 one can show that
min !(t)-/"(t) <v*,

O <_t <_-tn

where

The result follows from

t, 1In + (n + 1)/(1 + 2n) ’/2.

I(t)- _("(t)l =< 1In
and the triangle inequality.

Remark 3. For large n, the paths that result when M and L start at a RAP
and use 7r" and r/*, respectively, converge uniformly to the paths described in
paragraphs 7 and 8 of 1.
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Now we can prove Theorem 3.
Proof. The theorem follows from the remarks of the second paragraph of

this section and Lemmas 5, 6 and 7.

6. Examples. Does L have a strategy , allowing him to stay on the radius OM
and keep his distance from M equal to (w 1)/w? Does M have a strategy 0, which
prevents L from maintaining a position on OM whose distance from M is
(w 1)/w? As we shall see in Example 1, the answer to both questions is ’Yes"
(see Remark 1). In Example 2 we define a payoff function P for which

sup P((), ) < inf P(_/, 0(_/))

(see Remark 2).
Example 1. Let l= (/1,/2) (l/w, 0) and J( (1, ’//2)= (1, 0). Define

H(/, /) by ()(t) (1/w)_(t) for _ff _M(//). The definition of 0 H(l, //)
is more involved. For ! e _L(l), let

and

Define by

a’(./)=sup{t[ l.(s) 1/w for all0__<s_<_ t}

a"(_/) sup {t]J(s)= for all 0 _< s __< =< a’(./)}.

(cos wt, sin wt) for a"(_/) > 0

and _>_ 0,

(w./(t), w_/2(t)) for a"(_/) 0
)(./)(t)

and 0 =< =< a’(_/),

(w./(’(/)), w_/(’q)))

for a"(_/) 0 and >= a’(_/).
We have the following theorem (see Remark 1).

TFIEOREM 5. There do not exist L_(l) and

_
M_(/) satisfying (l_)=

_
and c() !.

Proof. Suppose that there exists such an ./. Then a"(./) 0 since a"(_/) > 0
implies that l.(t)= and l.(t)= (1/w)(cos wt, sin wt) for 0 __< <= a"(_/). Also
a’(_/)= since l_(t)=(1/w)_(t). But a"(_/)= 0 and a’(_/)= imply that
l.(t) (./(t),-_/2(t)) or, equivalently, _/2(t)= 0 for all t>__ 0. But the latter and
a’(_/) imply that a"(./) ’a contradiction.

Compare Example with Isaacs’ "perpetuated dilemma" 3, pp. 137, 149].
Example 2. Take l,///L and as in Example 1. For_/eL_(1) and e m(), let

(0, if./(t) (1/w)_(t) for all >= 0,
P(./, _//)

1, otherwise.

Clearly, P((), _) 0 for all _M() while P(_/, (./)) for all _/ _L(l).

7. Pursuit in the half-plane. Replacing the circular arena with a half-plane
leads to a second problem, a version of which appears in Isaacs [3, pp. 260-2653.
We are going to discuss the relationships between these two problems.
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M

F

FIG. 6

The most striking difference is illustrated by the following fact, which,
according to Dubins, was discovered by Blackwell. In pursuit in the half-plane
the players can ignore trajectories which lead to an increase in their distance from
the boundary. Hence, if play starts with the evader on the boundary he remains
there. This is not true for pursuit in the circle. One can show that in the latter game
the evader can do better by traveling along small chords than by staying on the
circumference.

Now let us compare the game where the man is restricted to the boundary of
a circular arena with the game where the man is restricted to a half-plane and
starts on the boundary. Denote the radius ofthe arena by r where r corresponds
to the case where the arena is a half-plane. Represent the starting positions by
(p, 0) where p is the distance ILMI and 0 is the angle that the line LM makes with
the normal to the boundary at M (see Fig. 6). Denote by Vr(p, O) the value corre-
sponding to the point (p, 0) and the radius r.

The game in the half-plane is closely related to the game in region of the
circle. Except for the case w 1, the strategies which are optimal for the half-plane
are direct generalizations of the strategies which are optimal in region . For
example, given the initial position in Fig. 6, M’s optimal strategy would direct
him downward at full speed while L’s corresponding trajectory would direct him
at full speed toward F. In the rather odd case w 1, L has no optimal strategy in
the half-plane, and region of the circle consists of the point M. By improving
on the heuristic arguments of Flynn [1], one can prove the following theorem.

THEOREM 6. If 0 < r < , then Vr(p, O) rVl(p/r, O). Moreover,

f cos
lim v,(p, o) v(p, o) {
-,o I.p forlOl >= . for lOI ,
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A UNIQUENESS THEOREM FOR LINEAR CONTROL SYSTEMS
WITH COINCIDING REACHABLE SETS*

M. L. J. HAUTUS? AND G. J. OLSDER:

Abstract. Two multivariable linear control systems are considered with control u(t) satisfying the
inequality Ilu(t)llp <= 1, < p <= o, and with coinciding reachable sets. Under certain conditions
(of which p # 2 seems to be the most remarkable), it is shown that the control systems have equal
system matrices and equal control matrices up to the signs and the ordering of the columns. The proof
depends on a theorem of Banach on rotations.

1. Introduction and the results. Consider the control system described by the
vector differential equation

(1) 2(t) Ax(t) + Bu(t),

where x is an n-vector, u is an r-vector and A and B are constant matrices of
appropriate sizes. The control u(t) is constrained to lie in a set )p. The set Ep is
defined as the set of all measurable vector functions v(t) with
where [l" II denotes the/p-norm, i.e.,

(2a) vll [l)i[ p for __< p <
i=1

and

(2b) v max
<_i<_r

and where vi are the components of vector v.
In order to define the reachable set, a coordinate transformation x --, y will

be made from R" --, R" by
y e-tAx.

In y-space, differential equation (1) becomes

e-’ABu(t).
The reachable set Rp(t) is defined as the set of all points in y-space that can be
reached at time if y(0) 0 by using all possible control functions"

Rp(t) YlY e-ABu(r)dr, u fp >__ O.

It can be shown [4, p. 107] that for each >__ 0 the reachable set is convex and
compact.

We will consider another linear control system,

(3) (t) A(t) + Bfi(t),

Received by the editors April 25, 1972.- Department of Mathematics, Eindhoven University ofTechnology, Eindhoven, The Netherlands.
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where ff is an h-vector and fi is an f-vector. Matrices A and B have constant
elements. The control fi(t) will belong to fv" The set fp is defined in the same way
as fp; the only difference is that in this case r must be replaced by in (2a) and (2b).
The reachable set Rp(t) for system (3) is defined in an analogous way as R(t) for
system (1).

The results of this paper are given in the following theorem.
THEOREM 1. Consider systems (1) and (3) with u e {)v, fi e v respectively and

<=p<=oo. If
(i) p 4= 2,
(ii) rank (B) r, rank (B)

(iii) n fi,
(iv) systems (1) and (3) are controllable [4],
(v) Rv(t) Rv(t) for 0 <_ < 6, (3 being some positive number,

then r , A i and there is a one-to-one correspondence between the columns bi
ofBandthecolumnsiof,viz.,b -+-ji, i= 1,...,r’{ja,...,jr {1,..., r}.

Remark 1. If in x-space the minimum time needed to steer system (1) from a
point Xo to the origin x 0 by means of a control u e )v is given by T(xo), and
if T(xo) corresponds in the same way to system (3), then condition (v) of Theorem
can be read as T(xo) T(xo) for all Xo in some neighborhood of x 0. By a
slight modification of the proof of Theorem 1, one can show that condition (v)
can be weakened to

(v’) Rp(t) Rp(t) for e S, where S is a set of real numbers with an accumula-
tion point.

The proof of Theorem 1, which will be given in 3, rests on a theorem of
Banach on rotations

Theorem is a generalization of a result due to H/tjek [3]. H’ajek only con-
siders systems of the kind (1) and (3) with one control component (i.e., r 1)
and with p av. His proof is quite different from ours. Hb.jek considers the
particular shape of the reachable sets. In fact he only uses those boundary points
of these sets where the outward normals of all supporting hyperplanes at such a
point span an (n 1)-dimensional space.

2. A theorem of Banach and a preliminary result.
DEFINITION 1. An m x m-matrix Z is called a q-isometry, with _<_ q _<_ ,

if for all m-vectors ,
(’ denotes the transpose and for row vectors ]q also denotes the/q-norm.)

THEOREM 2. A q-isometry is regular. If q =/= 2, then in every column and every
row of such a q-isometry only one element =/=0 appears. These nonzero elements
equal +_ 1.

The proof will be omitted because Theorem 2 with <= q < c is a special
case of a theorem of Banach on rotations [1, pp. 178, 179]. The proof for the case
q oo is immediate. Note that a 2-isometry is an orthogonal matrix.

LEMMA 1. Suppose we are given two matrices G and G of sizes n x r and n x
respectively with rank (G)= r and rank (G)= . If for all n-vectors rl and some
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q with

(4) II’G Y/tG q,

then r and G GZ, where Z is a q-isometry.

Proof. It easily follows from (4) that the columns of G and G span the same
linear space, which will be denoted by S. Because the column vectors of G are
linearly independent, as are the column vectors of G, we have r .

G and C, will be considered in another coordinate system. Let {el, e,}
be a new basis in such a way that E [el, "’", e,] is an orthogonal matrix and in
addition that el,’", er span S. In the new basis G and G are transformed to
H and H"

G EH, G EH.

Note that the last n r rows of H and H have only zero elements. If the original
vector is denoted by v in the new basis (i.e., r/= Ev), then

(5) 1’611 Iv’/-/I I’11, I’11 v’qll I1’11,
where and denote the square nonsingular matrices consisting of the first
r rows of H and q respectively, and where is the r-vector consisting of the first
r elements of v. Equations (4) and (5) yield

’H VH Iq
for arbitrary , or, if V’H ’,

I’llq I1’(/) Xllq
for arbitrary r-vectors . According to Definition 1, the matrix (H)-I is a

q-isometry, to be denoted by Z. Hence

and
H: HZ,

which proves the lemma.

3. Proof of Theorem 1. It follows from the equality of the reachable sets and
the fact that these sets are compact that

(6) max e-ABu(’c) dr ma_x e-’B(r) dr
fp p

for an arbitrary n-vector r/and 0 =< < 6. Equation (6) can be rewritten as

max e- By dr max e- dr(7)
Ilvll,__< IIllp=<

It is well known that the maximum of r/’ e-ABv with respect to v and subject to

v p < equals[5,pp.29,30] r/’e-tAB whereq p/(p- 1) i.e.,p -1 + q-a=q

Hence (7) reads

rl’ e-AB d’c rl’ e
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from which

q

and this formula is valid for all n-vectors r/. Because it was assumed that
rank (B) r, rank (B) , it follows that rank (e-AB) r, rank (e-B) and
hence Lemma can be applied resulting in r P and

e-AB e-BZ(z), 0 z < 8,

where Z(z) is a q-isometry for each z e [0, 8).
From Theorem 2 it follows that for p 2 and hence q 2 only a finite

number of different q-isometries of the same size exists. A sequence of distinct
numbers r e [0, 8) can be found in such a way that

e-B e-BZo forz=z,z2,...,

for some q-isometry Zo. The functions e-B and e-BZo are analytic in z and are
equal for z :, za, .... The series {z} has at least one accumulation point and
hence,

Equivalently,

(8)

e-t’4B e-t$Zo for all t.

etAB etZo for all t.

The function etAB is the weighting pattern [2] of the following control system"

2" Ax + Bu,

z=Cx, C=I,

where I denotes the identity matrix. In the same way, etZo corresponds to

(9)
2, Ax + BZou,

z=Cx, C= I.

Systems (8) and (9) are controllable and observable and hence are minimal
realizations of their weighting patterns. Because these patterns are equal, a
constant nonsingular matrix P exists in such a way that [2, p. 113]

(10) PAP-1 i, PB Zo, CP-I .
The last equation (10) reads P I and hence, A , B BZ0. Application of
Theorem 2 yields a one-to-one correspondence between the columns of B and
the columns of B as mentioned in the statement of Theorem 1. This completes
the proof.

Remark 2. Theorem is not true for p 2. An example of two systems for
which the conditions of Theorem are satisfied (except p 4: 2) in such a way that
the results are not true, is"

n==r=p=p=2,

A= B=
-1 -1
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One can easily convince oneself that conditions (ii), (iii), (iv) and (v) of Theorem
are satisfied for these systems.

Acknowledgment. The authors are indebted to J. J. A. M. Brands for valuable
suggestions for the proof of Theorem 1.
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GLOBAL CONTROLLABILITY OF LINEAR SYSTEMS WITH
POSITIVE CONTROLS*

STEPHEN H. SAPERSTONE"

Abstract. A linear autonomous differential control system is considered, where the zero control is
an extreme point of the restraint set. Necessary and sufficient conditions are given for global control-
lability in the case of bounded or unbounded scalar control.

1. Introduction. In a previous paper by the author and Yorke [53, necessary
and sufficient conditions were given for local controllability of differential systems
ofthe form

(1.1) 5c Ax + bu,

where x, b R, A is a real constant d d matrix, and u:R / Y2 [0, 1] is
measurable. R / denotes the nonnegative real numbers.

The standard results on controllability (cf. [31) depend on the assumption
that the zero control is interior to g2. The elimination of this assumption leads to,
in the case of scalar controls, the consideration of only positive-valued (or only
negative-valued) controllers. This was first considered in [5]. It was found that
such systems were locally controllable if and only if they were of an "oscillatory"
nature, and satisfied the usual algebraic controllability condition.

The present paper extends those results to obtain conditions for global
controllability with both bounded and unbounded positive controls. That is,
we characterize those systems of the form (1.1) with bounded positive control
(g2 [0, 1) so that the origin can be steered to any point in R. We also obtain
(Lemma 5.6) sufficient conditions for this in the event Y2 does not even contain
the zero controller as a boundary point.

2. Definitions and background. Let f2 be an interval in R / and U denote the
set of all measurable functions u’R / g2. Unless otherwise specified,
x(t) x(t" u(. )) denotes the unique solution of(1.1) with initial condition x(0) 0.
Let K(t)de{x(t’u(.))’uU} be the reachable set at time t=>O, and
C(A, D)de___f Eb Ab, Ad-ID] be the controllability matrix of (1.1).

DEFINITION 2.1. The system (1.1) is locally controllable at x 0 if there exists
T < co such that K(T) contains a neighborhood of x 0.

DEFINITION 2.2. The system (1.1) is globally controllable from x 0 if
Ka %f >_ o K(t) R.

From I51, we have the following.
THFORFM 2.3. The system (1.1) with g2 I0, 13 is locally controllable at x 0

if and only if rank C(A, b) d and no eigenvalue of A is real.
Henceforth we can assume that d is even in the event (1.1) is locally controllable

with restraint set g2 [0, 13.
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3. Global controllability with unbounded positive controls. Theorem 2.3 has
an immediate corollary if we admit unbounded controls.

COROLLARY 3.1. Consider the system (1.1) with --0, ). There exists
T < such that K(T) R if and only if (i) rank C(A, b) d, and (ii) no eigen-
value of A is real.

Proof. If (i) and (ii) are satisfied, K,I(T contains a neighborhood of the
origin. Replacing 0, 1] by 0, Jl, J 1, 2, 3, -.., we obtain by the linearity of (1.1),

+KEo,j(T) JKEo, l(T), where jK +to,(T) denotes the product of every response in
/+ -t-[o,1](T) by j. Hence, K + R2n.to,oo)(T) U j= JKto,(T) Conversely, the
necessity of conditions (i) and (ii) follows easily from an argument similar to that
used to prove Theorem 2.3. Q.E.D.

Thus for f [0, oo), the conditions in Corollary 3.1 characterize uniform
global controllability at the origin. That is, there is a fixed time T < oo by which
every point in Re can be reached from the origin. Later on we will show if f is
restricted to [0, 1], we can only say that any point in R can be reached in finite
time under suitable conditions. There is no uniform time T as in the case of
f [0, ) In fact, K + (t) is a proper subset of R for all > 0.[0,1

We now show that the minimum time to reach a neighborhood of the origin
in the case when I0, 11 is the same minimum time to reach all of Re in the case
when I0, ).

COROLIAR’ 3.2. Define

T [0,1

Too =inf{tR+’K +o,)(t) =/}.

Then T Too.
Proof. It is clear from the proof of Corollary 3.1 that Too < T1. Now suppose

Too < T. Choose so that Too < < T1. Then 0 cK(,l(t). We will show that
0 ?Kt, )(t). This would imply that K +0,oo)(t) is a proper subset of Re, so <= Too,
a contradiction.

For convenience, set Kj +Ko,j(t and Koo Ko,oo)(t). Since 0ecK1,K
lies on one side of a hyperplane with outer normal r/through x 0. Thus r/x <__ 0
for all x e K Now choose any x0 e K By construction in the proof of the last
corollary, Xo e Kj for some positive integer j. Since Kj jK1, let Xo jx, x K.
Then r/Xo rljx j(rlx) O. Hence, Xo lies on the same side of r/ as does K.
Thus 0

Remark 3.3. Let T inf {t e R + "0 e int K,j(t)}. Then T Too for all c > 0.
It is significant that the time to reach a neighborhood of the origin T (or Too)

need not be small. For example, T1 zr/fl for the motion of a simple pendulum
given by 0 + fizO u, for u e UE0,1. Intuitively this makes sense, for if we desire
to steer the pendulum from the origin (0, 0) (0, 0) to a point where 0 is negative
and 0 is positive, we would have to apply the controller u for some arbitrarily
short period of time to to set the pendulum in motion, and then wait a half period
zr/fl before the natural return of the pendulum carries it to the desired point.
In general, for a system of the form (1.1), the value of T1 is difficult to compute,
or even obtain good bounds for. (See [5, 7] for an example.)
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4. A lemma on almost periodic functions. Let f be a continuous real-valued
almost periodic (a.p.) function defined on R + such that f(t) O. The integral
M{f} def___ limT (1/T)foT f(t) dt exists and is called the mean value off(cf. [1, p. 391).
The following lemma is needed to establish part of Theorem 5.1. For any interval
J R+, let l(J) denote the length of J.

LEMMA 4.1. Letfbe a real valued a.p. function defined on R + such thatf(t) 0
and M{f} O. There exists a denumerablefamily ofdisjoint open intervals {Jk)=
and positive numbers r and such that

(i) limk_ (sup Jk) ,
(ii) l(Jk) 6, k 1, 2, 3,...,

(iii) f(t) > r/2 for all t kl Jk.
Proof Let P {t R + :f(t) > 0}. P is the union of a disjoint family {Pj} of

open intervals such that f(t)= 0 when is an endpoint of P. Moreover,
lim (sup P) . Otherwise, there exists a T > 0 such that f(t) <= 0 for all
> T. Hence by Lemma 4.1 of 5],f 0 on R +, a contradiction. Likewise each

Pj is of finite length.
Since the endpoints of each P are zeros of f, there exists for each j some

z P such thatf(rfl suptpjf(t) de=f r. Consequently, lim supoo r r > 0. For
if lim supj_ rj 0, thenf(t) ---, 0 as --* c on J. Again an application of Lemma
4.1 of 53 shows f=_ 0 on R +.

There exists a subsequence {rjk of {rj} with limk_ rjk r. All but a finite
number of the rj are greater than 3r/4. Relabel and denote them by {rk}. Similarly,
relabel the points rj and the intervals P. By uniform continuity of./" on R +

(cf. 1, p. 35), there exists 6 6(r) such that If(t)- f(Zk)[ < r/4 whenever

It rk[ < 6 for each Zk. Hence, f(t) > f(Zk) r/4 >= r/2 for It rkl < 6.
Note that limk_ rk " Otherwise limk Zk Z < OO and therefore

f(r) r. This is impossible since there are points arbitrarily close to , where f is
nonpositive. Set Jk (rk 6/2, rk + 3/2) for each k. The conditions of the lemma
are now satisfied.

5. Global controllability with bounded positive controls. We now state and
prove a theorem on global controllability for the system (1.1). The theorem
is analogous to one for global controllability, where [-, for some
e > 0 (cf. [4, p. 921). The proof of the following theorem, though, is unlike that
in [4].

THEOREM 5.1. Consider the control process (1.1) in R, where [0, 1. Then
(1.1) is globally controllable from x 0 if and only if

(i) for each eigenalue 2 of A, Im , : 0, Re >__ 0 and
(ii) rank C(A, b) d.
Proof. Necessity. Global controllability from x 0 implies 0 int K. Then

Im) 0 for each eienvalue of A (Lemma .1 of [5]), and rank C(A, b)- d
(Theorem 2.4 of [5]). Thus we may assume d 2n. Observe that we have shown
the system (1.1) is locally controllable at x 0.

Transforming A to TA T- if necessary (where T is an invertible matrix), we
may assume, without loss of enerality, that A (or TAT- ) has the canonical form
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(cf. [2, p. 358])

The elements not shown are zeros. Each Ak is a square matrix (of even dimension)
of the form

Sk I 0 0

0 S I 0

I

0 0 0’’" S

where 0 is the 2 2 zero matrix, I is the 2 2 identity matrix and

(Zk /k
S

k
The number of2 2 Sk blocks in A is equal to the multiplicity m ofthe eigenvalue
k.

Now suppose there exists an eigenvalue 2k Ok + iflk, k < 0. We will show
that K + R2".Eo, l Now consider only those components of the transformed
system associated with the 2 x 2 Sk block in the lower right-hand corner of Ak.

More precisely, consider the vector subspace

{v6 R2":Pk(A)v 0},
where Pk(Y) y2 2kY + ( + fi), the minimal polynomial for Sk. In this two-
dimensional subspace we obtain the system

(5.1) 2k SkXk + bkU
where Xk, b e R2. Moreover, b O" otherwise the solution would remain at the
origin in V for all _> 0. Consequently, the solution to (1.1) could never be steered
to a neighborhood of the origin, contradicting the local controllability at x 0.

For ease of notation, we drop the subscripts in (5.1). Now define the function

Then

/(X) "-’-X’--O X 2 .qt_ (b’x)u,
where the prime indicates transpose So 12(x) > 0 implies x 2 + b xI > 0.
Since 0 < 0, this yields

xll < Il-llbl.
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Hence, for x => I1-1 b (letting u 1) we have lP(x) =< 0. Going back to the
2n-dimensional system (1.1), we find if k < 0, then for any point x(t) Kt,la(t)
the components of x(t) described by (5.1) are bounded in norm by
Thus, K + is a proper subset of R 2".[0,1]

Sufficiency. Conversely, suppose conditions (i) and (ii) are satisfied. Suppose
K(,I 4 R". Choose any xoR"\K,l. Then XoqKo,l](t for all t>__ 0.
Since K +

[O, li(t) is convex, K[,ll(t lies on one side of a hyperplane through Xo.
Denote the hyperplane by its unit outward normal (row) vector, . Henceforth,
we say that such a hyperplane separates Xo and K(0,(t) at time t. As shown in
the proof of Theorem 2.1 of [5], there exists a fixed hyperplane r/o which separates
Xo and K +to,ll(t) for any >= 0. It follows for any => 0, and any x(t) Kto,(t),+ that

(5.2) t/o[X(t)- Xo <= O.

We claim though, that for large enough t, this inequality does not hold.
After a change of variables in the variation of parameters formula, we can

write rlox(t) ’o rio eAbu(t r) dr. Let qg(r) r/o eACh. From Lemma 3.2 of [5] we
see that if e max{l,e2, ...,.}, then q(r)= erm{v(r)+#(z)}, where
v(r) ,= h sin (fikr + ’k) and hk, ilk, k are constants.

We obtain from Lemma 3.2 of [5] that v(r) 0 on R + and is almost periodic
with zero mean. Furthermore, lim_, #(r)= 0. From Lemma 4.1, we establish
the existence of a denumerable set of disjoint open intervals {Ik}k 1, each lying
in R + with limk__,o (sup lk)--(:Z3 such that l(Ik)= L, and v(z)> r/2 for all
ze U=Ik for some positive numbers L and r. Now choose T > 0 so that
I#()1 < r/4 for all z >= T. Let ko be the smallest positive integer such that T < inf Iko.
Then for any integer k > ko, v(z) + #(z) > r/4 whenever z e Ik. Hence, qg(z) > r/4
for all -c e U=ko Ik. (Without loss of generality, we take e%:" > 1.) For each
integer k >__ ko, define tk sup Ik. Choose an integer N >__ ko sufficiently large so
that (N + ko)(N ko + 1)(rL/8) > Xoll. Define the function u e Uo,l by

U(tN z)=

N

1, z U Ik,
k=ko

0, otherwise.

Set Us(Z)= u(ts z). Then

,oX(tu) q(r)u(r) dr

>_- e()u() d >
k=ko

()uu() d

N r

=ko
(N + ko)(N ko + 1)--

rL
8

Thus for tN,

rloX(t) > rloXo.

Hence, the inequality (5.2) is violated. Consequently, K +
[0,1]

the proof of the theorem.
R2n. This concludes
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We may reverse the flow in (1.1) to obtain the following
COROLLARY 5.2 Let Nto,1 denote the set of points in R which can be steered

Ito the origin infinite time along solutions of(1 1) with f 0, l. Then Nto,1
if and only if

(i) for each eigenvalue 2 of A, Im 2 :/= 0, Re 2 0, and
(ii) rank C(A, b) d.

Proof The proof follows easily from I4, p. 84] and the preceding theorem.
DEFINITION 5.3. The control process given by (1.1) in R with u(t)e a, cl is

called completely controllable if for any two points Xo, x e R there exists an
admissible controller u e Uta,c which steers Xo to X in finite time.

Combining Theorem 5.1 with Corollary 5.2, we obtain the following.
THEOREM 5.4. Suppose [a, c 0, 1. Then the control process(1.1)is completely

controllable if and only if
(i) all eigenvalues of A are pure imaginary (nonzero), and

(ii) rank C(A, B) d.
If we admit unbounded positive controls, namely let f 0, c), we can

relax the condition required for the eigenvalues of A as stated in Theorem 5.4.
We remark that the conditions given in the following corollary characterize
complete controllability for the restraint set f I0, oo) (or equivalently, local
controllability at x 0 with restraint set f2 [0, 1]). The result follows directly
from Corollary 3.1.

COROLLARY 5.5. The control process (1.1) is completely controllable with
f2 0, oo) if and only if

(i) for each eigenvalue ) of A, Im 2 4: 0, and
(ii) rank C(A, b) d.
Up to now we have considered only those processes where the null control

was a boundary point of the restraint set f [0, 1] or f [0, ). The following
theorem characterizes those processes which allow us to take for the restraint set
f any nonempty interval in R 1.

LEMMA 5.6. The control process (1.1) is locally controllable at the origin for
any restraint interval al, a2] provided

(i) the eigenvalues ofA are distinct and pure imaginary (nonzero) and
(ii) rank C(A, b) d.
Proof Observe that any controller v for which f al, (22] can be written as

6/1 +-(a2 --al)u(r), where u(r)e 0, 1]. Therefore the solution of (1.1) satisfying
x(O’v(. )) 0 is

x(t) eArb[al q- (a2 a)u(t r)] dr

eAAx dr + (a2 al) eAbu(t r) dr,

where x is chosen to be aA-lb. Since the first integral reduces to eAtx X

we see that the reachable set from the origin at time is
+ eA’x +(a2- a Kll(t)Kta,,a21(t) X

Conditions (i) and (ii) imply that there exists To > 0 (finite) such that x 0 is
interior to K / e(To) so that thetO, l(t) for all > To. Furthermore, there exists :
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ball of radius e, with center at x 0, B(0), is interior to (a2 al) Kto,l(t).+ Since
the eigenvalues of A are pure imaginary and are distinct, the free motion through
x is recurrent. In particular, there exists t _>_ To such that I]eatx x < e/2.
It follows that the open ball

eattx X1 -- B(0) B(eatx x 1)

contains x 0 and lies in Kt+,a21(t1).
An immediate consequence of the previous lemma is the following.
COrtOLLARV 5.7. Consider the control process in Ra:

2 =Ax +bu +f,

wheref Re, f [0, 1. If conditions (i) and (ii) of Lemma 5.6 are satisfied, then for
any Xo Re there exists T > 0 such that the reachable set at time Tfrom Xo contains
a neighborhood of xo

Note :the reachable set at time from xo is {x(t; u(. )):u ga, x(0; u(. )) Xo}.
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TRACKING AND REGULATION IN LINEAR MULTIVARIABLE
SYSTEMS*

W. M. WONHAM

Abstract. For the multivariable control system described by

Yc Ax + Bu, y Cx, z Dx,

necessary and sufficient conditions are found for the existence of state feedback u Fx such that
ker F ker C and D exp [t(A + BF)] 0 as . It is assumed that ker C is A-invariant, or equiva-
lently that a dynamic observer is utilized. A constructive version of the existence conditions is obtained
under the further assumption that auxiliary integrating elements can be introduced by way of dynamic
compensation, and a bound is given for the number of such elements required.

Introduction. A classical multivariable control problem requires the design of
dynamic compensation to ensure the following behavior of the closed loop system
(a) Each of an assigned set of output variables converges to, or "tracks", a cor-
responding observed reference input from a specified function class. This is the
servo problem. (b) Each of an assigned set of output variables converges to zero
from arbitrary initial values, when the system is perturbed by disturbances,
possibly not directly observable, but again in a specified function class. This is the
regulator problem; the convergent variables are said to be "regulated", and zero
represents the target or "set-point" value. Very often both features are present
together: the system is required to track in the presence of disturbances. Indeed
the formal distinction between the servo and regulator problems disappears if
each tracking error (the difference between a reference input and the corresponding
output) is regarded as a variable to be regulated. For this reason we restrict
attention to the regulator problem alone.

As is usual in classical control theory (e.g., ]), we assume that the disturbance
variables, including any reference input variables, satisfy known time-invariant
linear differential equations of finite order, which we lump with the equations, of
similar type, representing the plant. In a suitable state space (cf. [2]) the combined
system equations then take the standard form

(1) c(t) Ax(t) + Bu( t),

(2a) y(t) Cx(t),

(2b) z(t) Dx(t)

defined, say, for > 0. Here y(. is the vector of directly observed outputs and z(.
is the output vector to be regulated. The control u(. is required to be such that for
every initial state x(0 +) there results

(3) z(t) - 0 as or.
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Typically the matrix triple (C, A, B) is not controllable or observable, or even
stabilizable [3] or detectable [43. If it were, the problem could be solved by standard
methods. Stabilizability may fail because the exogenous variables (disturbance and
reference inputs) are (say) polynomials in and cannot be controlled; and detect-
ability may fail if, for instance, certain disturbance variables happen to be de-
coupled from the observed outputs.

In this paper we discuss when and how a linear feedback control u(. can be
determined which regulates the output in the sense of (3), while respecting the
constraint that only y(. in (2a) can be observed directly. The problem is stated
precisely in 1, and necessary and sufficient conditions for solvability are obtained
in 2 and 3. The main result, Theorem 2, represents an extension and completion
of the results in [2 and [5. The proof depends on some of the geometric ideas
developed in [6] and [7].

Notation. stands for the real numbers, C for the complex plane, C + (resp. C-)
for the closed right-half (resp. open left-half) complex plane. Script capitals denote
linear spaces over R, and Roman capitals denote linear transformations (maps).
The image of a map (e.g., Im B) may be written as the corresponding script capital
(). Invariably A" Y’ ---, , B" 4/ , C" --, 0 and D" 2( -- are the maps
associated with the standard system (1), (2). The symbol means vector space
isomorphism (equality of dimension). Writing d(-) for dimension, we shall fix
d(f) n. {A ) will denote the controllable subspace generated by the pair
(A, B)"

(A]) + A + + An-l.
If f and A c , A[ is the restriction of A to . The spectrum of A,
written a(A), is the set of n roots in C of the characteristic polynomial of A. A-
is the functional inverse of A, i.e., A- {x’Ax }. If av(2) is the minimal
polynomial (m.p.) of A + BF, we denote by a; (2)(resp. a; (2)) the factor of eF(2)
with roots in C + (resp. C-), and define 32+-(A + BF) ker a(A + BF). When
F 0 the subscript (0)is dropped. If x,x2,.., are vectors in f, {x,x2,-..
denotes their span.

1. Restricted regulator problem" algebraic formulation. Let W denote the
unobservable subspace of (C, A)"

V f’l ker (CA- 1).
i=1

Write f f/+" and let P’W f be the canonical projection. The observable
"reduced" system may be identified with the triple (C, A, B) in the commutative
diagram below"

A

Since AV ,, the induced map A "f f is well-defined, and as ker C V
there exists a unique map C’,f with CP C" finally we set B PB.
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Since the pair (C, A) is observable it is easily seen (cf. [3]) that maps
and K "24 --, Y’ exist such that the auxiliary system

(4) (t) J(t) + Ky(t) + u(t), > 0,

is a "dynamic observer" for the system (1), (2) reduced mod A/.. Namely we select
K such that

(A KC) -and set J A KC, g,(t) f(t) (t). Since

(5) (t) Aft(t) + Bu(t), > 0,

there follows (t)= J.(t)(t > 0), so that 0(t)---, 0 (t ---, ). Since a(J) can be
assigned arbitrarily by suitable choice of K (see 3]), convergence can in principle
be made arbitrarily exponentially fast. Now suppose u(t)= F(t) for some F"
f ’. From (5) and g’ f , one gets

(A + BF)f BFO, t>0,
or equivalently

(6) 5c (A + BF)x BF, > O,

where F FP.
From (2b), (3) and (6) we conclude that regulation is achieved with the control

law u F if and only if

D et(A + BF) x(O --) e -s(A + BF)BFO(S) ds - 0

as -+ oo, for all x(0 +), g,(0 +). Equivalently,

(7) D ettA + BF) ._ O,
and

(8) D et(A + BF) e -s(A + BF)BF esJ ds --* O,

E---+C,

If (7) is true then (8) will follow in view of our previous condition that J be stable.
On this basis we shall ignore the term in , in (6), assume that the state f of the
observable reduced system is directly observable at the start, and admit a priori
all controls of the form u Ff. A control u Fx can be written in this form if
and only if F FP for some F, that is, ker F = rift,, and this version of the observ-
ability constraint will be used in the sequel. We remark that exactly the same
reasoning applies if the observer is chosen to be of minimal dynamic order given by

d(ker ) d(ker C) d(dV),
along the lines of [8], [9].

Finally, since

f f+(A +BF)(Y-(A +BF)

and each summand is (A + BF)-invariant, a condition equivalent to (7) is

f + (A + BF) ker D.
In this way we are led to formulate the following algebraic problem.
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RESTRICTED REGULATOR PROBLEM (RRP). Given the maps A 5, B: # ,35,
D " , and a subspace ,IV oj. with A,/V c ,/V find F: " --. ql such that

and

(9)

ker F

+(A + BF) ker D.

RRP is "restricted" in the sense that no provision is made for dynamic
compensation other than that tacitly introduced by the observer. Actually, we
shall exploit dynamic compensation later, using the technique of state space
extension, much as in the "extended" decoupling problem studied in 7].

2. Solution of RRP. In this section we obtain necessary and sufficient condi-
tions for the solvability ofRRP. As they stand, these conditions are not constructive
in the sense of providing an algorithmic solution of the problem when a solution
exists;nevertheless they can be made so in combination with state space extension,
as will be shown in 3.

THEOREM 1. RRP is solvable if and only if there exists a subspace / f such
that

(10a) / c ker D n A-1(// + ),

(10b) W+(A) N + A(V N As) ,

Before proving Theorem we note various structural features of conditions
(10). Introduce the family of subspaces

(11) = {/: ker D n A-I(//" + ) and A(N V) }.

In general is not closed under addition and it is not true that contains a
supremal element (in the semilattice of all subspaces of , partly ordered by ()
and with join operation (+)). However, as is nonempty (0 e//") it always has,
possibly many, maximal elements: by definition //M e is maximal if U e /7 and
U uM implies /7 uM. We have the following.

COROLLARY 1.1. RRP is solvable if and only if

(12) Y" + (A) N s = ker D,

and for some maximal element uM

(13)

The difficulty in verifying (13) is that of effectively parametrizing the sub-
family of all . Actually, in many cases which arise in practice it happens that

does contain a (unique) supremal element, namely

(14) /* sup {// :// c ker D N A-1(, _+_ )};
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that is, * satisfies the second defining condition in (11):

(15) A(U* N A/’) *.

Then, of course, the #.M all coincide with //* and RRP is constructively solvable
by the algorithm (cf. [6, Thm. 3.1J):

o ker D,

(16) J ker D N A 1(.- + ),

A sufficient condition for (15) to be true is included in the following.
COROLLARY 1.2. Suppose

(17) A(A/ rl ker D) c ker D.

Then RRP is solvable if and only if
+(A) N ,A/" ker D(18)

and

(19)

j= 1,2,...,

wh(drc

if and only if
’+(A) (AI2) + *,

-* sup {-:- c ;( n A- I(0Y- + )}.
LEMMA 2. Let A: 35 , A1:35 35 and ." c , with A, c . and

A ]" A], Then

’+(A,) N +(A) N

Proof. Denote by a (resp. +) the unstable factor of the m.p. of A (resp. A).
Let x E 35+(A1) N , Then x E ker +(A1)1 Since A coincides with A on
AJx A]x (j 1, 2, ...) and therefore

;(A)x Z(A,)x O.
+ that is, the complex zeros of x belongLet x() be the A-m.p. of x. Then x]l,

to C+. Let a + a- be the m.p. of A. Then also x[, and therefore xla +. Thus
x ker +(A); that is, x f+(A) N , We have shown that

+(A) N W = +(A) N ,#;

and the reverse inclusion follows by symmetry.
LEMMA 3. Let AU + and A1 A + BF1. Then the relation

(20) +(A) = (AI2) +

J’+(A) (AI) + *.
The proof of these results depends on four lemmas, of which the first was

proved in [5].
LEMMA 1. Let ,:U There exists a map F :35 # such that

,’+(A + BF) c ,.
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implies

Proof By (20) and Lemma
such that f+(A + BF) Setting Fo F F1, we have f+(A + BFo)
and so, again by Lemma l,

LEMMA 4. For arbitrary F"

(21) f + (A + BF) +
Proof If P’f f/(A]) is the canonical projection and a bar denotes the

induced map in f/(A ), then A + BF A and

Pf + (A + BF) + (A + BF)

(22) + ()
PY’+ (A).

From (22), (21) follows at once.

Proof of Theorem 1. (f) Let T have the properties (10). Then

By (23) there exists Fo "Y" such that

(A + BFo)V Fo(V ,) O.
Let

where V and Define F’f such that F[V Fo[ and
F]= 0. Then FW 0 and (A + BF1) Write A A + BF and
consider the commutative diagram

A .
Here A is the induced map on f /, and D exists since ker D . Now
A I[Y AINU, so by Lemma 2 and (10b),

Thus

so that

(24)

,/U ,/[/" 0 f+(A1) @ 4/" ["] ’-(A)
c f-(A ) + f

V PU -(A1).

Also, Lemma 3 and (10c) yield

+(A)



430 w.M. WOYHAM

SO

(25) +(1)
By (24) and (25) there exists Fz "37 ---, ’ such that ker F2 A and A + BF2 is
stable. Define F2 FzP. Then Fz# FzdV" 0. Let F F1 + F2. Then Fdff 0.
Also, F,/# 0 implies

so (A + BF)W . For the induced map A + BF on f we have

’+(A +BF)
so that

37 +(A + BF) c W ckerD

and by Lemma 2,

t gl ,IV 37+ (A + BF) gl A#

so that A(( ) = ( proving (10b). Finally

+(A) +
by Lemma 4, and this verifies (lOc).

Proof of Corollary 1.1. If (lO) holds for some then e There is some
wM W with Wv and (l 0) clearly holds for such wM. Furthermore

+(A) c V ckerD.

For the converse, set U UM. By (12), f+(A) W is an A-invariant subspace
of ker D, hence certainly belongs to each M. indeed if e W then

+W+(A)]=+W+(A)

and therefore, + f+(A) e

Proof of Corollary 1.2. By (17), ker D c *, so that

U* ckerD W c *
Thus * ker D W is A-invariant, so *e Therefore wM= U,
for all , and the result follows by Corollary 1.1.

To conclude this section we give a description of the subspaces UM which
will be useful later.

PROPOSITION 1. Let

%= A-+(kerD).
i=1

as required.
(Only if) Let F 37+ (A + BF). Then (10a) is clear from (9). Since ker F

we have
(A + BF)IdV AIdV



LINEAR MULTIVARIABLE SYSTEMS 431

Each subspace FM is of the form

= o(R),
where

1 sup {F:
and tU is a suitable complement ofU N ker D in ker D.

Proof Suppose wM is maximal, and write

ker D ker D n V" @ t @ #,, (R),,.
Next observe that

o sup {: 4/" N ker D,AW c }.
Since WM is maximal, wM indeed, the subspace

( +%)N=N +%
is A-invariant, hence, c + % e Since Wu n , is A-invariant and
% is supremal, it follows that Wu N %. Next

AcAUvcvn++
+ +%

and therefore, W c . Since 0, the subspace

is A-invariant, hence, Uu c % + e so that u % + and therefore,
f =.

3. Extended regulator problem. To exploit the advantages of dynamic
compensation, we introduce an auxiliary dynamic element with equation

2 B,u,, y Cx,

e= ., e=., e=@%
for the extended control, state and (observed) output spaces, and introduce the
extended maps

Observe that

ker C ker C ,
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by use of a dynamic observer, and

ker D ker D @

We define the extended regulator problem (ERP) as that of finding suitable
(that is, d(f.)) and then Fe :e %, such that

and

ker F A/"

f+e (Ae -+- BeFe) ker D f.
The main result of this paper is the following.
THEOREM 2. Let RRP be defined as in 1. Then ERP is solvable if and only if

f + (A) f’l A/ c ker D

for RRP,

(26)

and

(27)

where

(28) U* sup {//" /7 c ker D f"l A-1(/
_

Furthermore, if ERP is solvable, it is possible to take

(29) d(f,) d ( N *) N N A -i+*
i=1

For the proof we shall need the following.
LEMMA 5. Suppose f and f with AW Define extended spaces

and maps with

There exists a map E’?[ with ImE ,Y,, such that the subspace
(1 + E)f has the property

i=1

Proof Write f ,
i=

A-i+U and let

Let E "re fe be any map such that

ker E @ ,
ker E 0,
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Such a map exists by (30). Now,

NAs=[o(R)(! +E)(R)]NA/=o,
so that

A(Vee N /v)= Ao Vo We N ,,
as required.

Proof of Theorem 2. (If) Choose f, according to (30) (with #* in place of
V). Construct U (1 + E)* as in Lemma 5. Thus

(31) N N A -i+

i=1

We shall verify that the conditions of Theorem hold for the extended problem.
Now

U = *@, =kerD@,=kerD
and

Next,

f + (Ae) n /V" [of + (A) ( faJ n
+(A) N

=,sV n A -’+1* (by(26) and(28))
i=1

UZ (by (31)),

and this verifies the extended version of(10b). Finally,

f(Ae) f+(A) @ fa

(Aele + ,
which verifies the extension of (10c).

(Only if) Let Q be the projection on f along Y. Applied to ERP, Theorem
provides a subspace fe which satisfies the extended version of (10). In
particular (10b) implies

ker D f (Ae) N ,
[+(A) .] N W

+(A) N W
so that

J’+(A) N A/ (2 ker D

ker D,
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proving (26). Next, (10c) applied to ERP yields

and so, with U Qe,

f+(A) Qf+e (Ae)
(32)

Finally we note that ker D implies / ker D, andA e + e implies

A

QAe

=+,
so that U * and (27) follows from (32).

Remark. If is a solution of ERP, then by (10b),

but it is not true in general that A(U ’) U with U Q. Deduction of
the last-written inclusion from (33) would be immediate if

O(W)=O
and, as ker Q f, and W f, 0, this would be true if and only if

4) ( + w) . ..
But, in general, (34) fails" indeed the construction of Lemma 5 has

( + w) . ., .= 0.

This heuristic reasoning suggests that in some cases ERP is solvable when RRP
is not, a conjecture borne out by the following example.

0 0 0

-1 -2 0 B 1

00 0

C=[0 0 1, D=0 -0 -1.

Example. Let

Assume 0 4: 0. We have

0

ker D 0

0 a

<AI)-- 0 +(A)- 0

0 0
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The algorithm (16) yields * ker D, so that

+(A) (AI) + /*.

Since in addition f+(A) n ,/V 0, Theorem 2 asserts that ERP is solvable. We
find

3

" N N A -i+ 1/’: 0
i=1

so we can take

Write explicitly

then

d(Y’.) d(/V N v*)= d 1

0

E(1 0)’=(1 0 1)’;

fe* ( + e)f*
0

ERP is now essentially solved:it only remains to compute a feedback map F
such that ker F /’, (A 4- BeFe)K’*e c K’*e, and the induced map A 4- BeF on

e/// is stable. In this example these requirements lead to the unique result,

Fe=
0 0 --0

-1 1"
The reader is invited to draw the signal flow diagram. The given system has

two stable, unobservable "modes" (with state variables x, x2) and one unstable,
observable mode (x). Only x,x2 are controllable. The regulated variable is
z x -czx2 -x. To interpret the role of dynamic compensation, suppose
first that all states had been observable and consider the corresponding RRP, with
U 0. A simple computation shows that output regulation is achieved, with state
feedback u flx + f2x2 + fx, only iff + f2 4. But then (A + BF)[(AI)
has the spectrum {1, 1- f}, i.e., the controllable subsystem is destabilized.
Returning to the example, we have that (A[) is unobservable. The compensator
can be thought of as simulating the unobservable variable x + x2 according to
the equation , -x, + ft,. Then the feedback law

u 4x., t --0- 1X3 + 2x.
produces the required internal instability. The resulting transfer function from the
exponential "disturbance" x3(-) to the regulated output is

(s)/(s) -(s + 3)(s- )/(s + ).

Of course the example is artificial, and from a sensitivity viewpoint ill-posed, but it
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exhibits decoupling action as a distinct, fundamental role of linear state feedback
and compensation. A second role, observer action, is inoperative by virtue of our
initial assumption ker C ff" a third, pole-shifting, is not possible here because
the controllable observable state subspace is zero.

To verify that RRP is not solvable we apply Proposition 1. Clearly,
A/ ["lkerD {(1 1 0)’}

is not A-invariant, so f 0. Every subspace ##, such that @ N ["1 ker D
ker D, can be written

#+1

(35) ,= /t 1 + 0 /

0

Application of(16), with in place of ker D, yields

(36) // 0.

To satisfy the condition (13) of Corollary 1.1 would require

0 0

(37) 0 c 0 +UM

0 0

and this is clearly incompatible with (36).
To conclude the general discussion, we note that if A(U* f-) /) c *, the

right side of (29) reduces to 0, so that RRP is solvable whenever ERP is solvable,
and no dynamic compensation is required. Examination of the proof of Lemma 5
together with condition (12) of Corollary 1.1 reveals that dynamic compensation
is necessary only if the stable, unobservable state subspace 2(-(A) ffl A is nonzero.
This fact and the foregoing example indicate that the decoupling action of the
adjoined dynamics is realized via the simulation only ofstable unobservable modes,
but we shall not develop this assertion in detail here.

Finally, there was nothing special about the partition C C + U C-. In
practice one might well require that convergence in (3) take place with exponents
in some "good" subset Cg c C-, where Cg is symmetric with respect to the real
axis. Writing Cb for the "bad" complement C Cg, and replacing
by the corresponding subspaces (resp. 3f), one obtains the corresponding
results by exactly the same procedure.

4. Coneluling remark. Our main result (Theorem 2) can be paraphrased by
saying that regulation is achievable, at least with dynamic compensation, if and

only if (i) the unstable unobservable modes of the system are nulled at the regulated
output, and (ii) output stabilization is possible without regard to observability

constraints. The theory is constructive, reasonably complete, and offers signifi-
cant structural insight. Its main shortcoming is that no condition is imposed to

ensure internal stability, that is, stability of all controllable and observable modes.
This more practical problem is completely solved in a sequel article [10].
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A KUHN-TUCKER ALGORITHM*

HILBERT K. SCHULTZ"

Abstract. An algorithm for the solution of the nonlinear programming problem with linear
constraints is given based on an attempt to satisfy the Kuhn-Tucker conditions. The algorithm
utilizes "nearly" active constraints at a feasible point to avoid zigzagging and the convergence proof is
based on general conditions developed by Zangwill.

1. Introduction. This paper presents an algorithm and convergence proof for
solving the nonlinear programming problem of finding ff such that

(1.1) f(ff) minf(x), x X x R"lgi(x) <= O, 1,..., m},
where

(1.2) gi(x) nix b <= O, 1,..., m,

i.e., linear constraints. The algorithm is based on attempting to satisfy the Kuhn-
Tucker conditions at a point x e X and was suggested by Rosen (1965). Preliminary
computational results by Teorey (1971) ( 3) were very good.

Section 2 considers the nonlinear programming problem in a more general
setting and presents some minor modifications of the work of Zangwill (1969).
The conditions given there are sufficient for algorithmic convergence and are used
in 3 where the Kuhn-Tucker algorithm is stated and convergence is verified.

2. The minimization problem and conditions for algorithmic convergence.
The problem is to find such that

(2.1) f() min f(x), X c R".
xX

Let

(2.2) U {x e XIf(x) f()},

i.e., U is the set of solution points. Assume further that there exists a set

(2.3) S c X, S 4= ,
called the set of stationary points. We make no other assumptions on X, U, or S
at this time.

DEFINITION. An algorithm to solve (2.1) generating a sequence of points
x l, x2, is said to be convergent if the limit of every convergent subsequence
is a stationary point, i.e., it is in S.

Remark 1. This definition is the one commonly used in mathematical pro-
gramming, but it only makes sense in the case where X is compact, since, for
example, it considers an algorithm generating the points 1, 2, 3,... to be con-
vergent otherwise.
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Remark 2. We adopt the convention that for a finite sequence the last element
is assumed to be repeated so that an infinite sequence is generated (for theoretical
purposes). Thus for an algorithm generating a finite sequence to be convergent
the terminal point must be a stationary point.

Remark 3. We shall use the notation of Zangwill (1969) for subsequences.
That is, if x l, x2, is a sequence, we shall denote subsequences by {xj},j e K,
where K is an infinite subset of the positive integers. We shall also adopt the
convention of using primes to denote the transpose of matrices only, while vectors
will be either a row or column vector depending on the context.

Remark 4. We note that this development could be applied to more general
spaces.

Let x l,x2,"" be a sequence generated by an algorithm and let Z be a
continuous function from X into R. Suppose that the algorithm satisfies the
following conditions (Zangwill (1969, p. 244))’

(i) if the algorithm terminates at xj, then x S. If the algorithm generates
an infinite sequence of points; then

(ii) for all k, there exists L such that for all >= L, Z(x) <= Z(x) and
(iii) if xj if, j e K {1, 2,.. "I, and S, there exists x such that Z(x)

< z().
Condition (ii) says that for each k, from some point on the terms are less than

or equal to Z(x). Thus an increase in Z over its value at x is only allowed a
finite number of times for all k. The next condition, (iii), is the condition which
requires using e active constraints in gradient projection and feasible direction
methods.

The definition we have taken for convergence is the one most commonly
used (implicitly) in mathematical programming. The main difference between the
approach taken here and that of Zangwill (1969, p. 235) is that his definition of
convergence and sufficient conditions for convergence place requirements on the
algorithm for determining when there is no solution. However, that sort ofapproach
detracts from the generality of the theory since most authors treat the existence of
solutions separately from the algorithm.

THEOREM (Sufficiency). If an algorithm satisfies (i)-(iii) for a continuous Z,
then the algorithm is convergent, i.e., it satisfies Definition 1.

The proof of this theorem requires only a minor modification of that of
Zangwill (1969, p. 242), and is given in Schultz (1971). We note that for this suffi-
ciency theorem we only need Z to be lower semicontinuous but that in the necessity
theorem below we need Z to be upper semicontinuous. Hence for simplicity and
comparison we have assumed Z to be continuous in the statement of the theorems.

THEOREM 2 (Necessity). If an algorithm is convergent, with a continuous

function f, if the xj, for all j, lie in a compact set, if S U, and if the algorithm
terminates whenever xj U, then the algorithm satisfies (i)-(iii) with Z f.

The proof is essentially the same as that of Zangwill (1969, p. 242) and is
given in Schultz (1971).

We note that the hypotheses of Theorem 2 are common assumptions of many
algorithms. We only require the continuity of f, the equivalence of stationary
points and solutions to the minimization problem, the xj remaining in a compact
set, and that the algorithm recognizes a solution when it finds one.
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We also note that convergence of the algorithm could be proven directly
without the use of Zangwill’s condition. Also other general theories such as Cea
(1971), Daniel (1970), Elkin (1968) and Ortega and Rheinbolt (1970) could be
used in conjunction with the theory presented in 3 to prove convergence.
However, the author felt that Zangwill’s ideas would be more appropriate since
they are not only sufficient but also necessary with minor additional assumptions.

3. A Kuhn-Tucker algorithm and convergence proof. In the sequel we shall
require some additional notation. If x (x 1,x2,..., xn) and
are vectors in R", then

x N y,,a, xi yi fori= 1,...,n,

x_<yea, x__<y and x- y,

x < y,>xi< Yi for/= 1,...,n.

In examining algorithms for solving the problem of finding ff such that

f(ff) minf(x), x X {x[gi(x <= O, 1,..., m},
it becomes clear that two very broad and important classes of algorithms can be
distinguished. The first class of algorithms is based on consideration of the entire
feasible set X at each point. The versions of conditional gradient, gradient pro-
jection and Newton’s method as discussed in Levitin and Polyak (1966) are
examples of such techniques. Generally speaking, the convergence theory of such
methods is easier to establish but the subproblem at each iteration is of a much
higher degree ofcomplexity than methods of class two. The second class of methods
consists of those based only on the active constraints (those constraints for which
gi(x) 0). Techniques such as those ofAbadie(1970), Goldfarb (1969), McCormick
(1970a), (1970b), Ritter (1971), Rosen (1960), Zangwill (1967), and Zoutendijk
(1960), (1970)all fall into this category. In proving convergence of such algorithms,
some sort of anti-zigzagging procedure is usually required. One way ofaccomplish-
ing this is to use e tolerances (Zoutendijk (1960), Demjanov (1967), Zangwill
(1969), Polak (1971)) and this technique will be used in proving convergence of
the Kuhn-Tucker algorithm given below.

In the Kuhn-Tucker algorithm we consider the linearly constrained nonlinear
programming problem of finding ff such that

(3.1) f(ff)=minf(x), x e X {xlnix bi <= O, 1, m},
(3.2) nin 1, e J {1,2, m}

We use the notation"

(3.3) I(x,) {i e J[ <__ nix b <= O}, > 0;

(3.4) l(xfl l(xa, 0);

(3.5) N. matrix of unit normals containing all n (as column vectors) with
e I(x, );

(3.6) N1 matrix of unit normals containing all n (as column vectors), e ! c J

(3.7) U1 vector in Rrm, where r(I) is the number of constraints in !.
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We assume that

(3.8) f is continuously differentiable and convex,

(3.9) X is convex and compact.

The Kuhn-Tucker conditions (Mangasarian (1969)) that solve (3.1) are

(3.10) Vf() + NU O, UeRm,
(3.11) N’N- bj <= O,

(3.12) Uj[N’ bj] O,

(3.13) U >= 0.

However, for an inactive constraint i, n2 b < 0 so (3.12) U 0, and
thus conditions (3.10)-(3.13) can be written

(3.14) Vf() + NI()Ut()= O,

(3.15) U,) >= 0

for a feasible point , where Ut()e Rr(")),r(I())= number of constraints in
I(ff) and Ui 0, e J I(ff).

We now give a result due to Rosen (1965) in a somewhat more general form
which shows that an attempt to verify the Kuhn-Tucker conditions (3.14), (3.15)
either leads to a feasible direction or shows that a point is optimal.

THEOREM 3 (Rosen). Let

[Iv()l[. min Vf() + NIUI[122
u_>O

ui_Rr(I)

Then if v() =/= 0,

(3.16)

(3.17)

N’v() = O,

Vf()v() v()v() v(CO > O.

Note that if I I() and v() 0, then ff is optimal since the Kuhn-Tucker
conditions are satisfied.

Proof. Let p(u) IIv(u)ll so that p(fi) [[v()ll v()v()and set , Vf(ff).
Then from

(3.18) v() nt- Niffl,

(3.19)
8p(fi)

2v()ni, e I
c3u

Thus we must have v()ni >= 0 for e I, for suppose v()nj < 0 for some j.
Then we could increase uj and decrease p(fi) since c3p/Suj < 0, which contradicts
the fact that fi is an optimal solution to Theorem 3. Thus (3.16) is proven.

Looking again at (3.19) we see that if uj > 0 we must have v(t)nj 0, for
if it were > 0 we could decrease uj and decrease p, which would again be a contra-
diction. Therefore, l)(ffl)niffl O, e I since either v(f)n 0 or u 0. Thus,

(3.20) v()Nt O.
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Using (3.18) and (3.20) we have

0 < v(t)v()= v(fi)EVf() + N,fi] v()Vf(),

i.e.,

(3.21) Vf()v() > 0.

Thus (3.17) is proven. Q.E.D.
For convenience we now define a function 4’R" x R - R by

(3.22) c/)(x, ) dp(x, I(x, e,)) min Vf(x) + Nu , u RrIx’)).
u>O

Note that by the remark following Theorem 3 if 4(x) 4(x, 0) 0, then x is
optimal.

DEFINITION 2. A point x is stationary if x e S {x X qS(x) 0}.
We can now state the algorithm.
THE KUHN-TUCKER ALGORITHM. Assume x le X is given and e > 0, p > 0

are fixed. Set el e, P P,J 1.
Step 1. Compute 4(xi). If b(xi) 0, terminate; otherwise go to Step 2.
Step 2. Compute 4(xi, ei)= 6 If 6 >__ Pi, set s vj, where

vj =- Vf+ Nu andgotoStep4. If6i<pi,gotoStep3.
Step 3. Set e, ei/2, P1 Pj/2 and return to Step 2.
Step 4. Determine 2 by 2i=max{2lxi-2sieX),. Set Yi=Xi-

Find xi+ by f(xi+ 1) mintx,yf(x), where Ixi, Yi] {z]z (1 2)x + 2yi,
0=<2=< l)..Sete,i+1=e,pi+l =P,J+ 1--, j and return to Step l.

Remark 5. The algorithm will only return to Step 2 a finite number of times
since for sufficiently small , ck(xi, i) ok(x1, I(xi, i)) dP(xi, I(xi, 0)) ok(x1) > 0
by Step 1. Thus once I(xi, i) I(xi, 0), 4 remains constant with decreasing e and
we need only halve e and p until q(xi) >__

Remark 6. Our theory also covers the case where p e, which is used by some
authors (e.g., Polak (1971) for gradient projection and feasible directions).

Remark 7. It is also possible to consider alternative step sizes. For example,
in Step 2 let s v.i as stated in the algorithm. Then let Y1- x1- r/is1, where

r/i max{l,1/2,1/4, ...}, such that yieX. Then following Armijo (1966)we may
pick 2 max 1, 1/2, 1/4,... such that f(xi) f(x 2iyi) _> 21Vf(xi)yi, and set

xi+ x1 2iYi. A third alternative to the step size can be obtained by (Goldstein
(1967)) setting xi+ x1 2iYi, where

if Yi(1) P,

such that p =< 7i(i) __< p if 7i(1) < p,

and

f(xi) f(x + 2Yi)
-2Vf(xi)y

where 0 < p =< 1/2. See also Cea (1971) and Daniel (1971).
Remark 8. The difference between Rosen’s (1960) gradient projection and

the Kuhn-Tucker algorithm is that Rosen does not require ut => 0. The
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Kuhn-Tucker algorithm utilizes

min Vf(x) + Niul 2

ui>__0

and Rosen uses

min Vf(x)+ N1u,
ui

The following example illustrates that each method produces a feasible but
different direction.

Consider rain 1/2(x 2 + y2), x, y G R subject to

x-y<0, y<2, x_<2, x>_0 (or-x <0)

which has the feasible region shown in Fig. 1. Consider the point Xo (1/2, 2)

Y Xo
2

0 2

FG.

with Vf(xo) (1/2, 2). Then gradient projection requires

min IIVf(x0) + Nu 122 min
uR uR

min ""..__]1{-, 2 qt_ U) 2 =::> U --2,
ueR

and we obtain the direction (- 0) on which to minimize. For the Kuhn-Tucker
algorithm we obtain u 0 and the direction (-1/2, -2) from Xo as the minimizing
direction.

Before verifying conditions (i)-(iii), we require the following theorem.
THEOREM 4. For a fixed I c J, 4(x,I)=-min,i_>_o Vf(x)+ Nul is a

continuous function of x.
A proof of this theorem is included in Schultz (1971).
We now verify that the algorithm is convergent via (i)-(iii) with Z f.

Condition (i) is satisfied since the algorithm only terminates if qS(xa)= 0, i.e.,

x e S. Condition (ii) is satisfied by (3.17) since -Vfv < 0 => f(x+ 1) < f(x).
We next require the following lemma.

LZMMA. If Xj --+ , j K and dp() > O, then e z40,j e K.
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Proof Suppose cj ---, 0. Then pj --, 0, je K, since they are halved simultaneously.
This also implies b(xj, 2ej) =< 2pj for sufficiently large j,j K, or halving would
not have been required. Since there are only finitely many constraints, we may take
a further subsequence {xa}, j e K’ c K, such that i I(xj, 2ea) is a fixed set for
all j e K’. Now i c I(:) since 2; 0, and qS(xa, 2) --, 0, j e K’, since 2pj --, 0,
but this implies b() 0 since qS(xj, 2ea) b(xj, i) --+ qS(ff, i) and i c I(ff). This
contradiction proves the assertion. Q.E.D.

To verify condition (iii), suppose that x ff, j e K, and ff S, i.e., b(ff) > 0.
By Lemma 1, c - 0, pi , 0 so there exist e* > 0, p* > 0 and a subsequence

{xj},j K’ c K, such that > *, p >= p*, j K’. Thus qS(x, :) > pj > p*, and
since there are only finitely many constraints, we may take a further subsequence
{xj},j K" c K’, such that I(xj, ej)= I, a fixed set for all j e K". Then by the
continuity of b (Theorem 4), qS(ff, I) > p*. Also since e, ; 0, I(ff) c I. Now since
X is compact, Y.i and 2j lie in compact sets, so that we may take a further sub-
sequence {xjl ,j e K’" c K", such that xj if, yj ., 2j - ,. We claim , > 0, for
if , 0, then for each j e K’", we must have niyj bi 0 and nisj < 0 for some
i J or 2j could be increased. Since there are finitely many constraints, we may
take a further subsequence {xj},j e Kiv K’", such that this occurs for the same i.
But then since 2j---, 0, yj n- b 0 ie I(ff) I, which is a contra-
diction to Theorem 4 since nisj >= 0 for all e I. Thus 2j , > 0, j e Kiv. Now
Vfj(y x) 2jVfs 2b(x, e,) by Theorem 4, and 2j(x, :) < 2p*,
j e Kiv. Therefore since xj .--* if, yj , and VJ) is continuous, we have

vf(x)(- x) __< -p* < 0.

Thus there exist > , > 0 and , > 0 such that

.f(x + ( ))= f(x)-

implies, for sufficiently large j by the continuity of f, that

f(x2+ ,) <= f(x2 + (1 ,)y2) =< f(ff)- /2 < f(ff),

i.e., condition (iii) is satisfied. We have proved the following theorem.
THEOREM 5. Each limit point of the sequence generated by the Kuhn-Tucker

algorithm satisfies the Kuhn-Tucker conditions, i.e., it solves problem (3.1).
A version of this algorithm was implemented on the UYIVAC 1108 at the

University of Wisconsin by Teorey (1971). The algorithm was used to solve test
problems and 7 of Colville’s (1968) nonlinear programming study. Problem #
was solved in a standard time of .0057 units and problem # 7 was solved in a
standard time of .0202 units, whereas the fastest time for other methods was
.0069 and .0234, respectively, for 17 different methods in problem and 8 methods
in problem 2.
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STRUCTURAL INVARIANTS OF LINEAR MULTIVARIABLE
SYSTEMS*

A. S. MORSE

Abstract. This article identifies some of the structural properties of the matrix triple (C, A, B)
which remain invariant under various transformation groups. The paper begins with a brief account
of a recent result which states that the controllable space of (A, B) can be decomposed into a direct
sum of singly-generated controllability subspaces, the dimension of each subspace being determined
by one of the controllability indices of (A, B). In certain instances the component subspaces of this
decomposition can be chosen so that their C-images also decompose system output space in a special
way" matrix triples (C, A, B) for which such a decomposition is possible are called prime. If (2 is an
appropriately defined group of system-coordinate and state-feedback transformations acting on
prime triples, then the controllability indices of (A, B) determine a complete orbital invariant under .

By imbedding (2 in a richer transformation group t$*, which also includes nonphysically realizable
"output-injection" transformations, it is shown that the l$*-orbit of any matrix triple (C, A, B) is
uniquely characterized by three lists of positive integers and a list of monic polynomials called the
transmission polynomials of (C, A, B). These lists determine a ff;*-canonical form for (C, A, B).

Introduction. For a number of years there has been an interest in feedback
invariants of linear multivariable systems and in their relation to various problems
of analysis and design. In 1964 Popov [1] identified certain feedback invariants
in connection with a study of stability and linear optimal control. Gilbert [2
utilized other feedback invariants in describing the structure of noninteracting
control systems. More recently, Kwakernaak and Sivan 3] have used a feedback
invariant, the polynomial of transmission zeros of a transfer function matrix, to
describe certain asymptotic properties of the solution to the regulator problem.
Of particular interest is a recent result due initially to Brunovsk [4 which states
that the orbit of a controllable matrix pair (A,/3), under the group of state-
coordinate, input-coordinate and state-feedback transformations ((2), is uniquely
characterized by a list’ of positive integers called the controllability indices of
(A,/3). In the present article we develop new results along these lines by studying
the structural invariants of the matrix triple (C, A,/3) under various transformation
groups.

In 2 we summarize Brunovsk)’s result and also the main result of [53 which
states that the controllable space of (A, B) can be decomposed into a direct sum
of singly-generated controllability subspaces, the dimension of each subspace
being determined by one ofthe controllability indices of (A, B). In certain instances,
the component subspaces of this decomposition can be chosen so that their
C-images also decompose system output space in a special way ( 3); matrix
triples (C, A, B) for which such a decomposition is possible are called prime.
If E is imbedded in a larger group E, which also includes output-coordinate
transformations, and E is regarded as a transformation group acting on prime
triples (C, A, B), then the controllability indices of (A, B) determine a complete
orbital invariant under (g.
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The investigation in 3 is preliminary to a more general study of structural
invariants of (C, A, B) ( 4). By imbedding in a still larger group *, which
also includes nonphysically realizable "output-injection" transformations, it is
shown that the *-orbit of any matrix triple (C, A, B) is uniquely characterized
by three lists of positive integers and a list of monic polynomials called the trans-
mission polynomials of (C, A, B). These lists determine a *-canonical representa-
tion for (C, A, B) from which one can construct a corresponding quasi-canonical
representation relative to only the smaller but more meaningful group .

1. Preliminaries.
1.1. Notation. Below, script letters 3f, ,... denote real vector spaces with

elements x, y, the vector space spanned by a single element x is written as c;
the zero space, zero vector,.., are denoted by 0; d() is the dimension of
The dual space of is written as ’; if 5 , then 1 is the annihilator of

Both matrices and linear maps are defined over the real numbers and are
denoted by capital italic letters A, B, C,... the same symbol is used for both a
matrix and its map. Dual maps are written as A’, B’, C’, If M’ --, 5 and
,- N’, then M[,- denotes the restricted map ,Y- 5, -, Mt;in case 5
and ,Y- is M-invariant, the codomain of MI,Y- is taken to be Y-.

If k is a positive integer, k {1,2,.-., k} and {1,2,..., k 1}" if
k 2 => kl,k2 kl {k -+- 1, k + 2,..., k2}.

The maps A "’ , B’ ---, oj., C’5 --, Y (d(W)= n, d(Og)= m, d() p)
are fixed throughout and are associated with the linear system 2 Ax + Bu,
y Cx. The pair (A, B) is called standard if B is monic; similarly, (C, A, B) is
standard if both (A, B) and (A’, C’) are. We write 3 image B, Y kernel C
and (A[) + A + + A"-forthecontrollablespaceof(A,B).

It is assumed that the reader is familiar with the basic concepts and properties
of (A, B)-invariant and controllability subspaces [6], [7]. If is (A, B)-invariant,
F(A, B, #) denotes the class of maps F’Sf ---, //satisfying (A + BF)W c .

1.2. System properties. Two particular subspaces, each uniquely determined
by (C, A, B), will be important in the sequel. Write 5 for the largest (A, B)-invariant
subspace contained in t/. It is known (cf. [6, Thin. 3.1]) that 5 , where

(1.1) 5o 3’, ,U A-I( + _), in,

and that

(1.2) /c 5/_ , i6n.

By replacing f with kernel B’, A with A’ and with image C’ and then dualizing
(1.1) and (1.2), it is easy to verify that if

then

and - is the smallest subspace satisfying - and A( f) --) c -.
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If N is the largest (A, B)-controllability subspace contained in A/’, then it is
known (cf. [6, Lemma 4.2, Thin. 4.33) that N,, where

(1.5) o =- 0, i =- (Ai_ + ) , i6n.

There is a simple relationship between N, and ,Y.

LMMA 1.1.

(1.6) ,.
Proof. It is enough to show that

(1.7) , ,, n.

Since y and , (1.7) is true for i= 1. Assuming it holds at i,
there follows

i+1 (ai + )
(A( N ,) + 2) N

(A(.. N (A-1( + )) N .) + 2) N

((A( N ,)) N ( + ) + ) n
(A( N ,) + ) N ( + ) N

= N +.
emark 1.1. There is complete duality between the set {C, A, B, ,} and the

set {B’, A’, C’, ,Y, }. For example, by Lemma 1.1, z N is the largest
(A’, C’)-controllability subspace contained in kernel B’.

The subspaces and determine a map A,’/ / whose set of
invariant factors is an important structural invariant of (C, A, B). To construct
the map let F F(A, B, ) be arbitrary ;it is known [6, Thm. 4.3] that F F(A, B, ).
Let Av denote the map induced in / by A + BF and define A, Avl(/).
It can be shown [8, Lemma 4.1] that A is independent of F E F(A, B, ). Since
both and are uniquely determined by (C, A, B), it follows that A also is.
The invariant factors of A are called the transmission polynomials of (C, A, B).
These polynomials arise in connection with the decoupling problem [2], [6] and
the regulator problem [3]. They are also related to the feedback-invariant structure
of the Smith-McMillan form of the transfer matrix C(2I- A- F)-B; this
topic will be treated in a future article.

2. Cnoiei structure (, ). Let us begin by considering the feedback
invariant structure of the pair (A, ) for which a more or less complete canonical
description is now known. Consider, for example, the main result of [5].

PoposIIOy 2.1. Let (A,B) be fixed with d()= m. There exist (A,B)-
controllability subspaces , m, such that

d(2 N ) 1, im,

and
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Of particular importance to this decomposition is the list of integers

I(A, B) {d(#/x), d(/F2), d(Y/Um)

which is assumed to be ordered so that d(#//+ x) >_- d(#/), i. BrunovskS, 4]
showed that this list is uniquely determined by (A, B); in fact, he showed that
I(A, B) can be computed directly from the list of integers d( +A + + Ai- 1),
e n. The elements of I(A, B), called the controllability indices of (A, B), determine

a canonical representation of (A, B) as follows.
Write ( for the class of all triples (T, F, G), where T and G are automorphisms

of Y" and respectively, and F: f q/is an arbitrary map. Elements of ( act
on (A, B) according to the rule

(2.1) (A, B)-- (T(A + BF)T- 1, TBG).

It is easy to verify that ( admits the structure of a transformation group with
composition rule defined in the obvious way [5]. The (-orbit (equivalence class) of
(A, B), denoted by ((A, B), is the set of all pairs (T(A + BF)T- x, TBG).

Proposition 2.1 states, in effect, that for any standard, controllable pair
(A, B), there is in ((A, B) another pair (Ac, Be) of the form

where

A block diag. [A x, A2, Am,
B block diag. [Bx, B2, .’-, Bm],

0 0

0 0 0

0
,,i ,,i nix

and l(A, B)- (hi, n2,... rim). To state that this pair is -canonica! is to state
that (A, B) can be determined frorn any element in (A, B). For this to be possible,
the unction . (standard controllable pairs (A, B)) - (lists of positive integers/,
(A, B)-+ |(A, B), must be an orbital invariant o[ . The following result due to

Brunovsk [4 states that 0 does indeed have the required property.
PROPOSiTiON 2.2. The function 0 is a complete orbital inariant of .
We call (A, B), now identified as canonical, the feedback canonical form of

(A,B).
Remark 2.1. Recently, Kalman [9 has made clear the connection between the

controllability indices of (A, B) and the classical Kronecker invariants associated

Let S be a set and ( a group of transformations (bijections) S S" Let be another set (e.g.,
lists of integers, polynomials, etc.). A function f:S is called a @-invariant if f f, for all , e @"
i.e., if f is "constant" on each ((s), e S. The value off at is sometimes informally referred to as a
(-invariant. An invariant f is complete if f(sl)= f(s) implies @(sl)= ((s2) for all sl,s e S" thus
f(s) serves to label @(s) in the quotient set {((t)" e S}.

Bi
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with the singular pencil [2I A, B] 10]; the connection is suggested by the work
of Rosenbrock 11].

Remark 2.2. If (T, F, G) is the triple which transforms (A, B) into feedback
canonical form (Ac, Be), then it is easy to see that the matrix pair (Ac BeG- 1FT- 1,
Be) is in the quasi-canonical form discovered by Luenberger [12].

The natural next step in the study of feedback invariants is to investigate
the effect of on triples (C, A, B). Elements on (2 act on (C, A, B) in the obvious way"

(C, A, B)-, (CT-1, T(A + BF)T-1, TBG).

Note that the function , defined by (C, A, B)-- I(A, B), is an orbital invariant
of (2. However, since I(A, B) does not uniquely characterize (C, A, B), is not
complete. The (perhaps hopeless) search for a complete (-invariant for (C, A, B)
remains a challenging and unsolved problem.

3. Prime systems. Section 2 summarizes the fact that if (A, B) is controllable,
then Y" can be expressed as a direct sum of m singly-generated controllability
subspaces. Below we further investigate such decompositions, but now with the
additional constraint that the C-images of the component subspaces decompose
0# in a special way. Because of the additional constraint, the proposed decomposi-
tion can only be accomplished for a restricted class of systems. We begin by
describing the elementary components of the decomposition.

A singly-generated (A, B)-controllability subspace2 // is called prime if for
some F e F (A, B, ##) and b

(3.1) C(A + BF)i-lb O, i6d(U),

and

(3.2) C(A 4- BF)dt)- b :/: O,

It is easy to show that if / is prime, then both (3.1) and (3.2) hold for all
F e F(A, B, F) and all nonzero b VI #/. Furthermore, (3.1) and (3.2) imply that

C(2I- A BF)-lb---y,
where a(2)is the minimal polynomial of (A + BF)I# and

y C(A + BF)dtr)- lb.

The vector y is independent of F F(A, B, ##) and is a basis for the one-
dimensional subspace C.

A standard controllable triple (C, A, B) is called prime if there exist prime
subspaces, //i (i m), satisfying

(3.3)

and

(3.4) C1 C/ (R) (R) C#/,.

An (A, B) controllability subspace r is singly-generated if d( VI /) 1.
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If such a decomposition exists, then for any F e ["]iem F(A, B, ///) and nonzero

(3.5) C(2I A BF)- tb --7,Yi, m.

Property (3.4) insures that the Yi are independent and that {Yl, Y2, "’", Ym} is a
basis for .

Prime systems are characterized as follows.
TI4EOREM 3.1. Let (C, A, B) be a standard, controllable triple. Then (C, A, B)

is prime if and only if
(3.6)

(3.7)

(3.8)

d() d(),

, ] + A + + Ai-t, i6n.

Let us write for the group of transformations (H, T, F, G), where H is an
automorphism of and T, F, G are as before. Elements of ( act on (C, A, B) as
follows"

(C, A, B) (HCT- ’, T(A + BF)T- 1, TBG).

Clearly the function " {triples (C, A, S)} {lists of positive integers}, (C, A, B)- I(A, B), is an orbital invariant of ff in fact, the restriction of to prime triples
is even complete. Relations (3.3) and (3.4) imply that a if-canonical representation
for a prime triple (C, A, B) is of the form

A block diag. [At, A2, ..., A,,
B block diag. [Bt, B2, ..., B,,
C block diag. [C1, C2, C,,

where

C [1 0 ]1 n,, Ai--

0 0

0 0 0

nix ni nix

and |(A, B) {n t, n2, n,}. This structure is called the prime canonical form
for the prime triple (C, A, B).

Remark 3.1. One possible application of the preceding concepts is as follows.
Let (C, A, B) be any standard, controllable triple with d() d(’) m. Suppose
it is desired to find a decomposition

(3.9) o 0,01 ) @[2 () ( Om
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(d(i) > 0, e m) with the property that, for some F and G, the triple(C, A + BF, BG)
is decoupled relative to (3.9) (cf. [13]); i.e., with control law u Fx + Gv applied
to 2 Ax + Bu, the ith component of v can control output yii without
influencing yjej,j 4= i. The present problem differs from previously studied
decoupling problems [7], in that here the partition of output variables to be
decoupled is not specified at the outset.

Write P’f--, f/5 for the canonical projection, B PB and C for the
unique solution to CP C. Let F e F(A, B, ) be fixed and write A for the map
induced in f/5 by A + BF. Starting with the results of [6], it is not difficult to
show that a decomposition of o with the preceding properties exists if and only if
(C, A, B) is prime.

3.1. Decomposition procedure. We now describe the procedure for computing
prime subspaces //i, i6 m, which satisfy (3.3) and (3.4). As a first step, define the
sequence of subspaces

(3.10) 0 0, A-I, //+1 Y A-I(N+ ), ifi.

LEMMA 3.1. /f (3.7) and (3.8) hold, then the subspaces fi, n, are independent.
Now assume that (3.6)-(3.8) hold. It follows from Lemma 3.1 and (3.10)

that a map F’f-, # can be defined so that

(3.11)

Write do 0 and

d d( n gi), e n.
ji

For each i n, let {bj’j di di_ 1} be a basis for n /, and define

(3.12) #/j (A + BF ), j d d_

In this way, exactly d, subspaces #/i are defined. It will be shown below that if
the conditions of Theorem 3.1 are satisfied, then d, m and the are prime
subspaces satisfying (3.3) and (3.4).

LEMMA 3.2. /f (3.7) and (3.8) hold, then

(3.13)

Proof. From (1.1), fi c Co; if #i c

_
1, then

fi+ #" N A-1(
__
i) ’-/" n A-1(

__
/_ 1)- /.

Thus

(3.14)

It will now be shown that

(3.15) i,jn.
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From (1.3) and (3.8),

There follows

5fo N N (, n /V + A-I

=N + . N 1, jen,

so (3.15) is true for if(3.15) holds at i, then using (1.1), (1.3), and (3.10) yields

A(,N)=+N(2+_)

There follows

Thus (3.15) is true.
Since ,1 , it follows from (3.15) that

(3.16) 2 N /-1 N + 2 N ,
Thus

(3.17)

N ,/ + . N

=Zen ,+enx.
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But . 5 0, so

(3.18) f’l //.

To show that this is a direct sum, it is enough to prove Lemma 3.1.

Proof of Lemma 3.1. From (1.1), (3.10) and (3.17),

Thus

A AV

n

+

_
1 2 -, ien.

(3.19) n 2 //i /n A -1

jei

But 5o r 0 and if _, r-) ,j, //- o, then by (3.19),

There follows

(3.20) f; I") f; c /r-’} fi o, i n,
ji ji

so the are independent.
Proof of Theorem 3.1. Sufficiency. Let F and bj, (j 6 d,) be as defined in

the decomposition procedure. By Lemma 3.2, d, i,, d( ["1 i) m. It follows
that {b b2, bin} is a basis for . Clearly,

jm jem \ jm /

In addition, since C is epic,

(3.22) Z C/U .
jm

Write Ao A + BF. From (3.10) and (3.11),

= =0,(3.23) n.
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For > 1, (3.10) provides

(3.24)

Since b; e U,j e d di_ 1, it follows from (3.23) that

(3.25) 0Ab
If > 1, (3.24) implies that

(3.26)
ki

Clearly /j is spanned by the set {bj, Aob, ..., Ao bj}. Now if > and

(3.27) A i- lb Ai-
o o -b,

then c .; thus ,9 0 or bj 0, which is a cootradiction. Therefore
(3.27) is false. It follows that {b., Aobj,..., Ao b} is a basis for # and that
CA- lbj O. If we now write nj i, j e di di_ 1, e n, then

(3.28) CA"o’- bj =P O, j m,

and if nj> 1,

(3.29) CA- lbj 0 e fij j e m0

From (3.28) and (3.29), d(CWj) 1, j m. There follows

d(CCgjj)= rn d(l)= d()= d ,,, C
jem

so the C are independent and (3.4) is true.
Since

iCj iCj

we have

icj

But i.,,g,j K is Ao-invariant and is therefore contained in S 0. It
follows that the are independent and that (3.3) is true.

From the independence of the ,= Nf’lU(R)2(R)... @
/U Thus rn jm d(M f"l Wj); but d(M f"l fj) > 0, j e m, so d(3 f-I #) 1,

j e m. From this and (3.28), (3.29), it follows that the are each prime.
Necessity. Let /, k m, be a set of prime subspaces satisfying (3.3) and (3.4);

write dk f"l f and nk d(f). Choose F f’Ik.,F(A,B,) and write
Ao A + BF. Since f is prime, a simple computation provides

(3.30) + Ao Z A{-’dk M + A0(.A/ f"l Z A-’dk
jei jei
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Now 1 , so (3.8) holds at 1" if true at >= 1, then with r +

2 Aj- 1 AJo 1
jr jr

AO AJo-l +
ji

km ji

km ji

(. - +

By induction, (3.8) is true.
Condition (3.6) follows immediately from (3.4). From (3.5) it is obvious that

the transfer matrix C(2I Ao)- B is invertible over the field of rational functions
in 2. Therefore by [7, Thm. 5, 0. By (1.5), N 0. But from (3.8),

’, so by Lemma 1.1, 0.

4. Canonical structure f (C, A, B). Thus far it has been shown that if is
imbedded in a larger group , then it is possible to find a complete -invariant
for prime systems. To identify and interpret feedback invariants for arbitrary
triples (C, A, B), it proves useful to imbed in a still larger group *. The elements
of * are lists of the form (H, K, T, F, G), where K’ is arbitrary and
H, T, F, G are as before. The action of * on (C, A, B) is defined by

(c, , (cr- , r( + + CT- ,
Although we are not aware of any system theoretic interpretation of the trans-
formation K, all *-invariants are also -invariants, so the study of the action of
g* on (C,A,B) does provide additional information regarding the feedback-
invariant structure of (C, A, B). It turns out that * is suciently rich to enable
us to identify a complete g*-invariant and this means that (C, A, B) possesses a
*-canonical form. If desired, this canonical form can then be used to construct
a quasi-canonical representation for (C, A, B) using only transformations from .

Let us right away identify some of the more obvious properties of (C, A, B)
which are *-invariant. It is straightforward to show that the map A and the
subspaces ,,, e , defined in 1 are all invariant relative to transformations

The matrix A + BF + KC does appear in a Kalman filter or observer which estimates the state
of the system (C, A, B) forced by the control u F ( estimated state). However, the connection
between -invariants and the properties of these filters has not yet been determined.
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H, K, F, G. It follows from this, that the coordinate-independent properties of
At, , i, ,/, e n, are (*-invariant. In other words, d(), d(i), d(/), e n, and
the invariant factors of A, are all (*-invariant.

We now proceed to determine a (*-canonical representation for (C, A, B).
Our approach will be to decompose of into a direct sum of four subspaces, each
with special properties relative to (C, A, B). For this, we need some preliminary
results.

Let be any subspace such that

(4.1)

and write o- ,, where

LEMMA 4.1.

LEMMA 4.2. There exists a map KI’ of such that

(4.4)

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)

0/ (A + KIC)J-’, in,

,i Z(A + K1C)J-l, in.

LEMMA 4.3. There exists a subspace and a map Ko’ of such that

= ( + ),
c cf

(A + KoC) + ,
(A + KoC)( + ,) + .

The decomposition of f and the identification of appropriate *-invariants
will be accomplished in several steps:

I. Decomposition of _9. Write I {1(2),Z2(,), ’’’, u(,)} for the set of
transmission polynomials of (C, A, B), listed in order of increasing degree; i.e.,
the elements of 11 are the invariant factors of A. Thus e,(2) is the minimal poly-
nomial of (A + BF)I mod N for all F e F(A, B, 9). Define Fo F(A, B, 9) so
that the minimal polynomial of (A + BFo)I, is coprime with (2). Then define

of 9 (’1 (ker (%(A + BFo))).

It follows (cf. [10, Chap. 7, Thm. 1]) that

(4.10) 5,’ of (R) ’
and that

(4.11) (A + BFo)Of ofl"
In addition, the invariant factors of (A + BFo)lof coincide with the elements of I.
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Noting that (A + BFoI VI ), define 12 I(A + BFo, B2) where B2

is the insertion of M f) N in . According to Brunovsk, [4], |2 depends only on
the integers d(2 + (A + BF0)M2 + + (A + BFo)i- 12), in. But

2 + (A + BFo)2 + + (A + BFo)- 2,
and the d(.i) are (*-invariant. It follows that 12 is (*-invariant as well.

II. Decomposition of . Choose and K0 in accordance with Lemma 4.3.
Define Y1 C and 2 C-; by (4.7),

(4.12) @ 0-/0/’2

Define maps Ci: i, 2, so that

(4.13)

C1]o Cl,

C ll( + -)= 0,

C2] 0,

C2l( + --)- Cl( + ,-).

Thus

(4.14) C C ( C2

and by a simple computation,

(4.15) ker C1 V" + 5 + ,,
(4.16) ker C2 ,/1/ + -+- .
Since C is epic, C and C2 are also.

Define 13 --I(A’+ C’K’o, C’I). From (4.15), ’ cg’VI 5+/- -+/-, while
(4.9) provides (A’ + C’K’o)(+/- (3 -+/-) 5+/- Vi -+/-. Thus by Remark 1.1,
+/- (-] -+/- (A’ + C’K’o[Cg). Recall that |2 is (*-invariant by duality 13 is also.

By (4.8), there exists a map F such that

(4.17) (A + KoC + BF)
Since 5+/- f-) ,y-+/- = ker B’, it follows that

(4.18) 3 +/- f-) ,Y- +/- (A + C’Ko + F’B’ CK’I )
and that

(4.19) I(A’ + C’Ko + F’B’, C’)= 13.
Relation (4.18) is equivalent to

ker (CI(A + BE + KoC)i-1)= f + ..
in

But from (4.6), 5e f"l (5 + .Y-)= 0, so the pair (CII,(A + BF + KoC)I
is observable.
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III. Decomposition of-. To decompose -, define and K in accordance
with (4.1)-(4.5). Since N 5 --, (4.3) provides

(4.20)

Write C C2[0-- A (A + K IC)]- and B’ - ,Y- for the insertion of in Y-.
We claim that the standard triple (C, A, B) is prime. To show this, write

47 kerC; from (4.13), t7 ,A fl . If c is the largest (A,B)-invariant
subspace contained in I, then clearly ,cZ c 5. But c Y- and by (4.3),, VI 5 0; thus

(4.21) 9 0.

From (4.2) and (4.5),

(4.22)

and

(4.23)

Relation (4.21) implies that (C,A,B) is left invertible [7, Thin. 5]. Since the ,/
satisfy (4.22) and - --,, by duality, (C, A, B) is right invertible thus (C, A, B)
is invertible. But this can be possible only if

(4.24) d(O2) d().

It now follows from (4.21)-(4.24) and Theorem 3.1 that (C, A, B) is prime.
Write 14 I(A + K 1C, B), where B is now the insertion of in f. We claim

that I4 is ff*-invariant. To show this, note that , (cY) is an (A + K1C, B)-
controllability subspace and that

I(A + BF0 + K IC B2)= I(A + BFo, B2)= I.

Thus from (4.20),

(4.25) I(A + K IC, B)= 12 [_J I (as sets).

But from (4.4), the elements of I(A + KC, B) are determined by the integers
d(/), e n, which are ff;*-invariant. It follows that I(A + K C, B) is g;*-invariant

by (4.25), I is also.
IV. Decomposition of f. From (4.3) and (4.6), f e - ; from this

and (4.10) there follows
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Define F on Y’ so that

Define K on o so that

It follows that

(A + BF + KC)lY’I (A + Bro)lfl,

(A + BF + KC)I (A + BFo)I,

(A + BE + KC)[ (A + BF + KoC)],

(A + BE + KC)[ -(A + KC)[-,

so all properties in I-III remain unchanged if F is substituted for Fo or F and
K is substituted for Ko or K1.

We now summarize what has been accomplished. For this, write ’2 ,
W3 , and W4 -.

THEOREM 4.1. Let (C, A, B) be a fixed, standard triple. There exist subspaces
(ie4), 2(j6 2) and maps F" W , K" , Cj" j (j e 2) for which
the following conditions hold"

(A + BF + KC)Wg = , 4,

C=Cl@C2

1 @ 2 @ 3 ker C2,

1 @ 2 @ 4 ker C1,

Write B,for the insertionof f) W, inW,(i {2, 4}),A, (A + BF + KC)[3;i (i 4),

Ci C-21W (i e {3, 4}) and let I(i e4) be the lists determined by I-III. Then

(i) the invariant factors of A coincide with the elements of I
(ii) (A 2, B2)is controllable and I(A 2, B2) 12,
(iii) (C3,A3) is observable and I(A;,
(iv) (C4, A4, B4) is prime and I(A4, B4) 14.
The theorem states that W can be decomposed into four independent sub-

spaces, each with special properties. Relative to the triple (C, A + BF + KC, B),
the subspace W is both uncontrollable and unobservable while W.2 is unobservable
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and controllable. The subspace 3 is observable but uncontrollable and 4 is both
controllable and observable. The decomposition is reminiscent of Kalman’s
classical decomposition of (relative to (C, A, B)) in which the underlying group
consists of only coordinate transformations T.

The theorem clearly implies that any standard triple (C, A, B) is ff;*-equivalent
to a triple of the form

J0 0 C3 0
C

0 0 0 C4

A 0 0 0 0 0

A 2 0 0 BOo 2 0
A B

0 A 0 0

0 0 A B

where A is a d(Wi) d(Yi) matrix. Property (i) shows that A1 can be represented
in the rational canonical form determined by |1. Property (ii) implies that (A2, B2)
can be expressed in the feedback canonical form determined by I 2. Similarly,
property (iii) means that (A, C) can be written in the feedback canonical form
specified by 13. Finally, property (iv) indicates that (C4, A, B4) can be represented
in the prime canonical form determined by I. In this way, a ff:*-canonical structure
for (C, A, B) results which depends only on the lists I (i 4). We have therefore
established the following result.

COROLLARY 4.1. The function *:{standard triples (C, A, B)} {ordered
lists}, (C, A, B)- (I1, I2,13,14) is a complete orbital invariant of if,*.

Remark 4.1. The preceding canonical structure is closely related to the classical
canonical form for the singular pencil

The invariants identified above correspond to the Kronecker invariants associated
with this pencil.

The (*-canonical structure for (C, A, B) can be used to construct a quasi-
canonical form relative to just (. This can be accomplished by simply "canceling
out" the maps K and H which are’ required to transform (C,A,B) into
canonical form. This is illustrated by the following example.

Example. Let (C, A, B) be fixed and suppose that 11 {/l 3, 22 22 3},
|2 {2}, 13 {2}, 14 {2, 3}. Then (C, A, B)is E-equivalent to the matrix triple
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0

xx Ix 0
xlx Ix 0

0 0 0

In the above matrices, entries not specified are zero, x’s denote numbers not
uniquely determined by (C, A, B), and H is an invertible matrix. The *-canonical
form for (C, A, B) also has the same structure, but in this case the x’s are all zero
and H is the identity matrix.

Proof ofLemma 4.1. It will first be shown that

(4.26) ,9 rl o o, e n.

Since , , (4.26) holds at suppose it is true at i. If x e , rl + 1, then
by (4.2), x At + b for some e,/1/ Iq , b e. Since x eSf, there follows
At e + 5f or e rl A/ fl A- 1(. _. _9o) ,_9o r] ,< 0; thus 0 and
x b e fl 5f 0, so + fl 5f 0. It now follows from (4.26) that

,f f), 0.

To complete the proof, it is enough to show that

(4.27) , + ,’ -, e n.

For if this is so, then

Since (4.27) holds at if true at i, then

A(/V N

A(,/I/" n
A(,/ N

A(,/ N

,’ + +

(, + i)) +
) + A, +

) + + (A, + ) r
ol + 1"
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ProofofLemma 4.2. For it n, define subspaces so that

Since

_
c , it n, it follows that the subspaces /(i e n) and ,A/are inde-

pendent. Therefore, if {t,, e k} is a basis for ,,, then {Ct,, it k} is a basis for
Cin/. Define K so that K1Ct -Ati(ik). It follows that (A + KIC)
"EiCn& 0.

Observe that (4.5) holds at if true for some i>__ 1, then

(A

(A

=(A

ji

,

+(A + K1C)o= + K1C)( + I"1 (-1 + ,A/’))+

/ K1C)(& + ii-1 Jr-,./’ n ii)-i-

"1- K 1C)//_ qL A(,/V" I"1 )+ .
A + K1C)J- + //+

+1"

By induction on i, (4.5) now follows.
To show that (4.4) holds, write

=(A+K

=(A+K

=(A+K

=(A+K

Relation (4.4) follows at once.

Proof of Lemma 4.3. The dual of (4.1)-(4.5) states that there is a map F’

’ and a subspace U+/- c ’ such that

(4.28) 3l 57+/- @ +/- N Y-+/-,

(4.29)

Recall that 5f+/- N -+/- is the largest (A’ + F’B’, C’)-controllability subspace in
ker B’. From (4.28) it is clear that K’ _= K’(A’ + F’B’, C’, +/-)f’)K’(A’ + F’B’,
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C’, 5+/- f-’l -+/-) is nonempty. Let K e K’ be arbitrary and write

(4.30) e(2)K6 char. p. (A’ + F’B’ + C’K’o),

(4.31) fl(2)K6 char. p. (A’ + F’B’ + C’K’o)[+/-,

(4.32) 7(2) char. p. (A’ + F’B’ + C’K;)[(+/- f’l Y-+/-).

Since 57+/- and +/- +/- are independent (A’+ F’B’+ C’K)-invariant sub-
spaces, it follows that flaT/ divides e. Thus there exists a polynomial #(2)
such that

(4.33)

Since 9+/- is the controllable space of (A’ + F’B’, C’), a simple computation shows
that # is independent of K e K’. Thus K; e K can be chosen so that (4.30)-(4.33)
hold and, in addition, so that t and/37 are coprime. Having done this, define

+/- +/- @ ker #(A’ + F’B’ + C’K’o).

It follows (cf. [10, Chap. 7, Thin. 1]) that

(4.34) (A’ + F’B’ + C’K’o)-+/- +/-

and that

(4.35) +/- (R) 5+/- ["1 5’-+/- f’.

In’addition, from (4.29),

(4.36) cg, c +/- + cg, -+/-.

Since Ko e K and 5f+/- -+/- ker B,

(4.37) (A’ + K’oC’)(,.9+/- f-] Y-+/-) 9+/- f-’l 5’-+/-

Note that (4.34) is equivalent to

(A + BF + KoC)
from which (4.8) follows. In addition, (4.35) is equivalent to (4.6) and (4.37) is
equivalent to (4.9).

In general, C f-] C-= C(e (’1 (- + V)); but (4.36) is equivalent to
5e f’l (-+ ,A/’) ,A/; thus C C- 0. Since C is epic, C2( C
+ c( + -)= c (R) cy-.

Concluding remarks. The main result of this paper, Theorem 4.1, provides a
canonical representation for (C, A, B) relative to the group (*. Because of the
nature of (*, the result is, at present, mainly of theoretical interest. Of the (*-

invariants identified, it is the transmission polynomials of (C, A, B) which probably
have the most significance. For example, it is plausible that the roots of these
polynomials (i.e., the transmission zeros of (C, A, B)) coincide with the fixed eigen-
values of the inverse system for (C, A, B).
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As a final point, we call attention to a recent article by Heymann [14} in
which an alternative definition of a prime system can be found. Although
Heymann’s definition is different than the one used here, there appears to be
sufficient similarity between the two concepts (and corresponding results) to
justify further study.
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A DIFFERENT APPROACH TO THE ANALYSIS OF TRACER DATA*

A. PAPOULIS

Abstract. The response h(t) of a biological system consisting ofa finite number ofcompartments is a
sum of exponentials and can be interpreted as the Laplace transform of an impulse train g(x). A method
of inversion is proposed yielding g(x) as a sum involving the values of h(t) at a sequence of equidistant
points i. A simple numerical technique results for determining the exponential components of h(t).

1. Introduction. In tracer kinetics, it is often assumed that the biological
system under consideration consists of a finite number of compartments [1]-[33.
This assumption leads to responses of the form

N

(1) h(t) , A e- ,t, ai O.
i=1

N

(3) g(X)
i=

as in Fig. 1. Hence, to determine the constants A and ai it suffices to find the inverse
Laplace transform of h(t). The generally known methods of inversion involve
partial fraction expansion or integration along some contour of the complex
t-plane [7]. They are, therefore, not suitable for tracer data because they require
knowledge of h(t) on the complex plane. What is needed here is a method of inver-
sion expressing g(x) in terms of the values of h(t) on the real t-axis only. In 1955,
we developed such a method [SJ-[10J. The purpose of this paper is to adopt the
method to the tracer data problem. The proposed computational scheme will be
based on a simplification of our method developed in 1970 by the Russian
scientists D. M. Lerner and G. M. Lerner I1

We should point out that the integral representation (2) of h(t) has been
recognized and forms the basis of the Fourier transform method [12-[15] pro-
posed by Brownell and Gardner in 1960. However, their approach does not involve
inversion of a Laplace transform. With the change of variables

ez, x e -w,
Received by the editors March 6, 1972, and in revised form September 18, 1972.
Department of Electrical Engineering and Electrophysics, Polytechnic Institute of Brooklyn,

Farmingdale, New York 11735. This work was supported by the National Science Foundation under
Grant GK-31033.
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of a train of impulses

An important problem in the study of such systems and in other applications is
the determination of the constants A and i in terms of the observed response
h(t). This problem has been extensively treated [4]-6]. However, most of the
known methods do not take full advantage of the fact that the exponentials i
in (1) are real. This fact leads to a representation of h(t) as a unilateral Laplace
transform

(2) h(t) e-’Xg(x) dx
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h(l)

g(x)

2

FIG. 1. h(t)" sum of exponentials" g(x) inverse Laplace transjbrm of h(t)

(2) is written as a convolution integral

(4) eZh(ez) e- ’) * g(e)

and g(x) is obtained with Fourier transform techniques. As we hope to show, our
approach is much simpler computationally. Furthermore, it is less sensitive to
roundoff errors and errors due to noise in the data.

2. A real axis inversion of the Laplace transform. In this section, we present
a method for expressing an arbitrary function g(x) in terms of the values of its
Laplace transform h(t) at a sequence of equidistant points.

Original approach (Papoulis 8], 1955). With a > 0 a real parameter, the
transformation

(5) e cos 0

maps the axis >= 0 into the interval 0 __< 0 < 7r/2 and the function g(x) is trans-
formed into

(6) g --lncos0 =r(0)

as in Fig. 2.
Expanding r(0) into an odd sine series, we obtain

(7) r(0) C sin (2k + 1)0.

This can be done, of course, by extending the definition of r(0) in the interval
(-re, re) as in Fig. 2. In the Appendix, we show that the coefficients C in (7) are
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FIG. 2. r(O) g(x), e cos 0

given by

4a
(8) C 1)k + hm

rc m=o 2m

where

(9) hm 4mh(tm), tm= (2m + 1)o-.

We have, thus, expressed r(0), hence g(x), in terms of the samples h(t,,) of h(t).
A simplified algorithm (Lerner-Lerner [11], 1970). In (7) the parameter a is

assumed constant and r(0) is obtained by varying 0. Alternately, if 0 is given a
fixed value 0o and a is determined as a function of x from (5), then g(x) can be
evaluated from r(0o). This approach increases the rate of convergence of (7) and
it reduces the roundoff error.

Choosing for convenience Oo rt/4, we obtain from (7):

(10) r C sin (2k + 1)- (_ 1)/C,
k-O 4 N

where [k/2] is the largest integer not exceeding k/2. With

(11) a In x//x
we conclude from (6) and (7) that

(12) r g --In cos g(x),
O"
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hence

(13)

where [see (8)

k+m
(14) Ck

2 In 2
(_ 1)k+" h".rx 0 2m

In a numerical evaluation of g(x) the sum in (13) must be truncated. Retain-
ing the first n + terms, we thus obtain the approximation

(15) g(x)
_

g,(x) x In 2
(_ 1)"h,, (- 1)3/2’

k + rn

rex ,,=o k=" 2k

This follows by inserting (14) into (13) and changing the order of summation. We
have, thus, approximated g(x) by a simple sum involving the va|ues of h(t) at the
points

(2m + 1)In x//(16) t"
X

The preceding holds for a general g(x). If g(x) is an impulse train as in (3), then, as
we show later, the truncated sum g,(x) exhibits principal maxima at x 0i and
secondary maxima (side lobes) near 0i. To distinguish between the two, it is
desirable to plot not only g,(x) but also lower order approximations. For this
purpose, we introduce the partial sums

(17) B [C + Ck+ Ck+ 2 Ck+ 3J/N/"
Choosing n such that n 4s + 3 where s is an integer, we obtain from (13)"

(18) g,(x)= B, n=4s+ 3.
k=0

From (14) and (17), we conclude (omitting details) that

(19) B x/ In 2 4 3

bkmhm
7-cx m=O

where

bo= 0, bl -2,

4k + n)2k +
bk,. (- 1)"2

2m rn 1’

(20)
m>2.

The constants b" are shown in Table 1.
For small x the first term

(21) ln?) h
2x

71n_2

is often sufficient.
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Truncation and roundoff errors. As is well known from the theory of Fourier
series [16, p. 46], the truncated sum

(22) r,(O) C sin (2k + 1)0-
k=O

TABLE

bkm

0

-2 -2 -2 -2

2 4 36 100 196

3 105 -825 -3185

4 112 2640 20384

5 54 -4290 -68068

6 12 4004 136136

7 -2275 176358

8 800 155040

9 170 94962

12

13

10 20 40964

11 12397

2576

350

14 28

15 -1

is the weighted average
/2

(23) r.(O) r(y)k.(O y)dy
0

of r(O)(see (7)) with the kernel

2 sin (4n + 3)0/2(24) k.(O)
r sin 0/2
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From the above, it follows that the approximation g,(x) in (15) is given by (see
(6) and (11))

(25) g,(x) r, .1 g[-x ]k, y dy.

The function k,(rc/4 y) is shown in Fig. 3 for n 11 and n 7.
In a numerical evaluation of g,(x) from (15) the samples hm must be replaced

by h,, + e,,, where e,, is an error term due to the inaccuracy of measurement and
to roundoff. As a result, the right side of (15) yields g,(x) + e. If we assume that
the errors e,, are uncorrelated with zero mean and variance #, then the accumu-
lated error e has zero mean and variance

(26) a,,,2, where a,,, (- 1)[3k/2]2/,\ 7X m=O k=m

k+ m

From (25) we conclude that as n increases, the weighted average g,(x)
approaches g(x). However, the variance (26) of the error increases. The optimum
choice of n depends on accuracy of computation and on the nature of g(x).

FIG. 3. Fourier kernel k,(rc/4 y).[’or n 7 and n 11" linear y-scale
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3. Inversion of exponential sums. The preceding analysis permits us to recover
an arbitrary signal g(x) at every point x in which it is continuous. If g(x) is an
impulse train as in (3), then our objective is not the recovery of g(x) but the
determination of the constants A and zi. With this in mind, we assume first that
g(x) consists of a single term

(27) g(x) Aif(x )

and we examine the corresponding g,,(x) as given by (25). As it is known [17,
p. 383,

(28) Fo(y)]
(y
Iq’(Y)’ p(y)- 0,

where the y are all the real roots of the equation o(y) 0. Hence,

6
x In cos y In

ln, it X
cot yi6(fl Yi),

(29)
cosy= exp

Inserting into (25), we obtain

A In
cot yik, Yi}.(30) gn(x)

x

We note that if x ei, then Yi re/4, hence

A iln x/ A In 2
g.(ei) k.(0) -J---(4n + 3).

i i

Thus, g,,(x) has a principal maximum at x i and secondary maxima due
to the side lobes of the kernel k,(O). As n increases, the position of the principal
maximum remains fixed, whereas the secondary maxima move closer to x
Thus, if g(x) is of the form (3), then, plotting

g,,(x)/(4n + 3)

for various values of n, we can determine ai and A from the position and ampli-
tude of the stationary maxima. We note that the height of the maximum is propor-
tional to 1/0 i.

To illustrate the method, we have carried out the computation of g(x) for
h(t) e- 2t. The numerical results are plotted in Fig. 4 for s 0, 1, 2, 3. Comparing
the four curves, we readily recognize a single stationary maximum at x 2.
Sums of exponentials as in (1) lead to figures that are sums of such curves centered
at ai. If the exponents of h(t) are close, then the corresponding main lobes over-
lap. To separate them we must increase n. An alternate approach is the following.

We first determine approximately the smallest exponent 1. This can be done
either by observing on a logarithmic scale the asymptotic slope of h(t) or from a
preliminary application of the inversion method. We next select a number < 1
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gn(X)
4n+3

s=O

2

/
/

/ I, ,i \

2 \

FIG. 4. Computer output g,(x)/4n + 3 of inverse Laplace transform ofan exponentialjbr n 3, 7,
11, 15" logarithmic x-scale

and form the signal

hx(t) e’h(t)

whose exponents are /i i- . If is close to 1, then the lowest exponent
t of h(t) is small compared to the others and can be readily determined. This
process can be repeated for the signal

h2(t hl(t A e -e,’.

We finally remark without elaboration that the side lobes of the kernel
k,(O) can be reduced if the coefficients C in (7) are multiplied with suitable
weights [18], [19].

Appendix. Introducing the transformation (5) into (1), we obtain

rtl2

(A.1) ah(t) (COS O)(t/a- 1) sin Or(O) dO,
0

and with (2k + 1)a, we have

(A.2) h[(2k + 1)r (cos 0)k sin 0r(0)dO

for every k >__ 0. But

eJO + e- jO\ 2n e0 e-J
(cos 0)2" sin 0

2 2j
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Expanding the right, side and collecting terms, we find that

k-O k k-1

where the bracket equals for k 0. We now insert the series expansion

r(O) C sin (2k + 1)0
k=0

into (A.2) and use (A.3). Since

/2

sin2(2k+ 1)0d0=-
0 4

and the odd sines are orthogonal in the (0, /4), we conclude that

Solving for the coecients C, we obtain (8).
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QUADRATIC PERFORMANCE CRITERIA IN BOUNDARY CONTROL
OF LINEAR SYMMETRIC HYPERBOLIC SYSTEMS*

DAVID L. RUSSELL,-

Abstract. The present article develops necessary and sufficient conditions for the solution of the
following optimal control problem. We let w(x, t), u(t) solve the hyperbolic mixed initial-boundary
value problem

w(x, O) Wo(X),

w w
A(x)- + B(x)w,

Cow(O, t) 0, C lw(1, t) Cu(t)

in the region 0 <= x =< 1, >= 0. For > 0 we seek to minimize a quadratic cost

J(wO, u, tl) w(x, t)rw(x, {)w(, t)dxd + u(t)rUu(t) dt

+ w(x, tl)rG(x,{)w({,t,)dxd.

In addition to the development of optimality conditions, the paper also presents a synthesis of the
optimal solution in terms of a matrix Riccati partial differential equation. The case t + oo is also
discussed.

1. Introduction. Since its introduction by Kalman and Bucy in the early
1960’s I73, 8, the quadratic optimization criterion has developed to the point
where it is now a standard design technique in stabilization of finite-dimensional
linear systems. In the present article we shall be concerned with an extension of
this theory to a certain class of infinite-dimensional systems modeled by partial
differential equations.

Much work has already been done along similar lines. We cite the papers of
Kim and Erzberger [9], Kim and Gajwani [10], Alvarado and Mukundan [1],
Lukes and Russell [12], Datko [4], and, in particular, the book of Lions [11]. There
are many other contributions--too many to list all of them. We must, therefore,
be prepared to justify our addition to an already extensive literature.

In this paper we restrict our attention to systems modeled by linear symmetric
hyperbolic partial differential equations in two independent variables (time, and
one space dimension) with control variables appearing in the spatial boundary
conditions. Such systems have not been widely treated in the above references--
which are primarily concerned with parabolic equations. The form of the quadratic
cost control law for hyperbolic systems has been outlined by Lions [11], but he
gives no development of the theoretical foundations.
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A further reason for the present paper is the fact that the very important case
where the quadratic cost is defined over an infinite time interval 0 =< < oc, which
is given extensive treatment in 11 under the assumption that the system equations
are parabolic, has never been given adequate mathematical treatment when those
equations are hyperbolic. This case is one of the primary concerns of the present
work.

2. Background. Linear symmetric hyperbolic systems in two independent
variables have very special properties which have been examined in detail by a
number of authors. Expository treatments are given by Courant and Hilbert
and Garabedian [5. Phillips 14 and Olubummo and Phillips 13] have studied
such systems in the framework of semigroups in Hilbert space. Control problems
for such systems have been studied by the author in I151, I163, I17 and 181 and
by Grainger 6].

We consider a system

A(x) +(x)(2.1) ct x
The n n matrices A(x) and B(x) have the properties

(i) A(x) C O, 1]"
(ii) B(x) CO, 1

(iii) A-(x)= ,Or(x) has eigenvalues 2(x),22(x),...,2,(x) which satisfy
2(x) < 22(x __<... __< 2v(x < 0 < 2v+(x) < 2p+ 2

<... __< 2p+q(x), p and q being
nonnegative integers with p + q n, and if 2k(x)= 2k+ (x) for any x 0, 1],
then 2(x) 2 + l(X), x 0, 1].

We are concerned with n-dimensional vector solutions #(x, t) in the region

R={(x,t)lOxl,Ot<}

which satisfy initial conditions

(2.2) #(x, 0) #o(X), x e [0, 1],

and boundary conditions

The meaning of equation (2.1) and the conditions (2.2), (2.3) is most easily
understood if we assume #o(X) and u(t) to be (at least piecewise) continuously
differentiable, for then the solution w(x, t) is easily shown [3 to have the same
property. We shall see, however, that one may also discuss solutions w(x, t) of
(2.1), (2.2), (2.3) when #o(X) and u(t) are only assumed square integrable.

Two examples of systems (2.1), motivated physically by the vibrating string
and the vibrating beam, are cited in [17]. These are quite familiar and need not be
repeated here. Another simple, and yet important, example is provided by counter-
flow processes in chemical engineering. Consider three pipes of sectorial cross
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section, as shown in Fig. 1. In pipe # fluid flows

FIG.

from left to right with a velocity of a meters per second. In pipes # 2 and 3 fluid
flows from right to left with velocities a2 and a3, respectively. The pipes are L meters
long. The fluids in the pipes contain a certain dissolved substance whose con-
centrations are measured by functions w(x, t), wi(x, t) and w3(x, t), 0 <= x <= L,
at a given instant t. This substance can diffuse from one pipe to another via semi-
permeable membranes in the walls of the pipes at rates which are proportional
to the difference in concentration in the two pipes in question, with a constant
depending on various physical characteristics of the fluids and membranes. If
we assume that the pipes are rather long and thin and the fluid velocity is fairly
high, we may neglect diffusion in the x-direction for a first approximation. Taking
into account the movements of the fluids, the concentrations w, w2 and 1/123 obey
a system of partial differential equations

?w ?w
t al--X -t- b12(w2 w1) q- b13(w3 w1)

W2 W2

?t az-x + b2(w w2) + bz3(W3 w2)’

W (W

(gt a3x q- b31(w W3) q- b32(w2 W3)’

which has the form (2.1). If we assume that the concentration w can be specified
at x 0 while the concentrations we and w can be specified at x 1, the boundary
conditions might be given in the form

WI(0 t) 0, l E0,

W2(1 t) + OWI(1, t) ttl(t), [0, ),

W3(1 t) + W(1, t) u2(t), 0, oO),

where u and u2 are scalar control functions. These conditions agree in form
with (2.3).

The treatment ofsystems of the form (2.1) is facilitated by reducing the system
(2.1) to a convenient normal form. Because we have insisted that the multiplicity
of any eigenvalue of the symmetric matrix A(x) should remain constant on (0, 1],
we may use repeatedly a trivial modification of a result proved by Phillips 14,
p. 117] to show that there is an orthogonal matrix-valued function O(x) with
0 e C[O, 1 and

(2.4) O(x)T(x)O(x) A(x),
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where

(2.5) A(x) diag (,l(X), "’’, n(X)), X [0, 1].

(We remark here that even if A(x) is not symmetric, it may be possible to reduce
it to the form (2.5) via a transformation P(x)-1.(x)P(x) A(x), with P and P-1
in C[0, 1]. Our theory then applies with no significant change. Obviously this
is possible if and only if (x) is symmetrizable.)

It will frequently be useful to write

A(x)
(2.6)

A-(x) diag (/I(X), ,p(X)),

(2.7)

(2.8)

A -(x) 0
0 A+(x)

A+(x) diag (2p+ l(X), "", 2v+q(x)).
When we do so, we shall also represent vectors w R" in the form

W= W+ w-Rp, w + Rq.

We see now that if we put

(x, t) o(x)w(x, t),

B(x) O(x)(x) + O(x)(x)O’(x),
then the system (2.1) becomes

(2.9)
cw W

A(x)-z- + B(x)w.

The initial state is now Wo(X O(x)T#o(X). It is clear that we still have A e C1[0,1],
B e C(0, 1]. The boundary conditions (2.3) become

(2.10) Cow(O, t) O, CI w(1, t) =- Cu(t)

with

(2.11) Co CoO(O), C ClO(1 ).

Using the decomposition (cf. (2.6), (2.7))

Co=(Co- Co+),
we replace (2.10) by

(2.12) (Co_

(2.13) (C_

C =(C1- C+),

w-(0, t)) 0Co+) w+(0, t)

Cu(t).C+) w+(1 t)
We may then state the following conditions.

Assumptions on the boundary conditions. The matrices Co, C1 have dimensions
p x n, q x n, respectively, and the p x p matrix Co- and the q x q matrix Cl+

are both nonsingular.
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Then, with

DO -(Co_)-lCo+, D, --(C +)-lCl_

(2.12) and (2.13) become

(2.14) w-(O, t) Dow+(O, t),

(2.15) W+(1, t) D1W-(1, t) -+- Du(t).

D (C +)-IC,

It is essential that the boundary conditions (2.10) be reducible to this form.
Otherwise even uniqueness of solutions may fail. This is seen rather easily for the
system

8 w- -1 0 c3 w-
t w+ 0 xx w +

w +(0, t) 0, w-(1, t) =- 0.

For more on this, see 18].
Consider now the initial value problem

(2.16) w(x, O) Wo(X) =- Ol(X)o(X))

for the system (2.9), (2.14), (2.15). Existence and uniqueness theorems are given in
I3], I5]. The proofs are based on the fact that the kth component w of w satisfies
a first order linear ordinary differential equation along the characteristic curves
x xk(t) which satisfy the differential equation

(2.17) dx/dt 2,(x).

Indeed, we have, along such a curve,

d
w(x(t) t) b(xk(t))wJ(x(t), t), k 1,2,..., n.

dt =
If Wo(X) and u(t) are continuously differentiable and satisfy the consistency con-
ditions

w (o) Dow (0),

w-(1) D,w(1)+ Du(O),

dw
A-(0)-x(0) + B_-(0)w(0)+ B(1)w(0)

(2.18) DO A + (0)--x (0) + B+ (0)w (0) + B + (0)w (0)

A/(1) (1) + B+_(1)wg(1)+ B++(1)w-(1)

I dw 1 du
D A-(1)--x(1) + B-(1)w(1)+ B;(1)w(1) + D-d-(0),

then one obtains a solution w(x, t)in C(R), R {(x, t)J0 < x =< l, 0 =< < oo}.
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Less differentiability of Wo(X) or u(t) or failure to satisfy these consistency con-
ditions leads to solutions with less differentiability. If we assume only that Wo(X)
and u(t)are piecewise C and do not require that any consistency conditions be
satisfied, the solution w(x, t) will likewise be piecewise C in R. It can be shown
(see 3]) that any jump discontinuity of wk(x, t) or its first order partial derivatives
is propagated along a characteristic curve x xk(t) obeying (2.17). Thus w(x, t)
will be of class C in subregions of R bounded by such characteristic curves. A
bounded subset of R will meet only finitely many such regions.

One can use the same methods to construct solutions for other types ofsystems.
One which is of importance in this paper is obtained by replacing the boundary
condition (2.15) by

(2.19) w +(1, t) D W-(1, t) t_ ; Hl(X)W(X,t)dx + Du(t),

where H is a piecewise continuous q x n matrix function on 0 < x =< 1. The
existence, continuity and differentiability considerations are the same as before,
with the consistency conditions (2.18) modified in the obvious way.

The basic estimate for solutions of (2.9), (2.14), (2.19) (includes (2.15) for
H l(X --0)is provided by the following theorem.

THEOREM 2.1. Let w(x, t) be a Cl-solution of (2.9), (2.14), (2.19) in

R= {(x, t)[O =< x __< 1,0 __< < +oo}.

Then there are positive constants Ko and K such that

(2.20) w(x, t) 2 dx <= Ko e’ w(x, O) 2 dx + Ilu(t)ll 2 dt
0

Proof This requires only standard techniques after a simple preliminary
transformation.

Since A +(0) and A-(l) are both negative definite, we can find positive
numbers eo and el such that

(2.21) -(A+(0) + eoDo’A-(O)Do) <= O, A-(l) + 3eDI"A+(1)D1 <_ O.

We let e-(x), e +(x) be continuously differentiable functions with

Co e-(O) e-(x) e-(1)= 1, 0 x 1,
(2.22)

e+(0) >= e+(x) >= e+(1)= 81, 0 x 1.

Then let

(2.23) E(x)
e-(x)I- 0

0 e+(x)I +

where 1- and I + are identity matrices of dimensions p p and q q, respectively.
Multiplying (2.8) on the left by E(x) we obtain

(2.24)
w

E(x)-- E(x)A(x)-x + E(x)B(x)w.
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Let R {(x, t)10 x 1, 0 < r}. We compute, using the fact that w
satisfies (2.24),

t(w(x, t)rE(x)w(x, t)) (w(x, t)rE(x)A(x)w(x, t)) dx dt

(2.25)

fR f W(X, t)r(E(x)B(x) + Br(x)E(x) (E(x)A(x))’)w(x, t)dx dt.

Applying the divergence theorem, we have

(2.26)

w(x, r,)rE(x)w(x, ) dx w(x, O)rE(x)w(x, O) dx

w(1, t)rE(1)A(1)w(1, t)dt w(O, t)rE(O)A(O)w(O, t)dt

Using (2.14), (2.21), (2.22) and (2.23) we compute

-w(O, t)rE(O)A(O)w(O, t) -e-(O)w-(O, t)TA-(O)w-(O, t)

(2.27) --e + (0)w + (0, t)TA + (0)W + (0, t)

-[w+(O, t)T(A+(O) + eoDA-(O)Do)w+(O,t)] <__ O.

Also, via the same reasoning but replacing (2.14) by (2.19),

w(1, t)rE( )A( 1)w( 1, t)

e-(1)w-(1, t)WA-(1)w-(1, t)

(2.28)

+ e+(1) Dlw-(1,t + H(x)w(x,t)dx + du(t) A+(1)

D lw-(1, t) + H,(x)w(x, t) dx + Du(t)

_< w-(1,t)r[A-(1) + 3e,,D’A+(1)D]w(1,t)

+ 3e H l(x)w(x, t) dx A + (1) HI(X)W(X, t) dx

+ 3eu(t)rDrA+(1)Du(t)

/12=< 31 2,(1) H(x)w(x,t)dx + u(t)rDrA+(1)Du(t)

the last inequality following from (2.21) and the fact that 2,(1)= 2p+q(l) is the
largest eigenvalue of A+(1). Noting that H(x), E(x), B(x) and (E(x)A(x))’ are
uniformly bounded on 0 <__ x __< 1, we may proceed from (2.26) and the
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inequalities (2.27), (2.28) to see that

w(x, r)rE(x)w(x, r)dx w(x, o)rg(x)w(x, O)dx
0

(2.29)

<= K wKx, t)ll 2 dx dt + ; u(t)l[ 2 dt

for appropriately large positive K, K. From (2.22) we see that

(2.30) w(x, t)E(x)w(x, t) >= rain (o, ) w(x, t) 2.

Combining (2.29) and (2.30) and using a familiar estimate [2, Chap. 1] we see that
with K K/min(e,o, e)we have

Ilw(x, t)l 2 dx ’ Ilw(x, 0)112 dx + ; en’-) u(s) 2 ds,

from which we obtain (2.20) immediately, letting Ko --max(1,/) and then
replacing r by t. Thus Theorem 2.1 is proved.

In addition to being important in its own right, this estimate enables us to
define solutions of (2.9), (2.14), (2.19) when Wo(X and u(t) are assumed only square
integrable. It is well known that under these circumstances one can find contin-
uously differentiable functions Wo(X) and u(t) vanishing outside of compact
subintervals of (0, 1), (0, ), respectively (and thus satisfying the consistency
conditions (2.18)) such that

lim IlWo- Wo Lt0,1=0,

lira u u r-[o, 0.

Now we let w(x, t) be the continuously differentiable solution of (2.9), (2.14),
(2.19), k 1, 2, 3, Theorem 2.1 guarantees the existence of a function w(x, t)
for which

lim IIw(., t) w(., t) Lto, a 0 for all _> 0.

This function w(x, t) is the solution of(2.9), (2.14), (2.19) corresponding to the square
integrable initial data Wo(X and the square integrable control u(t). For more on
such "generalized" solutions, see I3], [5] and other standard works on partial
differential equations.

3. Optimality conditions. Working with our control system in the form (2.9),
(2.14), (2.15), we define a quadratic cost functional

J(u, Wo, tl) w(x, t)rW(x, )w(, t) dx d + u(t)rUu(t) dt

(3.1)

+ w(x, tl )ra(x, )w(, tl) dx d.

Here W and G are n x n matrix functions of classes C and C, respectively, in
the domain 0 <= x <__ 1,0 < < 1, with the properties (stated for W only, but
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also assumed for G)

(3.2)
w(x, ) w(, x)’,

w(x)W(x, )w()dx d >__ 0, w L2[0, 1].

Given an initial state w0 L2[0, 1] and a control u e L2[0, 1], the resulting
generalized solution w of (2.9), (2.14), (2.15), (2.16) can be determined and the
cost J(u, Wo, l) computed. Our goal is to characterize the control u, e L2[0, l]
which, together with the resulting response w,, yields a minimal value for this cost.
The existence of such a control u, may be proved by methods developed in [11]
and is assumed in the rest of this article.

THEOREM 3.1. Let u, L2[0, tl] and let w, be the resulting solution of (2.9),
(2.14), (2.15), (2.16)in the domain R, {(x,t)10 <_-x <__ 1,0 <=t< tl}. Let v be
the solution of the "adjoint" system

A(x(3.3)
c3t )x (B(x) A’(x))v W(x, )w,(, t)d

satisfying the terminal condition

(3.4) v(x, tl a(x, )w,(, tl d

and the boundary conditions

(3.5) v +(0, t) -(A +(O))-lDo’A-(O)v-(O, t),

(3.6) v-(l, t) -(A-(1))-DTA +(1)v+(1, t).

Then u, and w, minimize the cost (3.1) if and only if

(3.7) u,(t) -U-1DrA+(1)v+(1,t) for almost all t[O, tl].

Proof Standard theorems on positive quadratic forms show that for an
arbitrary control ul L2[0,

J(u,, Wo, t) < J(u, + u, Wo, t)

for all real values of e if and only if

W,(X, t)Tw(x, )Wl(, t) dx d + ll,(t)TUUl(t) dt

(3.8)

+ w,(x, tl)rG(x, )wl(, tl) dx d O,

where w solves (2.9), (2.14), (2.15) (with u ul) and Wl(X, O) O.
Consider first the case where w(x,t) solves (2.9), (2.14), (2.15) with w(x, O)

and u(t) both continuously differentiable and vanishing outside compact sub-
intervals of (0, 1), (0, tl], respectively, and v(x, t) solves (3.3), (3.5), (3.6) with v(x,
continuously differentiable and vanishing outside a compact subinterval of
(0, 1). Then all consistency requirements are met and both w(x, t) and v(x, t) are
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continuously differentiable in R,,. Then

v(x, O)rw(x, O) dx v(x w(x, tl) dx
o

(3.9)

i- v(x, t)rw(x, t)dx dt

V(X, t)Tw(x, 1)dx

{ [A(x)V(x, t)
x {(x) A’(x))v(x, t)

j W(x,{)w,(,t)d w(x,t)
o

v(x, t)rw(x, t) dx

+ v(x t) r I--/A(x)Pw(x, t)

+ w(x, t)rW(x, )w,(d, t)dx d dt

(B"(x) A’(x))v(x, t)1 w(x, t)

+ v(x t)r [A(x) ?w(x’ t
[_ x + B(x)w(x, t)l } dx dt.

In the last integral above we employ integration by parts together with the bound-
ary conditions (2.14), (2.15), (3.5) and (3.6) to see that it reduces to

v + (1, t)rA +(1)Du(t) dt.

If we take w(x, 0) 0 and let u converge in L2[0, t] to U, then w(x, t) converges
in Le0, 1], for each fixed value of t, to w(x, t), as we see from Theorem 2.1. Indeed,
this convergence is uniform for e [0, l]. We also let v(x, l) converge in L2[0, 1]
to the value (3.4). From this and (3.9) we see that we can write (in some cases
interchanging the roles of x and {)

w,(x, t)’rW(x, )w(, t)dx d + u,(t)Uu(t) dt

(3.10) + w,(x, tl)Ta(x, )W,(, t,) dx d

[u,(t)Uu(t) + v+(l, t)rA+(1)Du,(t)] dt.
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From (3.10) we see that (3.8) holds for all ul L2[0, tl] if and only if (3.7) is true.
The proof is complete.

We remark here that it is quite easy to obtain estimates of the type obtained
in Theorem 2.1 for solutions of (3.3). We have tacitly assumed such results in the
paragraph preceding (3.10), where we let v(x, tl)converge in L2[0, 1] to the value
(3.4). It is not necessary to approximate w,(, t) in the last term of (3.3) by a smooth
function because that term is a continuous function of x and even when w,(, t)
is only a generalized solution of (2.9) as explained in 2.

Theorem 3.1 characterizes the optimal control u, in terms of a solution
w,, v of the two-point boundary value problem consisting of the systems (2.9),
(2.14), (2.15) and (3.3), (3.5), (3.6), coupled via (3.7), and the conditions (2.16)
and (3.4) given at 0 and l, respectively. As usual in optimal control
problems, such a characterization is of limited value because the solution of such
a two-point boundary value problem is by no means easy. This difficulty is over-
come here, as in the case of related problems for ordinary differential equations
[7], [12], [4] by a decoupling process which involves the introduction of a non-
linear partial differential equation of "Riccati-type".

4. Formal derivation of the Riccati equation. The basic idea of the decoupling
procedure is to represent v(x, t) as a linear function of the optimal solution w,(x, t).
This is plausible because the terminal state (3.4) for v and the nonhomogeneous
terms in the linear equation (3.3) are both linear functions of w,(x, t). We shall
seek a representation

(4.1) v(x, t) Q(x, , t)w,(, t)d,

where the n x n matrix function Q has the property

(4.2) Q(x, , t) =_ Qr(, x, t).

In formally deriving the partial differential equation which Q satisfies, we shall
assume that Q and w, are everywhere of class C 1. The smoothness assumption
on w, will be removed later. Under appropriate assumptions, to be discussed
later, Q will be of class C or at least piecewise of class C 1.

In agreement with (2.6) and (2.7) we write

(4.3) Q (Q_ Q+),

distinguishing certain rows and columns of Q, respectively.
If one replaces w in (3.9) by w,, one finds, in much the same way as we did

there, that

v(x, O)rw,(x, O) dx
o

J(u,, Wo, tl) u,(t)rUu,(t) dt (continued on page 486)
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(4.4)

fil fi {I (?u(x’ t) (Br(x) A’(x))u(x, t) w,(x t)A(x) ---y--

t)v VA(x) aw,(x, t)
+

[_ c3x + B(x)w,(x, t)l } dx dt.

Thus if the last two integrals in (4.4) add to zero, that formula becomes

(4.5) J(u,, Wo, tl) V(X, 0)rW,(X, 0) dx,

an identity which will be very useful later. Taking the last two integrals in (4.4),
adding and subtracting the term

fi’ f f w,(x, t)W(x, )w,( t) dx d dt,

we require that

(4.6)

fO’ f] {[ v(x’ t) (BW(x) A’(x))v(x’ t)0 A(x) x
,,1 I T

j W(x,)w,(,t)d w,(x,t)
0

+ v(x, t) r A(x) cx + B(x)w,(x, t) dx d

+ w,(x, t)rW(x, )w,(, t)dx d + u,(t)rUu,(t) dt

t w,(x, t) + v(x, t) A(x) cx

+B(x)w,(x, t))] dx dt

/ w,(x, t)WW(x, )w,(, t) dx d + u,(t)WUu,(t) dt

w,(x, t) w,(, t)
t

+ w,(x, t)TQ(x, , t)A()
w,(x, t)+ w,(x, t)rQ(x, , t)U()w,(, t) + x

w,(,t)

A(x)Q(x, , t)w,(, t)

(continued on page 487)
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+ w,(x, t)rB(x)rQ(x, , t)w,(, t) + w,(x, t)rW(x, )w,(, t)] dx d

+ u,(t)rUu,(t) dt (using (3.3) and then (4.1), (4.2)).

We employ integration by parts to see that

cw,(x, t)T

o cx A(x)Q(x, , t) dx

w,(1, t)TA(1)Q(1, , t) w,(O, t)TA(O)Q(O, , t)

eQ.(x, , t)
A(x) + A’(x)O(x, , t)x dx,

and a similar result is obtained for

w,(, t)
Q(x, , t)A() --- dNow, using (2.14),

+(0 t)WA + +w,(O, t)TA(O)Q(O, , t) w(O, t)TA (O)Q (0, , t) + w, (O)Q (0, , t)

w,+(O, t)T(DSA-(O)Q-(O,, t)+ A +(0)Q+(0, , t)),

and a similar calculation applies to Q(x, 0, t)A(O)w,(O, t). Also, using (2.15),

w,(1, t)TA(1)Q(1, , t)
+ (1)Q (1, , t)w,(1,t)TA (1)Q (1,,t)+ w,(1, t)TA + +

w;(1, t)T(A-(1)Q-(1, , t) + DTA+(1)Q+(1, , t))
(4.7) + u,(t)TDTA+(1)Q+(1, , t)

W,(1,t)T(A (1)Q (1,,t)+ DTA+(1)Q+(1,,t))

w,(x,t)rQ+(x,l,t)dx A+(1)DU-1DTA+(1)Q+(1,,t)

(using (3.7) and (4.1)).

A similar calculation applies to Q(x, 1, t)A(1)w,(1, t).
We see then that if we impose upon Q the boundary conditions

(4.8)

(4.9)

(4.10)

(4.11)

Q+(O, , t) -(A+(O))-IDA-(O)Q-(O, , t),

Q +(x, O, t) -Q_(x, o, t)A-(O)D(A + (0))- 1,

Q-(1, , t) -(A-(I))-1DA +(1)Q+(1, , t),

Q_(x, 1, t) -Q+(x, 1, t)A +(1)DI(A-(1)) -1
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and use the formula (derived from (3.7), (4.1))

(4.12) u,(t) U-1DTA + (1) Q + (1, , t)w,(, t) d

for the control u(t), then (4.6) becomes

0 w,(x, t)T .cQ( , t)
A(x)--

cQ(x, , t)

Q(x, , t)
A() + (B(x)T A’(x))Q(x, , t)

+ Q(x, , t)(() A’()) + W(x, )

Q+(x, 1, t)A+(1)DU-1DTA+(1)Q+(1, ,t)lw,(,t)dxddt.
Thus the sum of the last two integrals in (4.4) is reduced to zero if Q satisfies the
boundary conditions (4.8), (4.9), (4.10), (4.11) and the partial differential equation

(4.13) A(x) + -A() + P(x, , Q),

where

(4.14)
P(x, , Q( t)) (B(x)T A’(x))Q(x, , t) Q(x, , t)(B() A’())

W(x,)+ Q+(x,I,t)A+(1)DU-1DTA+(1)Q+(1,,t).

The terminal condition (3.4) for v, which has the form

U(X, G(x, )w,(, t) d,

will be satisfied if we require

(4.15) Q(x, , l) G(x, ).

That v(x, t), as given by (4.1), satisfies

v v ff"t A(x)-x (BT(x) A’(x))v W(x, )w,(, t)d

can be verified directly. Moreover, with .our requirements on Q, (4.5)is valid and
takes the form

(4.16) J(u,, w,, tl Wo(X, O)Q(x, , O)w,(, o) dx d.

Our task, then, is to show that the system (4.13), (4.8), (4.9), (4.10), (4.11),
(4.15) has, in 0 _<_ x =< 1,0 __< =< 1,0 __< __< l, a solution Q(x, , t) sufficiently
well-behaved so that the above computations are meaningful. Assuming that this
can be done, the equation (4.12) will provide a "synthesis" of the optimal control
u,(t). The resulting closed loop system is (2.9) with boundary conditions (2.14)
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and

(4.17) w+(1,t)=DlW-(1,t)+ [-DU-DrA+(1)Q+(1,,t)w(,t)d.

The boundary condition (4.17) is of the form (2.19) with HI(X replaced by

(4.18) H(x,t) -DU-1DrA+(1)Q+(1,x,t)

and with the term Du(t) removed so the optimal closed loop system is of the type
discussed in Theorem 2.1 except that H depends on t. In any region where
[IH(x, t)l[ can be uniformly bounded, the results of Theorem 2.1 will still hold.

5. Local existence and uniqueness of Q(x, , t). If we think of the matrix Q
as a vector q of dimension r/z, the equation (4.13) assumes the form

8q
(5.1) A(x)-x A2() p(x q)= 0

where A and A2 are matrices of dimension n2 x n2. It is easy to see that the fact
that A is diagonal in (4.13) implies that both A l(X) and A2() are diagonal in (5.1).
(This can be verified by observing that if Q is a matrix with only one nonzero entry
then both A(x)Q and QA() are scalar multiples of Q if A is diagonal.) Then,
obviously, A1 and A2 are symmetric, so (5.1) is a system of symmetric hyperbolic
type.

The system is semilinear because the principal part of the equation,

q q q
e A(x) A(),

is linear in q only the function p is nonlinear in q. The nonlinearity of the equation
does not in itself introduce any really novel feature. But when we examine
p(x, , q) P(x, , Q), as given by (4.14), we see that no matter what the values of
x and are, P(x, , Q) depends in part upon boundary values of Q at x and at

1. This feature might be expected to cause substantial problems in proving
the existence and uniqueness of solutions of (4.13).

In the present instance, the special nature of (4.13) spares us from unsur-
mountable difficulty. Ordinarily, hyperbolic systems with two or more space
variables possess characteristic surfaces of dimension two or more. But if in an
equation of the type (5.1) the matrices Al(X and A2() can be simultaneously
diagonalized, then one can define a system of one-dimensional characteristic
curves and obtain existence and uniqueness results by integrating ordinary
differential equations over these characteristic curves just as one treats existence
and uniqueness problems for hyperbolic systems with a single space variable.
(See [3, Chap. V] for details in this latter instance.) Existence and uniqueness
proofs of this type are carried out within the framework of the C- (or L-) norm. In
such a setting the fact that P(x, , Q) depends upon values of Q at points other than
(x, , t) does not cause any real problems, as we shall see.

In our case A (x) and A2() are both already in diagonal form. If we let q
denote the entry in the ith row and jth column of the matrix Q and let p denote
the corresponding entry of the matrix P P(x, , Q), then (4.13) and (5.1) are
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equivalent to the following systems of rt2 equations"

q
i(X)-- j()-- nt- p}(X, , Q) O,

(5.2) ct

i= 1,2,...,n, j= 1,2,...,n.

We define the characteristics of the system (5.1) to be curves in the region
0 =< x __< 1, 0 =< =< 1, 0 =< __< having a parametric representation

{ dxi
)i(xi) dJ--)J(J)}(5.3) (x(t), a(t), t)

dt clt

When it is necessarySuch a characteristic curve will be denoted by the symbol ca.
to specify a characteristic passing through a particular point (x, {, t), we shall
write c}(x, , t).

If we consider the restriction of qa to a characteristic curve ca, namely
q}(xi(t), {a(t), t), we see that (5.2) can be expressed in the form

(5.4)
d

dt
q}(xi(t)’ a(t)’ t) + p}(xi(t), a(t), Q) O,

i= 1,2,...,n, j= 1,2,...,n.

Because we require a solution in the bounded region 0 =< x =< 1, 0 =< =< 1,
0 < =< l, we can make no further progress without consideration of the bound-
ary conditions (4.8)-(4.11). Attempting to take these into account leads one to the
notion of a chain of characteristic curves.

DEFINITION 5.1. Let 0 < 2 =< 1,0 __< __< 1,0 __< =< tl. A chain to (2, , ) from
the surface to, >= to > , is a sequence

TCO Cjl 7"f’l Cj2 TO2, Tf’m- 1, Cjm TOm

and points rc R with the following properties"of characteristic curves c

(i) cak joins rck_

(ii) re,, (2, , ) and to (Xo, o, to) for some Xo, o satisfying 0 __< Xo < 1,
0__<o__< .

(iii) c,k 1, 2,..., m 1, is a point on one of the surfaces x 0, x 1,
-0or 1"

(iv) if rc, k 1, 2, ..., m 1, lies on x 0 or x 1, but not on 0 or
1, thenj =j+l, and if rck lies on x 1,1 =< i+1 _-<P,P+ __< i =< n, while

if rc lies on x 0, p+ =< i =< n, __< ik =<p"
(v) ifrc,k= 1,2,...,m- 1, lies on =0 or = but not onx=0 or

x 1, the requirements are as in (iv) but with the roles of x and , and j, both
reversed"

(vi) if rc, k 1, 2, ..., m 1, lies on the intersection of a surface x 0 or
x with a surface 0 or 1, then it must be possible to approximate the

ik ,ik+l
k+l as closely as desired by chain segmentschain segment rc_

rc_ 1, ca^k , ,, , -agi +1,/ rc + 1, where (iv) or (v) applies at k and .
It is clear that not all chains are created equal. A further definition is con-

venient.
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DEFINITION 5.2. If any 7k, k 1, 2,..., m 1, lies on the intersection of a
surface x 0 or x with a surface 0 or 1, then the chain in question
is degenerate.

DEFINITION 5.3. The network of direct dependency of (, , ), denoted NDD
(, , ), is the union of all chains from the surface to (92, , ). The set A of
points (92, , ) for which NDD(92, , ) includes a degenerate chain will be called
the set of degenerate points.

The term "network of direct dependency" is motivated by the observation
that if we remove the term P(x, , Q) from our system, then (5.4) becomes

dq(xi(t j(t) t) 0
dt

and Q(92, , ) can then be computed directly from the values of Q(x, , 0) at the
initial points (x, , 1) of chains in NDD(2, , f) together with the use of the bound-
ary conditions (4.8), (4.9), (4.10), (4.11), provided (92, , ) is nondegenerate and Q
is unambiguously defined at (x, , tl).

The following lemma is important in our existence and uniqueness proofs.
LEMMA 5.4. There is a To > 0 such that whenever >= to- To, then every

chain from the surface o to a point (92, , ), 0 <__ x <= 1, 0 <= <= 1, contains
i.e.,m<3.at most three characteristic arcs cj,

Proof If there are four or more characteristic arcs in a chain, then that chain
includes the sequence

i2 i3T(’I Cjz, 72, Cj3, 3"

Assuming for the moment that the chain is nondegenerate, it is clear from
(iv) and (v) of Definition 5.1 that either 2 or J2 J3. Thus the characteristic

i2 and i3 lie on opposite sides of a plane through rt2, parallel to the t-axisarcs Cj2 Cj3
with an equation x const, or const., respectively. Since both rcl and 3 lie
on boundaries x 0, x 1, 0 or different from the one on which re2

i2 and i3 is at least Thus thelies, we conclude that the combined arc length of cj cj3
total length of the arcs in the chain is at least one. Since degenerate chains are
approximable by regular chains having more arcs, we conclude that the total
length of the arcs in any chain consisting of at least four characteristic curves is
at least 1.

Noting the representation (5.3) of the characteristics of our system and the
fact that the 2i(x) are uniformly bounded, we see that Idt/dal (a being arc length)
is uniformly bounded away from zero along any characteristic arc. If we measure
arc length starting with a 0 at to, a increasing as decreases, then there is
a fixed d > 0 such that

(5.5) dt/da <= -d.

Then, if we take To > d, all chains from the surface to to a point (92, , ) with

o T have a total arc length less than one and must, according to the above,
consist of at most three characteristic arcs. This proves the lemma.

COROLLARY 5.5. There is a nondecreasing positive integer-valued .]’unction
m(To) such that, for any To > O, a chainfrom the surface to to a point (, , )
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with >= to To contains at most M(To) characteristic arcs. Moreover,

M(To) <= 3To/d + 1].
The proof is clear.
The proof of the local existence and uniqueness theorem is much the same as

that of similar theorems in [3, Chap. V]. The main differences arise from the fact
that we must take boundary conditions and boundary values into account more
or less explicitly.

DEFINITION 5.6. The set Y ofsingular points is the smallest subset of 0 =< x < 1,
0 __< __< 1, < with the properties"

(i) (2, , ) Z if NDD(2, , ), NDD(2, 1, t) or NDD(1, , t) includes a chain
from the surface for which rco (x, , l) has the property x 0, x 1,
=0or-l;

(ii) (2, , ) Z if NDD(2, , ), NDD(2, 1, t) or NDD(1, , t) contains a chain
which includes an arc lying in 2.

A little reflection, combined with the use of (iv) and (v) in Definition 5.1,
shows that the set 2; of singular points consists of a countable collection of two-
dimensional C 1-surfaces S, only finitely many of which meet a region

/To {(X, , t)10 _--< X __< 1,0 <__ =< 1,t To __< < tl)
for To > 0. If (x, , t) lies on such a surface S, then one of the sets of vectors

(2,(x), O, 1), (0, 1, O) or (1, O, 0), (0, 2j(), 1)

is a basis for the tangent space to S at (x, , t), for appropriate i, j, <__ <__ n,
l__<j__<n.

On the other hand, the set A of degenerate points is a countable collection
of C 1-surfaces S, only finitely many of which meet/To for fixed To > 0, with the
property that if a point (x, , t) S, then, for appropriate i,j, < < n, =< j < n,
the vectors (2(x), 2(), 0), (0, 0, 1) form a basis for the tangent space to S at (x, , t).

Let To denote the space of matrix-valued functions defined on /To which
are continuously extendable to the closure of any region of RTo whose interior
does not meet Y A. That is, the only possible discontinuities of a function
(2 To are jump discontinuities across surfaces in : A. With the norm

Q Is s_up (max Iq(x, , t)l),
(X,,t)RT (EwA)

To becomes a Banach space. In To we define a closed subset

(5.6) ./V(G, M) {Qe 5To Q <-- M Glls}.
(The meaning of G should be clear even though G does not depend on t.)

We shall now show that the problem (4.13), (4.8), (4.9), (4.10), (4.11), (4.15)
has a solution (in a sense which we shall make precise below) in/ro if To > 0 is
chosen sufficiently small. In particular, we shall assume at the start that To < d
(cf. (5.5)).

We let O(x, , t) be an arbitrary function in the set dV(G, M). We construct a
mapping

(5.7) F" Q Q

in the following manner.
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Let (x l, 1, t) be a point on the terminal surface t with 0 =< x <__ 1,
0 < =< 1. Consider a characteristic c}(xl, , t) through this point, i.e.,

C}(X1, 1, /1) {(xi(t)’ j(t), t)l tl},
where xi(t), {a(t) solve

dx
dt

2i(xi), xi(t 1) x 1,

-() 2It)dt

meets one of the surfacesand is either t To or that value of < t such that c
x 0, x 1, { 0 or { 1, whichever is greater. For =< < we integrate
(5.4) over c with Q replaced by in the expression pS(x, , Q), thereby defining

(5.8) O}(xi(t), j(t), t) g(xl, 1) @ p}(xi(s), j(S), O)ds,

where G(x, {) (gS(x, {)).
In this way we obtain all values }(x, , t), (x, , t) Rro, which can be calcu-

lated by integrating along a single characteristic arc from the set {(x l, 1, t)] 0
N x N 1,0 N {1 N 1}. (We shall have to qualify this statement to a mild
degree, but we choose not to interrupt the train of thought at this point.) If
NDD(x, , t) contains only chains consisting of a single characteristic arc, we
assign (x, , t) to the set X

Next we let (x2, {2, t2) be a point in X which lies on one of the boundary
surfaces x 0, x 1, 0 or 1. Since NDD(x2, 2, t2) contains only chains
consisting of a single characteristic arc, 5(x2, {2, t2) is already defined for all pairs
i,j such that cS(x2, 2,t2) T lies in the region 2. Then the boundary
conditions (4.8), (4.9), (4.10), (4.11) are employed to determine the values of
O(x2, {2, t2) for pairs k, such that c(x2, {2, t2) Rr lies in the region 2.

Along such a characteristic c we again define by integration"

k

where iS To or that value of for which the characteristic c again encounters
one of the surfaces x 0, x 1, 0 or 1, whichever is greater. (Remember
that we are proceeding in the direction of decreasing t.)

Up to the present point, then, we have obtained all values (x, ,t),
(x, , t) o, which can be calculated by integrating along chains consisting of
at most two characteristic arcs, with the boundary conditions being used at the

con3unction of the two.arcs. (Again, we shall have to qualif this statement below.)
If NDD(x, , t) consists only of chains containing at most two characteristic arcs,
we assign (x, , t) to the set X2. Clearl X X2.

Finall we let (x3, 3, t3) be a point in X2 X which lies on one of the
boundary surfaces x 0, x 1, 0 or 1. By virtue of our definition of X2,

(x3, 3, t3) is defined if c(x3, 3, t3) ro lies in 3. The boundary condi-
tions are again used to define(x3 3, t3) for pairs k,/such that c(x3, 3, t3)
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lies in < 3, and we define

(5.10) c/(x(t), /(t), t) t(X3, 3, t3) -b- p(xk(X), /(S), 0)ds.

Now we have obtained all values c}(x, ,t),(x, ,t)e/w, which can be
calculated by integrating along chains consisting of at most three characteristic
arcs, with the boundary conditions being used at the conjunction of any two arcs.
Applying Lemma 5.4, we see that this set is, in fact,/To since we have taken To < d.
Thus we have determined all c(x, , t), (x, , t) e RTo, and hence the matrix func-
tion (x, , t)is defined there. Thus ( has been constructed from ( and the map-
ping (5.7) has been defined.

Now we state the qualification which we have been warning of all along. It
is quite possible that the boundary conditions (4.8), (4.9), (4.10) and (4.11) are not
satisfied by G(x, ). If such a problem arises in connection with G, then Q must be
discontinuous along some of the intersections of the surfaces x 0, x 1, 0,

with the surface l. Such discontinuities propagate along surfaces in
the set E of singular points.

At first glance it might also seem that the boundary conditions (4.8), (4.9),
(4.10) and (4.11) could be inconsistent, leading to discontinuities in ( along the
intersections of the vertical planes x 0, x 1, - 0 and - 1. Such dis-
continuities would propagate along surfaces contained in the set A of degenerate
points. Our construction allows for such discontinuities. We shall show in the
next section, however, that the boundary conditions (4.8), (4.9), (4.10) and (4.11)
are, in fact, consistent and that no such discontinuities actually arise.

Our definition of ,#’(G, M) also allows Q to have discontinuities at points
(x, , t).To f3 (E I,J A). These discontinuities in ( will produce discontinuities
in when a characteristic arc (xk(t), j(t), t) used in defining lies in a surface
along which is discontinuous or if ( is discontinuous along one of the boundary
arcs (xi(t), 1, t), (1, (t), t). The sets E and A have the property that all such dis-
continuities induced in Q again have their loci along the surfaces of E 12 A. We
grant the skeptical reader that this assertion is not quite obvious, but a careful
consideration of the way in which E and A are defined together with the form
taken by the boundary conditions will, we claim, lead him to the same conclusion.
A formal proof would be quite tedious and seems hardly warranted here.

The rest of the proof consists of making sure that the hypotheses of the
contraction fixed-point theorem are met by the mapping F in the set /I(G, M).
We shall try to be brief. The definition (4.14) of P(x, , Q) shows that there are
continuous positive functions Mo R __, R 1, M "R R such that

(5.) P(.,., Q) =< mo( Q ) Q ,

(5.12) P(’,’, Q)- P(’,’, Q2) =< MI( IQ / (22 ) (2, Q2

for all matrix functions Q, Q, Q2 in 2ro. Also, there is a positive .number/ such
that (cf. (4.8), (4.9), (4.10), (4.11))

(A +(0)) -IDEA-(0) =<
(A-(l))-IDEA+(1) =<
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the norm of such a matrix being defined as the maximum row sum of the absolute
values of its entries. Then we let (cf. (5.7))

(5.13) O(t) Q( ., ., t)Is, O(t) IIQ(’,-, t)l

and let O(t, 2 3) satisfy

(5.14) 0(tl,t2,t3) O(t,) G Is;

(5.15) dt= M(l)fl’ t2 < < tl;

(5.16) F/(t2-, t2, t3) =//F/(t 2 +, t2, t3)"

dO(5.17) dt= M(VI’ t3 < < t2;

O(t3-, 2, t3) /2O(t 3 +, t2, t3);

(5.19) dO
dt

Mo(O)O, To < < 3

It is clear then that for To _< =< tl,

(5.20) O(t) sup {O(t, t2, t3)
tl To <-t3 <-t2 <-tl

The equations (5.15), (5.17) and (5.19) correspond to integration of (5.4) over
characteristic arcs, while (5.16) and (5.18) apply at the conjunction of these arcs,
which occur at one of the boundaries x 0, x 1, 0 or 1. It should be
understood that from one to four of the last of these equations may be missing,
in general. If Q 4(G, M), then

and we have

O(t) MIIG , tl To < <= t,

f/(t To, t2,t3)<= ((]G + Mo(M G s)(MlG]s)(tl t2))/2

(5.21) + Mo(M IG ])(M G )(t2 t3))kt

+ Mo(M G )(MIIGII)(t3 -(t To)),

when all of the equations (5.14)-(5.19) apply. If any of the last equations are miss-
ing, as we have indicated is quite possible, the inequality (5.21) should be modified
in the obvious way.

Fix any value of M satisfying M > 1 +/ + ]./2. Then by taking TO suffi-
ciently small, it is clear from (5.21) that we can ensure

f/(t To, 2, 3) MIIG , t TO < 3 < 2 < t.
Then (5.20) and (5.6) show that Q e t/(G, M) and the mapping (5.7) consequently
takes the closed set dt/’(G, M) into itself.
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The contracting property of (5.7) is established in more or less the same way.
We assume (1 and 02 lie in A(G, M) and let their images under (5.7) be and
Q2. We set

(5.22)

(5.23)

and let (t, 2, t3) satisfy

(t) 02( ",’, t) 01( ", ", t) s’

(t) 02(’,’, t) 01(’’’, t) s’

(5.24) (t t2, t3) 0;

(5.25) ---d M (2MI G ,) 2 < <
dt

(5.26) (t2-, t2, t3) la(t2+, t2, t3)’

(5.27) "*- MI(2M G s) /73 < < /2dt

(5.28) (t2-, t2, t3) p((t3 +, t2, t3)"

(5.29) d_ M1(2M G )(, TO < < 3dt

Again, up to four of the last of these equations may be missing, in general. Then

(5.30) ((t) _<_ sup {(t, t2,t3)}, To _<_ =< 1.
tl To <=t3 <-t2 <-tl

Now it is clear that

(t, t2,t3)<= [((MI(2M IGl[s)(t t2))/ -+- MI(2MIIG s)(t2 /73))//

+ MI(2M G[[s)(t3 -(t To))] sup {(t)}.
tl-T<_t<_t,

(Again this inequality should be modified if some of the last equations (5.25)-
(5.29) are inapplicable.) Then if we choose To so that

TO < [(1 + / -+- fl2)M 1(2MI G ,)]-’,
it is clear from (5.30), (5.31), (5.22) and (5.23) that the mapping (5.7) is a contrac-
tion. Applying the contraction fixed-point theorem, we have proved the following
theorem.

THEOREM 5.7. If TO > 0 is chosen sufficiently small, the system (4.13), (4.8),
(4.9), (4.10), (4.11), (4.15) has a unique solution in

/ro {(x, , t)[0 < x __< 1,0 < g < 1, T =< < tl}

in the sense that the mapping (5.7) has a unique fixed point in the set U(G, M).
Remark. If Mo and M can be replaced by constants in (5.11) and (5.12), as

is the case when P(x, , Q) is taken to be a linear function instead of nonlinear as
in (4.14), then the choice of To depends only upon p, not upon Q(.,., tl)Is. Then
the above reasoning can be used repeatedly in intervals It To, tl], [tl 2To,
-To], It 3To, 2To, to obtain a global solution in 0 =< x =< 1, 0 =<

1, We shall have occasion to make use of this observation in 7.
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6. Discussion of smoothness properties of Q, w, and v. The existence proof
for Q(x, , t) outlined in the previous section actually constructs Q(x, , t) at points
(x, , t) /ro (Y U A). It is clear upon examination that the set of such points
has full measure in/ro- The "initial" members of the family E J A are surfaces
passing through one of the eight edges of the set 0 __< x =< 1, 0 _<_ =< 1, =< 1.

Each intersection of one of these "initial" surfaces with a two-dimensional bound-
ing surface of this region serves as a source curve for "secondary" surfaces--and
so ad infinitum. In the three-dimensional regions cut out by these surfaces,
Q(x, , t) will be continuously differentiable, provided only that A(x)6C1[0, 1],
B(x)[0, 1], as we have already assumed, and provided that G(x,)C,
W(x, ) CO in 0 < x < 1, 0 < < 1. The proof of this assertion follows more
or less standard lines. See [3] for comparable material dealing with linear hyper-
bolic systems in two independent variables x and t.

Differentiability, and even continuity, across surfaces S Z U A depends
upon certain consistency conditions being satisfied at the eight edges of 0 =< x __< 1,
0 _< <_ 1, < The consistency conditions along x 0, t x 1, t

0, t; 1, are requirements similar in form to (2.18) on the
boundary values of G(x, ) and its first order partial derivatives. If such require-
ments are not met, discontinuities in Q or its partial derivatives of first order will
be propagated along the surfaces in Z.

A complete study of the consistency of the boundary conditions (4.8), (4.9),
(4.10) and (4.11) along the intersections of the planes x 0, x 1, 0 and
is quite involved. The essential features of the argument, however, are quite simple.

Consider first the boundary conditions (4.8) and (4.9) applied at x 0, 0,
respectively. We need to show that these are in agreement along the line x 0,

0, =< l. Now the solution Q is constructed "backward" in time from l.

Thus the ’given data at a point (0, 0, z) is obtained from only those entries qj for
which the characteristic c(0, 0, z) intersects the region 0 <= x <__ 1, 0 =< _< 1,
=< for > z. This means 2i(0) < 0 and 2j(0) < 0, from which we infer that the

"given" data at (0, 0, z) is the matrix Q-(0, 0, ). Here we combine the equations
(4.3) in the form

Q- Q;
Q= +Q_+ Q+

By letting

A __+ (0) -(A + (0))-1DA (0),

A + (0) (A + (0))T

the conditions (4.8) become, at (0, 0, z),

(6.1) Q+(0_ ,0, z)= A+(0)Q-(0_ ,0, z),

(6.2) + + -(0 0 z)Q+(0,0, z)= A_(0)Q+

while the conditions (4.9) become

(6.3) Q + (0, O, z) Q (0, o, z)A + (0),

(6.4) +(0 0 z) Q +(0 0 z)A Y (O).Q+
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Conditions (6.1) and (6.3) are in agreement with the fact that Q(0, 0, z) must be
symmetric., for

(Q+_(0, 0, )) (Q-(0, 0, ))(A _+ (0))

Q -(0, 0, z)A

_
(0) Q

_
(0, 0, z).

Substituting (6.3) into (6.2) and (6.1) into (6.4), we obtain

+(0 0 ) A +Q+ _(0)(Q (0,0,)A(0))
and

Q+(0 0 z)= (A +(0)Q-(0 0 ))A+(0)+

+(0, 0, z) is unambiguously determined as a symmetric matrix. Thusso that Q+
conditions (4.8) and (4.9) are consistent. The consistency of (4.10) and (4.11) along
x 1, 1, __< is established similarly.

Now let us consider (4.9) and (4.10) along the line x 1, 0, __< tl.
Reasoning as before, the "given" data at a point (1, 0, ) is the matrix Q+(1, 0, ).
Letting

A_(1) _= -(A-(1))-IDA+(1),

we rewrite (4.9) as

(6.5)

(6.6)

and (4.10) as

(6.7)

(6.8)

Q

_
(1, o, z) Q -( 1, o, z)A; (0),

+ + -(0)Q+(1,0, z) Q_(1,0,)A+

Q-_(1,0, ) A(1)Q+(1,0, z),

+(1 0 z)Q+(1,0, z) A+(1)Q+

The equations (6.6) and (6.7) determine Q++ (1, 0, z) and Q- (1, 0, z) in terms of
Q+(1, 0, z). Substituting (6.6) into (6.8) and (6.7) into (6.5), we obtain

QT+(1,0, z) A_(1)(Q+(1,0, z)AT(O))
and

Q_(1,0, ) (A(1)Q+(1,0, z))A(0),

and thus the conditions (4.9) and (4.10) are consistent along x 1, 0, __< t.
The consistency of(4.8) and (4.11) along x 0, 1, __< tl is established similarly.

We see therefore that the boundary conditions for Q are in agreement with
each other and no discontinuities in Q or its partial derivatives are induced along
the intersections of the planes x 0, x 1, 0, 1. This means that the set
A of degenerate points is not the carrier of any discontinuities of the solution Q.
Any such discontinuities must arise from failure on the part of G(x, ) Q(x, , tl)
to satisfy consistency conditions on the intersections of the planes x 0, x 1,

0, with the plane l. In particular, if G and its partial derivative
satisfy appropriate conditions, similar in basic form to (2.18) but somewhat more
complicated (such conditions are certainly satisfied when G(x, ) O, an impor-
tant case), then Q(x, , t) will be a C-solution of (4.13), (4.8), (4.9), (4.10), (4.11).
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Assuming Q(x, , t) to be of class C and anticipating, for the moment, the
result of the next section, that Q(x, , t) is defined in the whole domain 0 =< x =< 1,
0 =< =< 1, 0 =< =< l, we can discuss the smoothness properties of the optimal
solution w,(x, t) and the adjoint solution v(x, t).

Let us suppose first of all that Wo(X), the initial state for w,(x, t), is of class C 1.
Now w,(x, t) satisfies (2.9), (2.14), (2.16) and (4.17), the latter being equivalent to
(2.15) when u u, as given by (4.12). The consistency conditions for w, at x 0
are just the first and third equations of (2.18), and the consistency conditions at
x are obtained by substituting (4.12) (with w, replaced by Wo) and (4.18)
into the second and fourth equations of (2.18), viz"

+ H (x, O)wo(x) dx,

A +(I)--v--(1)+ B+(1)w-(1)_ 4- B ++(1)w0(1)+

(6.9) DI[A-(1)dwdx (1)+ B (1)w(1)4-

+ L-gV(x, O)WO(X 4- Hi(X, O) A (x) + Bwo(x dx.

If these conditions are all fulfilled, then w,(x, t) will be of class C 1. If not, then
w,(x,t) will be piecewise C 1. Now the first and third conditions of (2.18) will
automatically be satisfied if Wo(X represents the terminal value of a solution of
(2.9), (2.14), (2.15) (perhaps without any control action, i.e., u(t) =_ 0) during a
time interval : =< 0. So these conditions might normally be expected to be
satisfied. It would seem, however, that the satisfaction of the conditions (6.9)
would have to be regarded as an exceptionally rare coincidence in practice. Thus
piecewise C-solutions w,(x, t) appear to be the "nicest" solutions which one can
regard as typical in the application of this theory. (Of course, if Wo(X) is merely of
class Lz[0, 1], the same will be true of w,(x, t) for each => 0.)

Since v(x, t) is given by (4.1) and, by (4.8) and (4.10), the columns of Q satisfy
the boundary conditions (3.5), (3.6) imposed on v, and since the inhomogeneous

W(x, )w,(, t) d is a continuous function of x, even if w,(x, t) isterm -0
merely of class L2, one can conclude without difficulty that v(x, t) is of class C
if Q(x, , t) is of class C 1.

Even if G(x, ) does not satisfy the appropriate consistency conditions at
tl, the assumptions on W and G made following (3.1) guarantee that Q(x, , t)

will be piecewise C throughout the region of existence established in 5. This is
all we shall need to assume in 7.

7. Global existence and uniqueness of Q(x, , t). We shall now show that the
solution Q(x,,t) of (4.13), shown in 5 to exist for 0 __< x __< 1, 0 =< =< 1,

T =< _<_ 1, provided T > 0 is sufficiently small, actually exists for 0 =< __< tl.
The method used is similar to the one in [12], where ordinary differential equations
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of Riccati-type whose solutions are operators in Hilbert space are studied. We
need first of all the following lemma, which is also useful in 8.

LEMMA 7.1. For an arbitrary feedback control of the form

(7.1) a(t) K(x)w(x, t) dx,

with K(x) a continuous r n matrixfunctionfor 0 <= x <= 1, andfor a costfunctional
J(W,o, u, to, 1) defined by

J(Wto, U, to, tl)

(7.2)

w(x, t)r W(x, ()w((, t) dx d + u(t)r Uu(t) dt

+ w(x, tl)rG(x, )w(, tl) dx d

(where it is understood now that w satisfies (2.9), (2.14) and (2.15) with w(x, to)
=_ Wo(X)), the cost is given by

(7.3) J(w,o, fi, to, l) W,o(X)rO_.(x, , to)W,o( dx d,

where Q(x,,t) satisfies (4.15), (4.8), (4.9), (4.10), (4.11) and (4.13) with
P(x, , Q( t)) replaced by

(7.4)
P(x, , Q( t)) W(x, ) K(x)TUK() K(x)TDTA +(1)Q+(1, , t)

Q+(x, 1,t)A+(1)DK().

This lemma is proved by replacing w. in (3.4), (4.1) and related formulas by
w and replacing Q in (4.1) by Q. The calculations then proceed as in (4.6), (4.7)
with fi, as given by (7.1), replacing u., as given by (4.12).

The fact that the partial differential equation for Q differs from (4.13), the
equation for Q, to the extent that P(x, , Q(.,., t)) is replaced by P(x, , Q(.,., t))
leads to considerable simplification, for now/3(x, , 0(’, ", t)) is an affine (linear
plus constant) function of Q for fixed x and . In this case, the results of 5 and
6 apply, but the functions M0 and M1 of(5.11) and (5.12) can be taken to be con-
stants. The choice of To is then independent of Q(.,., tl)lls. Therefore, one may
repeat the arguments of the proof of Theorem 5.7 in successive intervals
It1 To, tl], It1 2To, tl To],..., [t (k + 1)To, tx kTo],.., of the same
length. Thus one covers, in a finite number of steps, the interval [0, tl], and we
obtain the global existence and uniqueness of a solution Q(x, , t). Throughout
0 < x <__ 1, 0 <= <= 1, 0 <= <__ t, Q(x, , t) will have the same properties indi-
cated for Q(x, , t)in 6.

Let the function K(x) be fixed, e.g., K(x)= 0 will suffice. Then the cost
J(wo, u., to, t) associated with the optimal control u.(t) must be less than or
equal to the cost associated with the control (7.1), by the definition of optimality.
Thus we conclude from (4.16) (replacing 0 by to) and (7.3) that for each initial state
Wto(x)L2[O, 1] we have, provided 0 __< to < tl and Q(x,,t)is defined for
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0<x<= 1,0<<= 1, to<t<tl,=

fo fo o.

Consider the diagonal entries qi,Oi of Q, (. Any discontinuities of these
functions must occur along a surface S having (-2(x),- 2(),1) as a tangent
vector at all points (x, , t)e S. If at (x, , t) the vector (1, 1, 0) is also a tangent
vector to S, then any linear combination 1(1, 1, 0) / (X2(--,i(X),- ,i(), 1) will
likewise be a tangent vector at that point. If x , we can take a 2g(x)

’i(), (X2 1, and we find that (0, 0, 1) is a tangent vector to the surface. It
follows that any surface discontinuity of ql, or 01, which includes an arc of a line
x , const., must also have (0, 0, 1) as a tangent vector to the surface along that
arc. Then the discontinuity at such points (x, x, t) is equal to

(7.6) lim (qi(x- ,x + e,, t)- qi(x + e,x- , t)).

(A similar expression is obtained for 01.) But since Q(x, , t)= Qr({,x, t), the
diagonal elements ql satisfy

(7.7) qi(x, , t) qi(, x, t),

and we conclude that (7.4) is zero. Thus there can be no discontinuity of ql across
such a surface S. All other surfaces of discontinuity of qi meet a line x ,

const, at one point at most. Therefore there are at most finitely many points
along such a line where ql suffers a discontinuity. The same is true of 01- Now we
can prove the next lemma.

LEMMA 7.2. For any in an interal [to, l] such that a piecewise C-solution
Q(x, , t) of(4.13), (4.8), (4.9), (4.10), (4.11), (4.15) exists in/,o {(x, , t)10 =< x =< 1,
0<= <= 1, o <= <= l},wehave

(7.8) Oi(Xo, Xo, t) >= qi(xo, Xo, t), 1,2,..., n,

for all but finitely many Xo [0, 1].
Proof Let Xo, 0 =< Xo =< 1, be a point such that both 01 and ql are continuous

at (Xo, Xo, t). From the remarks above it is clear that this is true for all but finitely
many Xo. Define an n-vector function W,o(X by

Wo(X =_ O, 0 <= x <_ 1, j:/: i;

Wlo(X) 1, Xo a <= x <__ Xo + a;
Wlo(X =-- O, 0 <= x <= xo- a, xo + a < x <= 1,

6 > 0 being chosen appropriately small. Substituting this function for W,o in
(7.5), and replacing to by t, we have

{.xo+a xo +a

(Of(x, , t) qi(x, , t)) dx d{ >= O.
xo-- xo-6

(Replace Xo 6 by Xo or Xo + 6 by Xo if Xo 0 or Xo 1, respectively.) Since
(Xo, Xo, t) is a point of continuity for both i and ql, this can be true for all small 6
only if (7.8) is true, which completes the proof.
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LEMMA 7.3. Let (Xo, o, t), 0 =< Xo =< 1, 0 < o --< 1, to <= <= (t o as defined
1 < i< n, <j< n. Thenin Lemma 7.2) be a point of continuityfor qj

(7.9) IqS(xo, go, t)l =< sup {qll(X, X, t)}.
O_<x<l
l_l_n

Proof The discontinuities of q!i(x, , t), for fixed t, occur along two-dimensional
curves in the planar region 0<x< 0<< Thus we may approximate
(Xo, o) as closelyas we please by p?ints (2, ) such that q, q and q are continuous
at the points (2, , t), (2, 2, t) and (, , t), respectively. We define

Wto(X) =-- O, 0 <= x <= 1, k =/= i,j;

Wlo(X 1, (5 <= x <= + 6;

Wlo(X) O, O <= x < 6, + 6 < x <= 1;

_-< _-< +

W{o(X O, 0 <__ x < -- 6, + 6 < x <= 1.

From (3.1) and the positivity conditions on W(x, ) and U, it is clear that

f Wo(x)TQ(x, , t)Wo() dx d > O,
0 0

which, in the present case, becomes

(7.10)

qi(x, , t)dx d + qi(x, , t)dx d- - - -2 q}(x, , t)dx d >= O.

Clearly (7.10) can be true for all 6 > 0 only if

2q(., , t) __< qi(, , t) + qj(, , t),

whence, using Lemma 7.2,

q(, , t) =<
(7.11)

sup {qll(X, X, t)}
O<x_<l
l_lZn

sup {ll(X, X, t)}.
O<x<l
<l<n

Letting (, ) approach (Xo, o) through values satisfying the above continuity
t) we conclude that (7.9)requirements, and using the continuity of q at (Xo, o,

holds, and the proof is complete.
We are now able to prove the following theorem.
THEOREM 7.4. The semilinear system (4.13), (4.8), (4.9), (4.10), (4.11), (4.15) has

a piecewise C 1-solution Q(x, ,t) in the entire region 0 <= x <= 1, 0 <= <= 1,
O<_t<=tl.
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Proof We already know that ((x, , t) exists throughout the indicated region
and it clearly satisfies an inequality

Oils <- K(t,)

for some constant K(tl) depending only on tl. Then Lemma 7.3 shows that

QII K(t)

in any region 0 =< x =< 1, 0 =< =< 1, to -< < tl, where the solution Q of (4.13)
exists. This a priori estimate allows one to replace the functions Mo and M in
(5.11), (5.12) by the constants Mo(K(t)) and Mx(2K(tx)). One then obtains the
global solution by considering successive intervals It1 (k + 1)To, tl kTo] as
observed in the remark at the end of 5. This completes the proof.

With Theorem 7.4 established, we can now summarize our work so far.
THEOREM 7.5. Consider the optimization problem of 3. The unique solution u,

of this problem is generated by thefeedback law

u,(t) -U-’DTA+(1) Q+(1,,t)w,(,t)d,

which holds almost everywhere in 0 <= < x, Q(x, , t) being the piecewise C-
solution of (4.13), (4.8), (4.9), (4.10), (4.11), (4.15). Moreover, the minimal cost,
realized with this control, is given by (4.16).

8. Remarks concerning the optimization problem on the infinite interval. In
the previous discussion we have shown that the solution Q(x, , t) of (4.13),
(4.8), (4.9), (4.10), (4.11), (4.15) exists for 0 <= x =< 1, 0 < =< 1, 0 _<_ <_ tl. Let us
identify this solution more precisely by calling it Qt,(x, , t). There is no restriction
on other than tl > 0, so we may consider also solutions Qt2(x, , t) for t2 : tl.
Since the equation, boundary conditions and terminal data are independent of t,
it is clear that for 0 __< x __< 1, 0 __< __< l, t2 > t,

(8.1) Qt2(x, , + (t2 tl) Qt,(x, , t).

It is then natural to define

(8.2) Q(x, , t) Q,(x, , o).

We now make a further assumption, namely,

(8.3) G(x, ) O.

It should be noted that this guarantees that Q(x, , t) is of class C.
LEMMA 8.1. If(8.3) holds, then for any vector function wo L2[0, 1],

(8.4)

WO(X)TO(x, , t2)Wo()dx d > WO(X)TO(x, , t)

Wo() dx d, 2 <tl.
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Proof If U and/./2 are the optimal controls relative to the costs J(wo, u, 0, tx)
and J(wo, u, O, t2) respectively, then

(8.5)
J(w’ u2, O, t2) _>_ J(wo, u2 O, tx)

_> J(wo, u O, tl).

(The condition (8.3) is used in establishing the first of these inequalities.) Then (8.4)
follows from (8.5), (4.16) and (8.2).

COROLLARY 8.2. If (Xo,.o, tl) and (Xo, o, t2) are both points of continuity for
(the i, jth component of ), then

Iq(X0, 0, t2) q(X0, 0, tl)l sup {q//(x,x, t2) qt/(x, x, tl)}, 2 >
0_<x_<l
<l<n

The proof follows the lines of Lemma 7.3 with Q(x, , t) replaced by Q(x, , t2)
(x, , t).
THEOREM 8.3. If(8.3) is assumed and if there exists a positive constant K such

that

(8.6) sup {q’,(x,x,t)}_<_ K, 0_<_x_<_ 1, t> 0,
O_<x_<l
O<l<n

then there is a matrixfunction Qo(x, ) with
(i) Q(x, )T Qoo(,x), 0 <= x <= 1, 0 < < 1"
(ii) .[ Wo(x)TQoo(x, )w0( dx d >= Ofor each vectorfunction w o in L2[0, 1];
(iii) Qoo C([0, 1] (R) [0, 1]), and limt_oo ]Qoo(’,’) (’,’, t)ls 0.

Proof Consider the C1-functions g/l(x, x, t), 1 =< l=< n, 0=<x<__ 1, t> 0.
Lemma 7.1 implies that

(8.7) qtl(X,X,t2)- q’l(X,X, tl) => O, 0 =< x =< 1, =< l< n,

if 2 > Then using (8.6), (8.7) and the monotone convergence theorem, we see
that there is a nonnegative measurable function qoo,,(x) (=q,(x,x)) with

-t x t) asqo,(x) =< K, 0 __< x =< 1, which is the pointwise limit of q( x,
Fix a value of l, =<l__< n, and assume, without loss of generality, that

t02t(x) > 0, 0 <__ x =< 1. Consider a curve 7( 0, z) passing through a point (0, 0,
z 0, defined by

with

7(0, O, z) {(x, x, z)lO =< x =< 1, t,(x,

dt 1
0__<x=<l, t(0, z)=z.

dx 2,(x)’
Using (8.2) and (5.2) we see that

(8.8) dxgll(x, x, tl(x, z)) 2--pt(x, x, 0), 0 < x < 1

The assumption (8.6) together with (8.2) and the first inequality of (7.11) in the
proof of Lemma 7.3 provides a uniform bound for the right-hand side of (8.8).
Thus the family of functions (qll(.,., tl(’, t))]z _>_ 0) is an equicontinuous family
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on [0, 1]. Combined with the boundedness already assumed, the Ascoli-Arzela
theorem shows that there is a sequence zk --, oo such that

lim ll(X X, tl(X, r))

uniformly for 0 N x 1, for some limit function O,l(X). But, for each z,

(x, x, tl(X, z,)), z, t(1, z),

x t) converges monotonically to q,l(X) as , weand since, pointwise, ql( x,
are able to conclude that

lim Ilqo,l(" tl( ", t) O.

Corollary 8.2 then completes the proof of the theorem.
THEOREM 8.4. Let the hypotheses of Theorem 8.3 hold. Then Q(x, ) is a

solution of the boundary value problem consisting of the equation

(8.9)
c3Q c3Q

A(x)-z-- + -z-A() + P(x, , Q)= 0

and the boundary conditions (4.8), (4.9), (4.10)and (4.11)(altered in the obvious way).
The equation (8.9) is satisfied by Qo(x, ) in the sense that for any point (x2, 2) on
a curve described by

{( dx
2j(__j(X)) --}(X )}i(X)

,1

we have

fl
2 PS(x 5(x) Qo)

dx.(8.11) qo,j(X2, 2) qioo,j(X1, 1)
hi(X

Proof Let t > 0 and let 7(Xl, x, l) be a characteristic curve for (cf. 711 in
Theorem 8.3) passing through (x l, 1, 1). The parametric description is (for
conveniently chosen tl)

j {(xi(t), j(t),t)lt t,xi(tl)= x1,
(8.12)

axe(t) ;(x;(t)) ai(t)
,((t)));(tl) 1,

dt dt

It is clear that in (8.12), j can be written in the form j(Xi) and

dj(xi) /j( j(xi))
dx i(Xi)

The curve 71 will pass through (x2, 2, t2) for some value of t2. We may without
loss of generality assume t2 > l. (Otherwise we merely reverse the roles of the
indices and 2.) From (5.2) and (8.2) we have

O(X2, 2, t2) }(X,, 1, tl) p(xi(t), j(t), O)dt.
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Since x is a monotone function of t, one can change variables to obtain

p(x j(t(xi)), O)q(x2, 2, t2) q(x,, 1, tl) dxi"

Now we let (and consequently 2 also) tend to + . The uniform convergence
of O(x, , t) to Q(x, ) implied by Theorem 8.3 gives (noting that j(t(xi)) can be
written (xi))

f P(x, }(x), Q)q2,(x, ) q2,(Xl, ) axi,

which is equivalent to (8.11), thus completing the proof of the theorem.
In the theory of the quadratic performance criterion for ordinary differential

equations [7, [12], [4, the importance of Q lies in the fact that it can be used
to obtain optimal fixed-form (non-time-varying) linear feedback control policies.
In the present case this is also true. One can prove the following theorem in much
the same way as the comparable theorem is proved in [12].

TnOM 8.5. Let the hypotheses of Theorem 8.3 hold. Then the fixed-form
linear feedback control law

(.3 u,( u-+( (, w,(, 0

synthesizes the optimal control uofor the system (2.9), (2.14), (2.15) relative to the
cost functional

J(wo, u, ) w(x, t)rW(x, )w(, t) dx d + u(t)rUu(t) dr.

As an example of a system for which Theorems 8.3-8.5 are valid and useful,
we study the equation of motion for a nonhomogeneous vibrating string:

(8.4) p(x)
t ox p(x) o, p e c[o, 3, p e c1[o,

We impose boundary conditions

# # o NO or Bo=O,(8.) o(O, t) + o(O, ) o, o

(8.16) a-(1, t) + fl, x(1, t) u(t),
fll

The scalar function u(t) is the control variable. The condition ao/flo <= 0 or flo 0
ensures that no energy enters the system at x 0, while the condition a/fi > 0
implies that there definitely is a loss of energy (presumably due to friction) at
x 1 when u(t) O. If(8.14) is reduced, in the usual way (see, e.g., [18]) to a first
order system

(8.17)
w + 0 w/p(/p(x) w + + b+(x)_ b+(x)]+ w +
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for appropriate b (x) b + (x) b + (x) and b ++(x), then the boundary conditions (8.15),
(8.16) become

0,(8.18) o flo w-(0, t) + + w
(0) (0) w/2p(O)

o /30 w-(1,) + + w (1,t)= u(t).(8.19) w/Zp(1 w/2p(1 w/2p(1 w/zp(i

It is shown in [18] that if(8.15) and (8.16) hold there are continuous functions
k- (x), k + (x) such that if one sets

(8.20) fi(t) [k-(x)w-(x, t) + k+(x)w+(x, t)] dx,
o

the resulting closed loop system has a sort of damped periodic behavior. More
precisely, there is a fixed T1 > 0 such that solutions of this closed loop system obey

(w-(x, + TI))) w-(x, t))) ,7[ < 1.(8.21)
w+(x, + T =7 w+(x,

Rewriting (8.20)in the form

fi(t) K(x)w(x, t) dx,
o

we can compute the cost associated with the control (8.20) in the same way as
we did in Lemma 7.1. For the resulting cost matrix 0(x, , t) and optimal cost
matrix Q(x, , t), we have

I f Wo(X)T(O(X, , O)- Q(x, , 0))Wo()dx d >= O.. o ,d 0

As noted at the beginning of this section, this can be done for any t > 0, so we
write

O.

Then we have (cf. (8.2))

f f Wo(X)(O(x, , 0)- (x, , tl))wo()dx d >= O,

whence

(8.22) Oll(X X tl) =Ot, l,(x, ,0), >0 I= 1 2 n.

Now the "periodicity" (8.21) implies that

O,,(x, , t kT) (1 + ?,2 + + 72(-1))0tl(X , tl T,)

for all positive integers k and for any > 0. Since the 0 increase as decreases,

(8.23) q,,(x, x, t T)
k=0
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for all tl > 0. Since the system (4.13) is autonomous, the right-hand side of (8.23)
is independent of l. Setting

sup {qt,(x, x, tl T)},K
-7

2 o_<_<
<l<n

we have

Ot(x x 0)< K t > 0

Then, via (8.22), we have (8.6), so that the principle hypothesis of Theorem 8.3 is
established. Thus Theorems 8.3, 8.4 and 8.5 do indeed apply to (8.14), (8.15) and
(8.16).

It seems reasonable to conjecture that results comparable to the one obtained
in this example should be fairly generally obtainable whenever the uncontrolled
system is exponentially damped. However, obtaining a result as specific as that
of Theorems 8.3 and 8.4, where Qo(x, ) is uniformly bounded, may well be fairly
special. The difficulty lies in obtaining a dominating ( which is uniformly
bounded. The boundedness of ( as constructed in Lemma 8.7 has been proved
making essential use of (8.21). We hope to return to this problem in a later paper.

We have reason to believe that the feedback form (8.13) for the optimal
control u,(t) may be of considerable practical interest. The matrix function
-U-DrA+(1)Q+(1, x), 0 =< x =< 1, provides a feedback profile, showing what
"weight" is assigned to each state component, according to its spatial location.
It is, of course, impossible to measure the complete system state w,(x, t), as
would be required in order to compute the integral on the right-hand side of
(8.13). But the feedback profile matrix would seem to provide an indication of
advantageous sensor locations. Those locations correspond to points x in whose
neighborhood a component of the feedback profile matrix assumes relatively
large values. In this sense we are hopeful that the present theory may indicate a
useful design technique.

The matrix function Q(x, ) can be approximated numerically if one ap-
proximates solutions Q(x, , t) of (4.13) by a stable numerical technique in an
interval [0, t] for t sufficiently large. But this is a method which normally
converges rather slowly. It would be very helpful to have available numerical
procedures for attacking the partial differential equation (8.9) directly. Since the
equation (8.9) together with the boundary conditions (4.8), (4.9), (4.10) and (4.11)
constitute a nonlinear hyperbolic boundary value problem, we are entering here
upon rather unexplored mathematical territory.
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THE RITZ-GALERKIN PROCEDURE FOR PARABOLIC
CONTROL PROBLEMS*

R. S. McKNIGHT" AND W. E. BOSARGE, JR.{

Abstrnet. A systematic numerical approximation approach to the problem of minimizing an

integral cost functional subject to a parabolic partial differential equation constraint is discussed.
This problem is viewed as a standard variational minimization problem subject to nonholonomic
constraints and is treated using Lagrange multipliers.

A practical computational procedure for obtaining approximate solutions to this problem is
developed. Error estimates for the control, state, costate, and cost functional are established under
appropriate smoothness and boundedness conditions. Also, explicit order bounds are obtained for
these estimates over generalized spline interpolating spaces.

1. Introduction. The theory involved in control problems for systems
governed by partial differential equations has reached a high level of sophistica-
tion. Beginning with the fundamental achievements of Butkovskii [7] and Wang
[21, many investigators have explored various aspects of the subject. Advances
in computational methods, however, have lagged significantly behind theoretical
developments. This lag is, in part, a consequence of the computational labyrinth
which surrounds numerical approximation of partial differential equations.

In the past, numerical techniques have involved various space, space/time,
and time discretizations. As exemplified in the work of Sage and Chandhuri 16,
[17], and Sage [18], finite difference methods usually produce simple computa-
tional algorithms. However, these schemes are unwieldy for proving conver-
gence and require an unrealistically small increment size to insure nominal
accuracy. Also, for many partial differential equations, finite difference schemes
often have stringent continuity requirements and only provide modest a priori
order convergence.

More recently, a few authors (see [2, 9, [11]) have studied several approxi-
mating schemes which seem to offer an attractive alternative to finite difference
methods. In hopes of stimulating further interest in approximating schemes, we
pursue the application of techniques in the spirit of Ritz and Galerkin methods
for directly discretizing distributed control problems. These techniques, elementary
in principle and application, produce solutions of high order accuracy from rela-
tively simple computational algorithms.

A variation of the basic Ritz method is introduced in two articles by Bosarge
and Johnson [3], [4]. In these articles they treat systems governed by linear
ordinary differential equations subject to a quadratic cost criterion. Smith, in
[19], succeeds in extending this method to systems governed by linear parabolic
partial differential equations. These investigators are among the first to seriously
consider Ritz’s method for control problems and to demonstrate convergence
using specific approximating spaces. By employing piecewise polynomial inter-
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polating functions, they prove that the suboptimal (approximate) control con-
verges to the optimal value with high order accuracy. The order bounds they
obtain are a substantial improvement over existing finite difference schemes of
equivalent computational effort.

Although the above method, known as the Ritz-Trefftz procedure, proves
very suitable for problems with linear equations, it cannot be extended directly
to general nonlinear systems. In a sequel to these studies, Bosarge et al. in [63
succeed in constructing a procedure genetically similar to the Ritz-Trefftz
approach but applicable to nonlinear systems. That approach, known as the
Ritz-Galerkin procedure, also provides a convergence result and is readily
adaptable to piecewise polynomial interpolating functions.

The extension of that Ritz-Galerkin technique to systems governed by non-
linear partial differential equations is discussed in this paper. Specifically, we
treat the problem of minimizing an integral cost functional subject to an equality
constraint which is described by a quasi-linear parabolic differential equation
under specific boundary and initial conditions.

Our main objective is to derive a priori error estimates for the difference
between the optimal and approximate solutions. To accomplish this, we actually
transform the problem of bounding the error expressions into a question in
approximation theory. These error bounds thus provide a convenient way of
proving the convergence of the Ritz-Galerkin approximations to their optimal
values.

If, for example, cubic splines are used in evaluating the error bounds, we
prove that the approximate control, state, and costate converge to the optimal
quantities, in norm, with order O(h3). Also, the approximate cost functional
converges to the optimal quantity, in absolute value, with order O(h6).

2. Problem description. Consider the second order controllable dynamical
system characterized by the equation

(u, v) -v + V. A(u, v, Vv) + B(u, v, Vv) 0,
(2.1)

(x, t) D (0, T],

where is a closed and bounded domain in R". Then v v(x, t) is the state of the
system and belongs to Vr, the state space; and u u(x, t) is the control function
and belongs to the space U, of admissible controls.

In addition, we assume that A is uniformly elliptic in the domain f (0, T];
that is, for all real vectors p (Pl, P2, Pn) and any v Vr and u U there
exist positive constants rc and q such that

p.
i,j= tx

Dipj
i=1

We also require that the behavior of (2.1) be well-posed (in the sense of
Hadamard) with respect to the initial and boundary conditions

v(x, O) Vo(X), x ,
(2.3)

v(x, t) O, x c3f, (0, T]
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We constrain VT and U to be real Hilbert spaces over f (0, TI such that

Vr -= W’S() (0, T]), R},
U -= {W’S(fl (0, T]),

for integers r, s >= 1.
We restrict the operator Y(u, v), for practical reasons, to map U Vw into VT.
Along with this governing equation, a cost functional is prescribed by

(2.4) J(u) G(u, v) dx dr,

which determines the "cost" of moving the system under the control action u.
Here G(u, v) is a real continuous function on (0, T].

We now formally state the optimal control problem.
Problem 1. Determine the control u* U such that if v* is the solution of(2.1)

with u u*, then the cost functional J(u*) is minimum for all admissible u e U.
Remarks. It is tacitly assumed that (a) A, B, and G are continuously (Fr6chet)

differentiable with respect to their arguments, inducing sufficient continuity on a
solution; (b) the control, u, is unconstrained in the space U; and (c) the terminal
time, T, is fixed.

3. Lagrangian formulation. Problem represents abstractly the "minimiza-
tion of a functional over a Hilbert space subject to a nonholonomic equality
constraint". The classical approach to solving problems of this form is with the
use of Lagrange multipliers. For this purpose consider the function 2(x, t) and
define the Lagrangian, L, as

(3.1) L(u, v;2) J(u) + (2, Y(u, v)) dt,

where 2 e V, the dual space of VT. (The inner product notation (,) is used
extensively throughout this paper without specific reference to the underlying
Hilbert space. In most cases it refers to L2().

In view of this definition, the theory of Lagrange multipliers provides the
following alternate definition of Problem 1.

Problem 1’. Given the nonlinear equation (2.1)and cost functional (2.4),
determine the functions u*, v*, and 2" such that the Lagrangian is extremized;
that is,

(3.2) L(u*, v* 2") max min L(u, v;2).
2VT uU

VT

Remarks. The function 2 actually belongs to V but, since Vw is a Hilbert
space, V is identical to VT.At the optimum values, we have L(u*, * *) J(u*),
which we henceforth abbreviate by J*.

W’"( (0, T]), for m and n integers, is the Banach space consisting of the elements of
L,( (0, T]) having generalized derivatives of the form DD. The norm is given by

Ilwllwr, IIOOw(x, t)llZ, dx dt
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Since the functions u, v, and 2 are unconstrained, an equivalent formulation
of Problem l’is given by the following.

Problem 1". Under the same assumptions as Problem 1’, determine the func-
tions u*, v*, and 2* such that

(3.3) ,L(u*, v* ;,*)(. 0,

(3.4) 6vL(u*, v*; 2")(. 0,

6xL(u*, v* 2")(. 0,

where the above symbols denote the partial Fr6chet derivatives of L by u, v, and
2, respectively, and (-) refers to admissible variations in the spaces U, Vr, and
Vr, respectively (denoted by A, and Av).

Assuming the existence and uniqueness of a solution to Problem 1, the
equivalence of these three problems is easily deduced from standard arguments of
Lagrange multiplier theory and the calculus of variations.

We now present the appropriate Lagrange multiplier theorem which pro-
vides a necessary condition for an extremum of L.

THEOREM 3.1. Let u* and v* be optimalfor Problem 1. Then there exists a jhnc-
tion 2 Vr which satisfies the following relations:

(3.6) A(u v 2) G, rA. V2+ B.2=0,

(3.7) F(u v 2)--2+ G rAV2 / B. + V.(ArxV2 Tu) 0,

subject to the terminal and boundary conditions

2(x, T) 0, x f,
(3.8)

2(x, t) 0, x e c3f, e (0, T],

where A, B, and G, and their gradients are evaluated at (u*, v*).
Proof The proof follows classical arguments in the calculus of variations

(Tzafestas [20] presented a thorough explanation of the necessary conditions
which is applicable to nonlinear equations).

We now turn our attention towards specifying a sufficient condition for a
local extremum. To find such a condition, we must first introduce a canonical
expression for the second derivative of the Lagrangian.

Define the Hamiltonian function, H, by

(3.9) H(u,v;2) fnGdx + (2, V.A + B).

As a result of the problem’s assumptions, H is continuous in u, v,/, vx, and 2x
and has continuous partial derivatives with respect to each of these arguments.
Substituting the above definition into (3.1), we obtain

L(u, v; 2) [H(u, v; 2) (2, v,)] dr.

The second derivative is formally given by

(2g(u, D;). E(ol 1), (2, 2)] 62H(u, v;R). E( ,/1), (0(2, 2)] dr,
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where Ca, 2 E A and/1,/2 EAv. The operator 02H is a symmetric bilinear form
which is evaluated at the triple (u, v, 2). Since we have imbedded our problem in
a Hilbert space, the operator c32H may be represented by a matrix form using inner
product notation. Set

H(u,v;2) H(u,v;2))]H"(u, v )
LH,(u, v 2) H(u, v 2

where, for example, H, denotes the second Fr6chet derivative of H with respect
to v and u (this matrix is commonly called the Hessian). Introducing this form,
we obtain

(3.11) 2L(u,u;).[(l,fll),(2,fl2) "(u,u;)
fll f12

From the classical theory of the calculus of variations, we know that the
"strong positivity" of the second variation is a sufficient condition for a local
minimum (e.g., see [12]). Following the example set for systems governed by
ordinary differential equations (see Lee and Markus [123), we enforce an appro-
priate positivity condition given by

L2,2(3.12) (u

where e A,, e A,, and u e N(u*), v N(v*) (neighborhoods of the optimum)
and a is a positive constant.

It is now a simple matter to demonstrate the saddle point behavior of the
Lagrangian.

THZOZM 3.2. Suppose condition (3.12) holds at a local extremum. Then the
Lagrangian possesses a degenerate saddle point at (u*, v*, 2*); that is,

(3.13) L(u*, v* ) L(u*, v*; 2*) L(u, v; *),

where u N(u*), v e N(v*), and 2 N(2*).
Proof The left equality follows directly from noting that the pair (u*, v*)

must satisfy (2.1) exactly. The right-hand inequality is a result of the strong
positivity condition. Expressing L in a Taylor expansion (see Dieudonn6 [10])
about the optimum, we have

L(u, v; 2*) L(u*, v* 2*) + 6L(u*, v*; 2*). [(u u*), (v v*)]

+ (1 0) "(, r; 2*)
v* v*

dt dO,

where Ou + (1 O)u*, Ov + (1 O)v*, and 0 < 0 < 1. The second term
on the right-hand side is zero by virtue of the necessary conditions. Applying
condition (3.12), we have

L(u, v; 2*) L(u*, v*; 2*) + a u u* ,.
Equation (3.13) is now apparent since the norm is positive.
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This local positivity condition along with the regularity of the point (u*, v*)
ensures that the saddle-point condition is also sufficient for optimality (see
Luenberger 14]).

COROLLARY 3.3. A sufficient conditionjbr the Lagrangian, L(u, v; 2"), to have a
local minimum at (u*, v*), given that the first variation vanishes there, is that the
second variation satisfy a strongpositivity condition in some neighborhood of(u*, v*).

Proof The proof is a direct consequence of the theorem.
We conclude this section by summarizing the key assumptions.
(A1) Equation (2.1) is well-posed with respect to the state space, Vr, and the

set of admissible controls U.
(A2) The Lagrangian is extremized at the triple (u*, v*, 4*) and satisfies the

standard necessary conditions

(3.14)

(3.16)

A(u*, v* 2") 0,

F(u*, v* 2") 0,

2*(x,T) 0, x, 2*(x,t)= 0,

r(u*, v*) 0,

v*(x, 0) Vo(X), x e f,

xcg, t(0, T],

v*(x, t) =0, x Sf, (O, T].

(A3) The second variation of the Lagrangian is strongly positive in some
bounded convex neighborhood of (u*, v*, 2"); that is, there exist neighborhoods
N(u*) U, N(v*) Vr and N(2*) Vr such that the operator H" satisfies

(3.17) "(u, v; 2)
u u
v

dt> a u-ul] 2
L2,2

where u e N(u*), v N(v*), 2 e N(2*), and a > 0.

4. Finite-dimensional subspaces. Suppose that the optimal quantities u*,
v*, and 4* can be approximated by functions which represent admissible com-
parison functions. These comparison functions are such that they are expressible
as finite linear combinations of a set of basis functions. Let the sets Du, Dr, and
D be admissible solutions for the functions u, v, and 4, respectively. Then, define
the sets C, S, and M as

C {ulu U n N(u*) n D,},
S {vlv Vr n N(v*) n Dv},
M {1 V N N(2*) N Dx},

where N(u*), N(v*), and N(2*) are the neighborhoods prescribed in Theorem 3.2.
Next, let CN(W), SN(W) and MN(W be finite-dimensional subspaces of C, S, and M,
respectively, which are spanned by a set of basis functions, {wi(x, t)}, 1, ..., l,
where l= [-I,+ nk, N {nk[k 1,..., n + 1}, and the n’s are the number of
basis functions associated with the kth coordinate. (This definition avoids multiple
indexing and tensor products--both of which would obscure the conceptual
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simplicity of this approach.) Symbolically this means

CN(W UNlUu(X, t) _. aiwi(x, t), a R
i=1

fS(w) vu]vu(x, t) , biwi(x, t), b R
i=1

MN(W) {/N[2N(X’ t) i=lCiwi(x’t)’ciERt
Finally, we choose the basis functions so that the sets

c (ulu C(w) },

are nonvoid (the bar notation above C, S, and M indicates the closures of these
sets). The finite-dimensional spaces Cu, Su, and Mu are thus closed and bounded
sets which contain the optimum. Therefore, unique best approximations to the
optimum quantities u*, v*, and 2* exist in these spaces (see Cheney [8]). Define

I u*ll inf uN- u*ll,
uzC

I-v*[I inf [Ivu- v*l,
UNeSN

z 2" inf AN 2*
.NMN

where fi, , are the "best norm-approximations" to u*, v*, and 2*, respectively.
(Specific norms will be designated at the appropriate times in our development.)

5. The Ritz-Galerkin approximation problem. Upon selection of the basis
functions, the inner products and time integrals in the approximation problems
may be carried out. What remains is an algebraic system which is characterized
by the residual (expansion) coefficients (that is, ai, hi, ci).

In this section we abstractly define the residuals for the full approximation
procedure. First, the residual for Problem is given by the following definition.

Problem 2 (Ritz residual problem). Under assumptions (A1)-(A3), determine
the control a e Cu such that

(5.1) J(a) min J(u)

subject to the constraints,

(5.2)
To(Wi(

". t), Y(/./, u)) 0,dt

(Wi(" 0), U(" O) l)O) 0

for 1, ..., l, and v e Su.
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Directly applying the Ritz method to Problem 1’, we obtain the following
result.

Problem 2’. Given the nonlinear system (2.1) and cost functional (2.4), deter-
mine the functions , , and 2 such that the Lagrangian is extremized that is,

(5.4) L(a, ;,) max min L(u, v;2).
,).MN UCN

vS

Remarks. At this suboptimum point, (, , ), we note that L(, ; ,) J(a).
For simplicity, we designate JN J(o).

Since Problem 1" is essentially in functional equation form, we apply
Galerkin’s method to obtain a companion problem to the one above.

Problem 2" (Galerkin residual problem). Subject to assumptions (A1)-(A3),
determine the functions a, , and , which satisfy equations (5.2) and (5.3), and

(Wi( t), A(u, 1); ,)) dt O,

(5.6) fo
r

(Wi( t), F(u, 1); i)) dt O,

(5.7) (Wi(" T),2(., T)) 0,

for/= 1,..., l, and (u, 1),2)ePN(=Cu x Su x Mu).
Since the above problems yield identical algebraic equations to solve, we

corporately refer to them as the Ritz-Galerkin residual problem. This problem
definition leads us to the finite-dimensional analogue of Theorem 3.2.

THEORFM 5.1. Let (, f, ) be the solution of the Ritz-Galerkin residual problem
for an arbitrary (but fixed) subspace Pu. Then the Lagrangian has a degenerate
saddle-point at (, f, ,); that is,

L(a, ;2) L(, ;,) <= L(u,

for any u CN, v Su, and 2 Mu.
Proof The proof is almost identical to that of Theorem 3.2.

6. Energy and variational inequalities. In preparation for the main results,
we first present several lemmas which are essential to the development. The first
two are consequences of energy inequalities and the other two yield bounds for
the first variations of the Lagrangian. The letters C and K are used as generic
constants and are not necessarily the same upon each occurrence.

LEMMA 6.1. Let (, f)) be the solution of the Ritz-Galerkin residual problem.
Then there exists a positive constant C such that

(6.1) I1 v*l w,,o < CEIl u* + v v*llw,L2,2

where 1) Su.
Proof The proof uses arguments similar to those in rl 1] and is therefore

omitted.
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LEMMA 6.2. Let (0, f), ) be the solution of the Ritz-Galerkin residual problem.
Then there exists a positive constant C such that

(6.2) ,- X* wo < C[ll- u* + - v* w,L2,2 w,o+ 2-2" ,]

where 2 Mu.

Proof The proof of (6.2) parallels that given in the previous lemma.
LEMMA 6.3. Let (u, v, 2) be an arbitrary triple in PN, and (u*, v*,2*) be the

solution of Problem 1’. Then there exists a positive constant K such that

(6.3) 6,L(u*, v*;2). (00 =< K 2 2* [w,o 0[[L2, 2,
where

Proof The Fr6chet differential of L with respect to u with increment is given
bv

6,L(u v 2)(e) (a, T-A, V2+ B,2,)dt.

From this equation we have,

6,L(u*,v*;)O.() (-A,*rV(2 2*)+ B,*(2 2"), a)dt

The term in parentheses is the norm in W’. This completes the proof.
LEMMA 6.4. Let (u, v, 2) be an arbitrary triple in PN, and (u*, v*, 2*) the solution

of Problem 1’. Then there exist positive constants K and K’ such that

(6.4)

and

(6.5) 6L{u*, v*;2). (fl) =< K’ 2 *llw,,ll/ w,o,

After applying the Cauchy-Schwarz inequality, we see that

(A*fV(2- 2"}- B*(2- 2"}, Vfl)] dr.

where A.
Proof The Fr6chet differential of L with respect to v with increment fl is

bL{u v 2) {fl) (Z, + G A + BZ, fl) dt,

* *(* v*;). () ( *) *v( *) + ( ),
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which produces equation (6.5) upon selection of the dominant constant. Equation
(6.4) is obtained by first integrating the term with (2- 2*)t by parts and then
simplifying.

7. A priori error estimates. We are now ready to present the bounds for the
errors committed in approximating the control.

THEOREM 7.1. Let (, f), ,) be the solution of the Ritz-Galerkin residual problem
in the space PN. Then there exists a constant C such that

(7.1)

where (u, v, 2) Pu is an arbitrary (butfixed) element.
Proof By recalling the result of Theorem 5.1, we have JN <-_ L(u,v;,).

Expanding by Taylor’s formula, we obtain

Ju <= L(u*, v* ;,) + 6,L(u*, v* )-(u u*) + 6vL(u*, v* ;/). (v v*)
(7.2)

+ (1 0) "(u, v, 2)
v* v*

dt dO,
o

where ,u Ou + (1 O)u* and v Ov + (1 O)v*. Since e MN, we can apply
Lemmas 6.3 and 6.4 to deduce

+K3(llu-u* 2 -t- Iv- v* 2 o)L2,2 W,

Applying Lemma 6.2 to the terms in , 2", and Lemma 6.1 to the subsequent
terms in v*, we conclude that,

Jv -< J* + K’lla u*l
(7.3)

/ u u* 2
L2,2

A corresponding lower bound for JN can be obtained by using the equality part
of (5.8). By applying Taylor’s formula to Ju L(, ;,)about (u*, v*, 2), we have

Ju L(u*, v*;2) + 3,L(u*, v*;2) (a u*) + 6vL(u*, v*; 2). ( v*)

+ ( 0) "(u, v;)
a a

v* ; v*
dtdO,

where u=0a+(1-0)u*, v=0+(1- O)v*, and 0<0 < 1. Employing
Lemmas 6.3 and 6.4 and, this time, the strong positivity condition, we obtain

J > J* KI[[/],-/],*[[w,o [/- u* v*L2,2 K2 2 2*llw,,l{ w,o
(7.4)

+ lla- u*ll 2
L2,2

Using Lemma 6.1 on the term with K, we see that

Ju > J* K’ a u* L2,2( 2 /* W1,0 -[-" 2 2* W,

KII,I- ,*llw 11 *llw, / 11- u*ll 2
L2,2
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Combining (7.3) and (7.4), we arrive at (after some inequality manipulation)

Ullu u*ll 2 / II- ;*ll 2 v* 2

--> -K4lla- u*llLz,2Ellu U* Z2, / IIv- v*l w&,, / 112
/ all u* 2

L2,2

Completing the indicated square, we arrive at

g’Ullu u* IL, / I1- *llw, / I1;- ;*llwG,’ 2

>= a{lla u’liE2,: (K4/2a)[llu U*IIL:,: + IIV V*IIW,I + II)

Taking the square root of the above inequality, we obtain the desired result.
From this fundamental error bound, it is a simple matter to show that similar

bounds hold for the state and costate. These results are summarized in the follow-
ing corollary.

COROLLARY 7.2. Let the conditions of Theorem 7.1 hold. Then there exist
positive constants C’ and C" such that

(7.6)

where

(7.7)

and (u, v, 2) PN.
Proof. The proof of inequality (7.5) is obtained by direct substitution of (7.1)

into (6.1). Likewise, inequality (7.6) is obtained by substituting (7.5) and (7.1)
into (6.2).

THEOREM 7.3. Let (0, f, .) be the solution of the Ritz-Galerkin residual problem
in the space PN. Then there exist positive constants K and K’ such that

(7.8) J* KrlZu <- Ju <= J* + K’ev,
where

(7.9) qu -112-

eN is given by (7.7), and (u, v, 2) Pu.
Proof The right-hand inequality is obtained by direct substitution of (7.1)

into (7.3) and by applying several norm inequalities. The left-hand inequality is
deduced from (7.4). If we complete the square, we have--- v- w,,

+ ’rEll- u*ll,- -(11’ ’* Iw,o + I1’- 2* w,,) 2.

We arrive at the desired result by dropping the squared term since it is always
positive.
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8. Interpretation of the estimates. For a specific application one usually
knows something about the structure of the solution and is able to make use of
this knowledge to obtain error estimates. However, if only the solution’s smooth-
ness is assumed, we can approximate no more accurately than with piecewise
polynomial functions.

In addition, several practical reasons exist for selecting these functions as a
basis set. Computational experience has shown that not only do they converge
rapidly to the exact solution on a coarse mesh, but also, are relatively insensitive
to roundoff errors. Also, for piecewise polynomial functions defined using a patch
basis, the algebraic system’s sparseness properties are important.

Of particular significance are the spaces of spline and Hermite interpolates
which exhibit attractive approximating properties and yield high-order error
estimates for the solution to our problems.

We first present the results for single-dimensioned space and then extend them
to multidimensional spaces.

DEFINITION 8.1 Let F, (s, m >= 1, both integers) be an m-dimensional space of
piecewise polynomials of fixed order s in a single variable. The Fm is charac-
terized by the properties:

(P1) There exists a linear operator Lm such that

(P2) For all f CS(I),

Lm" CS(I) F.

IILmf fll wu O(m-/p),

As noted earlier, two spaces which exhibit this property are the spline and
Hermite interpolating spaces.

Next, consider the closed rectangle on in R" defined by,

{(I 1, I2,’", I,)lai < Ii <= bi, 1,..., n},
where each ai, bi R. We then introduce a mesh on as follows"

=b i- 1,... n.7i ii XO XI Xri i,

Then the composite mesh is given by,

X7 7
i---1

Denote the largest interval in each mesh n by hg n ;i.e.,

h max Ix}+ X}[, 1,’’’, n.
j= 1,...,ri

O<=p<=s.

DEFINITION 8.2. Let FS be the space of multivariate piecewise polynomials
of dimension m over the partition denoted by the tensor product

where M {mili
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Reinterpretation of the two salient properties gives"
(PI’) There exists an M-linear operator Lt such that

/,. c() --,

(P2’) For all f e CS(),

Lmf f w O(h’-)
i=1

To simplify notation, we define the maximum order symbology.
DEFINITION 8.3. Let h and S be sets such that h {hl,h2,

S {81,82,..., Sin}. Then define O(hs) by
h.} and

O(hs) =_ O(h),
j=l

which as a consequence yields

O(hs-r) max {O(h’-
i=l,...,n

where r < min {si}.
For the case of splines and Hermites, there is a simple relationship between

the parameters h and the dimensional parameters mi. In spline spaces of cubic
order, Sm,, we have m r + 3, where r is equal to the measure of the interval
divided by hi. For cubic Hermites Hm,, we have m 2r + 3, where r is the
same as before. For this basic relationship between h and m we have the follow-
ing interpolation result.

LEMMA 8.4. Let ft, , and . be the spline (Hermite) interpolates of u*, v* and
2* respectively. Then thefollowing order bounds are valid for S {s
s > 1, r <= s
(8.1) ] u* w < O(hs- r),

(8.2) If) v* w5 <- O(hS-r),

(8.3) Iii- 2" Iwi <= O(hS-),

where f cS, f SSm, and . M.
We now interpret each of the error estimates derived in the previous section

with respect to a general spline interpolating space.
THFORFM 8.5. Let (Ct, g, 2) be the solution of the Ritz-Galerkin residual problem

over the spline space PSu. Then we can conclude that

< O(hs- ),(8,4t u* g,

(8.5) I1 v* Iw,o =< O(hS-X),

(8.6) 11 2"1 w,o <= O(hS-),

where S {si[i-- 1,..., n / 1} is the set of degrees of the approximating poly-
nomials and h is the mesh norm.
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Proof These results are obtained by substituting the appropriate order
bounds from (8.1)-(8.3) into inequalities (7.1), (7.5), and (7.6). That is, we choose
the triple (u, v, 2)e P to be the spline interpolates of (u*, v*, 2").

THEOREM 8.6. Let (, ), ) be the solution of the Ritz-Galerkin residual problem
over the spline space PSu. The

(8.7) J* O(h2(S-)).=< Ju <= J* -t- O(h2(S- )).

Proof As above, the result is established by direct substitution of the order
bounds (8.1)-(8.3) into inequality (7.8).

Remark. Observe that in this procedure the mesh norm h is determined from
a total discretization of both the state space, f, and a finite time interval, (0, T.
Consequently, the set S possesses the degrees of the approximating polynomials
in both x and t. Thus, for this full procedure, there is little distinction between the
spatial and time variables.

9. Conclusions. In this paper we presented a practical and theoretically
well-founded computational procedure for determining suboptimal controls for
distributed systems. A priori error estimates were derived for approximate solu-
tions. These error estimates were obtained in terms of fixed elements in some
arbitrary finite-dimensional approximating space. Complete generality of these
bounds was thus obtained so that a variety of approximating functions could be
used in the implementation of the procedure.

By interpreting these estimates in spaces of piecewise polynomials, we
established a measure of their rate of convergence. Although, theoretically, any
order of accuracy can be attained, practical limitations do exist. For piecewise
polynomial basis functions of higher degree than quintics, even on a coarse
mesh, the number of residual parameters is prohibitively large. Therefore, to be
competitive with finite difference schemes, piecewise cubic functions must
suffice.

The essential concept in this procedure was the reduction of the original
spatially distributed dynamical system to a more tractable "lower-dimensional"
system. For many problems, approximation methods exhibit several advantages
over finite difference schemes. First, unlike discrete solutions which must appear
in tabular form, approximation schemes deliver a continuous solution. Second, a
careful selection of the approximating functions can induce useful numerical
structure into the system, e.g., symmetry and sparseness of matrices. Finally, for
certain piecewise polynomial approximating functions a much coarser mesh
spacing is required than for discrete methods to obtain comparable accuracy.
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LOWER SEMICONTINUITY OF MULTIVALUED LINEARIZATION
MAPPINGS*

STEPHEN M. ROBINSON,- AND ROBERT R. MEYER{

Abstract. Many results in mathematical programming require lower semicontinuity of the multi-
valued function obtained from a constraint set by replacing the functions defining the set by their
linearizations about a point. In this paper we give a simple sufficient condition, involving the gradients
of the active linearized constraints, for this property to hold. We further show that this is the weakest
possible condition which uses only first order information at the point in question.

1. Introduction. Let g(x) and h(x) be differentiable functions from an open
set H JR" into N" and Nq respectively. The constraint sets of many mathematical
programming problems can be written in the form,

(1) {xlg(x) -<_ O, h(x) 0},
for suitable g and h. If we define a multivalued mapping T from H into N" by

Tx := {ylLg(x, y) <= O, Ch(x, y) 0},
where

Lg(x, y):= g(x)+ g’(x)(y x)

and Lh is similarly defined, then the set Tx (which could be empty) is often referred
to as the linearization of the constraint set (1) about x. Such linearized constraint
sets play an important role in a number of algorithms for solving nonlinear
optimization problems, and the continuity properties of the mapping T are
usually central to the analysis of these algorithms [3], [4], [6], [8]. If g and h are
continuously differentiable, it is easy to show that the restriction of T to closed
subsets ofH is a closed mapping (i.e., its graph is closed see 1, p. 1113). A property
of more interest, but less easy to prove, is lower semicontinuity of T: we say T is
lower semicontinuous at e H if for each open set Q R" such that Tff f"l Q 4= ,
there is an open neighborhood U(ff) in H such that for each x e U we have
Tx ffl Q . The lower semicontinuity of T is of fundamental importance in the
analysis of algorithms which employ the linearized set Tx as an approximation
to (1) [33, [4]. It is therefore of interest to have a simple and easily-applied criterion
for determining whether T is lower semicontinuous at a particular point . In this
paper we give such a criterion, which generalizes earlier results of Meyer [3, [4
further, we show that this criterion is in fact the best possible if only first order
information at (i.e., only values of g(ff), h(ff), g’() and h’()) is used.

2. Sufficient conditions for lower semieontinuity. For a fixed ff and a fixed
y eT, we let A c {1,...,m} be defined by A:= {ilLgi(X,y)=0}, and
I := {1, ..., m}\A. We denote by ga(X) the vector formed from those functions
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gi(x) for which e A, and define g1(x) in a similar way; note that this partition of g
depends upon 2 as well as ft. The linearized constraints active at are then defined
to be Lga( and Lh(2, ). Finally, for given positive integers p and r we say
that a pair of matrices B(p x n) and D(r x n) satisfies the LI (linear independence)
condition if

implies

uTB + VTD 0 and u >_ 0

u =0 and v=0.

It is shown in [7, Thm. 1.1.9] that this condition is equivalent to the solvability of
the system

Bx<_b,

Dx d

for every right-hand side (b, d) e [p+r.

The following sufficient condition for lower semicontinuity of T at a point
is a generalization of the positive linear independence condition of [3 (for in-
equalities alone) and of the condition given in [4].

THEORFM 1. Let g and h be continuously d!fferentiable functions from an open
set H " into m and (Rq respectively, and let T be defined as previously. Then the
mapping T is lower semicontinuous at H if one of the following holds"

(a) No linearized constraint is active at any point in T.
(b) There is a point f T at which some linearized constraint is active and

such that the pair [g4(), h’()] satisfies the LI condition.

Proof. Part (a) is intended to cover certain trivial cases, and we will consider
it first. If Tff K5 then T is trivially lower semicontinuous at ft. If Tff 4:K5 but
no linearized constraint is ever active, then for any e Tff we have Lg(, y) < 0
(there can be no equality constraints), and since Lg is continuous in x, for x in H
and close enough to ff we have Lg(x, y) < 0. Thus y e Tx, so T is lower semi-
continuous at ft. (This case arises only when g(ff) < 0, g’(ff) 0, and Tff N".)

For part (b), assume that at least one linearized constraint is active at some
point y of T, and that for that y the pair [g4(2), h’(ff)] satisfies the LI condition.
We shall construct a point .9 e T at which only the linearized equality constraints
(if there are any) are active. Since the LI condition implies that the gradients to
these constraints are linearly independent, it will follow that the gradients to all
the linearized constraints active at .9 are linearly independent; by [4, Thm. 1.1]
the mapping T must then be lower semicontinuous at ft.

If no linearized inequality constraints are active at y, let ,9"= y; otherwise
consider the system

g4(ff)z =< e,

h’()z O,

where e is a vector with in every component. This system is solvable because of
the LI condition. For sufficiently small positive 2, the point .9"= + 2z satisfies
LgA(Y,, )) < 0 (by the condition on z), Lgi(ff, ,9) < 0 (because Lg(, y) < 0) and
Lh(, )) 0, so that ,9 is the required point. This completes the proof.
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3. Nonexistence of a better first order criterion. In this section we prove that
the condition given in Theorem is the best possible if only first order information
at ff is considered. Before doing so, we prove a lemma which simplifies considerably
the problem of deciding whether or not the LI condition holds in Tx.

LEMMA 1. Let g(x), h(x), , and T be as in Theorem 1. Then exactly one of the
jbllowing alternatives holds"

(a) The LI condition is satisfied everywhere in T.
(b) The condition is satisfied nowhere in T.

We say that (a) holds vacuously if no linearized constraint is active anywhere in T
(in particular, if T 3).

Proof. Obviously (a) and (b) cannot both be satisfied. Suppose (a) does not
hold; that is, T =/= and there is some Tff such that the pair g4(), h’(ff)]
does not satisfy the LI condition. We shall prove that (b) is true. Let .9 be an

arbitrary point in T.. Since the LI condition does not hold at y, there must exist
u > 0 and v such that

ug)I) + h’ix)= 0,

with u and v not both zero. In fact, u must be semipositive, since otherwise the
rows of h’(ff) would be linearly dependent and (b) would then hold. Let C c A
be the set of indices corresponding to positive elements of u; let Uc > 0 and g(ff)
be formed from u and g(ff)in the obvious way. We have

Lgc(, ) <= O,

and

Lgc(, y:) O,

Subtracting, we find that

and

But,

Lh(, .9) 0

Lh(, y) O.

gb(x)(- 9) -<_ o

h’()(p 9) 0.

TUcgc(X)(i9 5) + vTh’()() 5:) O,

and since Uc > 0 it follows that gb(ff)(P- .9)= 0. Hence, Lgc(.,
+ g()(p ) 0, so each linearized inequality constraint whose index is in C
is active at .9. The existence of uc and v then implies that the LI condition is not
satisfied at 3. Since p was arbitrary, alternative (b) must be true. This completes
the proof.

THEOREM 2. Let g(x), h(x), , and T be as in Theorem 1. Suppose that at some
point T2 the pair [ga(), h’()] does not satisfy the LI condition. Then there are
quadratic functions (x) and [t(x), such that

g() g(X), g’(x) g’(X),
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and

() h(Y), ft’() h’(),

but the multivaluedfunction defined by

x "= {ylL,(x, y) <- O, LB(x, y) O}
is not lower semicontinuous at .

Proof. Let be as in the hypothesis of the theorem. Let b and d be vectors,
with d R and b having the same number of components as ga (note that A might
be empty; in that case b is not used). We do not specify at this point how b and d
are to be chosen, since different choices are required in various cases. We define

and

A(X) "= gA()+ g4()(X )- IIX ll2b,

I(X) "= g,() + g’t()(x ),

/(x) := h(ff)+ h’(X)(x )- IIx l12d,
where is the Euclidean norm. Let be defined as in the statement of the
theorem; then if x is an arbitrary point and y x, we must have, in particular,

L,A(X, y) <= O, L(x, y) O.

When written out, these become

ga() + g)()(x )- x 2b + [g)()--2b(x--)r](y--x)N0

and

or

h() + h’()(x ) x .ll2d + [h’(ff) 2d(x )W3(y X) O,

g4(.) (y ) =< b[2(x- )r(y_X)_ X-- 2

and

(2) h’(ff)(y 2)= d[2(x )T(y )_ IIx 1123,
where we have used the fact that Lga(ff y:) and Lh(,2, y:) vanish. We note for future
reference that

2(x )T(y )_ Ilx xll 2 Ily xll 2 Ily- ll 2.

In order to prove the result, we have to consider three cases, which are enumerated
below. The most general case is treated first.

Case 1. Tff {if}. By Lemma 1, the LI condition does not hold anywhere in
T; therefore since Tff {} we can find a point ff at which the pair
[g)(ff), h’(ff) does not satisfy the LI condition. Choose b and d to be vectors such
that the system

g’A()Z <= b,

h’(Y)z d
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has no solution. Then we have from (2) that for x e " and y e x,
g4(ff)(y 9) -<_ b[2(x x)r(y- )- I[x

(3) h’(X)(y

Let x be restricted to be of the form x + 2( ), for 2 > 0, and choose
e.= 2-ff /2>0. Thenfor y-2 <,

2(2 ff)r(x

> -22( y ff /2)1Y fill + (22 22)[19 ll 2

=(1-2)1-

and the latter quantity is positive for 0 < 2 < 1, so that we may divide both
sides of (3) by 2(x ;)(y ) [Ix [[2. The resulting contradiction shows
that there are x’s arbitrarily close to for which an open e-ball about y is excluded
from x, so that

Case 2. T;
Let

(4) *’= min { g)(;)y e, h’(f)y 0, y 1}.

If the minimum is not positive, then for sufficiently small positive 2 we have
+ 2y T;, where y is any feasible point of (4) with 0, and this contradicts

the assumption that T; {;}. Hence, there is a positive * such that for any
nonzero vector v " such that h’()v 0, we have for some depending on v,
g’(;)v *llv Now let x be such that 0 < IIx l[ < *; choose b e and
d 0. If y x, then from (2), using , we have

g()(y- ;) e2(x ;)(y- )- [[x- 2,

h’) )= 0.

Since x the above inequality shows that y- 0; hence for some i A
We have,

2 x-; ly-;

< * ly- ,
a contradiction. Hence, for 0< x-; <* we have x , and so is
not lower semicontinuous at

Note that in the treatment of this case there was no need to invoke (explicitly)
the fact that the pair [g(;), h’(;)] did not satisfy the LI condition.

Case 3. T;
Choose d to be a vector such that

h’(;)z d

has no solution" such a vector exists since the rows of h’(;) are linearly dependent.

and
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Let x " be arbitrary, and let y be any point in x (if such a point exists). As
before, we have L(x, y) 0, or,

(5) h’()(y ) (lly 2112 y xll2) d.

If the right-hand side of (5) is not zero, we can divide by the quantity in parentheses
to obtain a contradiction; therefore, we have

h’(X)(y Y) O.

However, since T2 {if} the columns of h’(ff) must be linearly independent, and
so we have y . Finally, substituting y 2 in (5) we obtain, as before, x .
Thus Tx unless x x, so T is not lower semicontinuous at . This completes
the proof of Theorem 2.

4. Effect of nonlinear constraints. With certain modifications, Theorem
can be made to apply to the more general case in which nonlinear convex con-
straints are included in the linearization mapping. Specifically, let C be a convex
set in [", and denote by ri C and aft C, respectively, the relative interior and affine
hull of C [53. Let D be an r n matrix of rank r and d a point in Er such that

affC {yIDy d}.

Instead of T, we shall consider the mapping Sx:= Tx f-) C.
THEOREM 3. Let g(x), h(x) and H be as in Theorem 1. Then the mapping S is

lower semicontinuous at H if either of the following holds:
(a) No linearized constraint is active at any point in S.
(b) There is a point T ri C such that at we have

urgi4(2)+ vrh’() + wrD =0 and u >= O

implies u O, v =0, w =0.

Proof. Part (a) is trivial. For part (b), we first remark that if C is a singleton
then aft C C and the matrix D is n n. In this case, the hypothesis implies that
both g](ff) and h’(ff) are vacuous, so for all points x sufficiently close to 2 we have

Tx and therefore Sx (with equality since C {}), so S is lower semi-
continuous at 2. Therefore, assume that C contains at least one line segment,
so that the dimension of aft C is not less than one. Let Q be any open set with
Q I"1 $2 4= , and let y Q $2 Q f"l c (’1 Tx. It is a basic property of convex
sets [5, Thm. 6.1] that for any 2e(0, 1] the point y + 2( y) lies in ri C. Choose
2 > 0 so small that 37"= y + (2 y)e Q. Let V(37) be an open neighborhood of
37 such that V07) c Q and V07) f-I aft’C c ri C. By Theorem 1, the multivalued
mapping,

Rx "= Tx 0 affC {ylLg(x, y) <= O, Lh(x, y) O, Dy d},

as lower semicontinuous at 2. Therefore, since V(37) 9"1 R va , there is an open
neighborhood U()such that for any x U we have Rx V(.)=/= . Let
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and so S is lower semicontinuous at 2. This completes the proof.
COROLLARY 3.1. Let g(x), h(x), 2, H, C, and S be as in Theorem 3. Suppose C

can be written in the form
C {ylf(y) <= 0, Oy d},

where f is a differentiable function on ". If for some 2 S we have

urg4(:) + v’rh’(2) + wrO + rrf’(2) =0 and u >- 0, r >=0

implies u 0, v =0, w =0, r 0,

where f’(2) is the matrix whose rows are the gradients of those components of f
which are zero at , then S is lower semicontinuous at

Proof. The hypothesis guarantees that there is some z e N" such that

g()z < 0,

h’(2)z O,

f’(y)z < O,

Dz =0.

For sufficiently small positive 2, the point . "= 2 + 2z satisfies Lg(,.)< 0,
Lh(2, ))= 0, f0))< 0, and D)3 d. Hence, there is some open neighborhood
V03) such that

V(p) f-I .aft C c= V(p) f’l {ylOy d} C.

Therefore )3 e ri C, and since also 33 e T2 we can apply Theorem 3 to conclude
that S is lower semicontinuous at 2, which proves the corollary.

The following analogue of Lemma holds in the present case.
TnEOREI 4. Let g(x), h(x), 2, and H be as in Theorem 1, and let C, f(x) and S

be as in Corollary 3.1. Suppose also that f(x) is a pseudoconvex function (i.e., each
component off(x) is pseudoconvex). Then exactly one of the following alternatives
is true"

(a) The extended LI condition,

urgi4(2)+ vrh’() + wrD + rf’n() =0 and u >_ O, r >=0

implies u =0, v =0, w O, r =0,

holds at every e $2 (where, as before, we say the condition holds vacuously ij no
constraint is binding anywhere in

(b) The extended LI condition holds nowhere in

Proof. As in [,emma 1, (a) and (b) cannot both hold. Suppose (a) does not.
Proceeding as in the proof of Lemma 1, we find that for some e $2 there are
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subsets E c A, F c B, of which at most one can be empty, such that

(6) ug() + vrh’(ff) + wrD + rrvf’v() O,

with uE > 0, rv > 0, v and w unrestricted. Suppose the extended LI condition
holds at a point )7 e S.. Reasoning as in Corollary 3.1, we can construct a point
.9 e $2 such that Lg(ff, )) < 0 and f0) < 0. Since f is pseudoconvex, fv0) < 0

fv(y)implies

(7) f(f)(y y) < 0.

Also, by an argument similar to that used in Lemma 1, we have

gk()(2 Y) < 0,

(S) h’(ff)(.9 y) 0,

D(y y) 0.

Combining (6), (7) and (8) yields a contradiction, so the point f cannot exist.
Thus the extended LI condition holds nowhere in S, which proves the theorem.

We conclude with an extension ofTheorem to the case in which no convexity
assumptions are made about those functions which are not linearized. In the
absence of such assumptions, the feasible region may contain points at which the
LI condition is satisfied as well as points at which it fails. However, if we do assume
that the LI condition holds at all points in the feasible region, then the following
theorem states that the mapping is lower semicontinuous. This result is included
more for the sake of theoretical completeness than for any practical computational
value.

THEOREM 5. Let g(x), h(x), , and H be as in Theorem 1. Let f(x) and t(x) be
differentiable functions from " into Nk and respectively. Suppose in addition
that all first partial derivatives of are continuous on ". Define a multivalued
mapping by

Px "= {ylLg(x, y)<-_ O, Lh(x, y)= O, f(y) <= O, t(y) 0}.
Suppose that at each point 2 e P we have

urg() + vrh’(2) + wrf;(y) + rrt’(y) 0

and

(9) u > 0, w >= 0

implies u =0, v =0, w =0, r =0,

where A and B are the index sets corresponding to the components active at of
Lg(2, and f( respectively. Then P is lower semicontinuous at 2.

As before, the condition (9) is understood to hold vacuously at if no con-
straints are active there.

Proof. Let Q be an open set with Pff I"1 Q - , and choose any e P2 (’1 Q.
By assumption, (9) holds at . If at least one of the index sets A and B is nonempty,
then we can use [2, Lemma 11.2.1] in a sufficiently small open neighborhood of.
to find a point .9 e Pff I"1 Q with Lg(2, .9) < 0 and f(.9) < 0. On the other hand, if
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A and B are both empty we can take .9 . In either case, there exists an open
neighborhood V() Q in which the inequality constraints are inactive. Since
(9) implies that the gradients to all of the equality constraints at .9 are linearly
independent, we can apply the implicit function theorem as in [4, Thm. 1.1] to
find an open neighborhood W() such that for any x e W there is some y e V such
that Lg(x,y) < O, Lh(x,y) O, f(y) < 0, and t(y) 0. Hence, y 6 Px f3 Q, so
P is lower semicontinuous at . This completes the proof.
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A DUAL METHOD FOR OPTIMAL CONTROL PROBLEMS
WITH INITIAL AND FINAL BOUNDARY CONSTRAINTS*

O. PIRONNEAU AND E. POLAK-

Abstract. This paper presents two new algorithms belonging to the family of dual methods of
centers. The first can be used for solving fixed time optimal control problems with inequality constraints
on the initial and terminal states. The second one can be used for solving fixed time optimal control
problems with inequality constraints on the initial and terminal states and with affine instantaneous
inequality constraints on the control. Convergence is established for both algorithms. Qualitative
reasoning indicates that the rate of convergence is linear.

1. Introduction. The construction of optimal control algorithms is often
hampered by two difficulties. The first is due to the fact that the cost function
usually has a gradient only in L, while the convergence of the algorithm must be
studied in L2, since control sequences constructed by an optimization algorithm
are not likely to converge in L. The second difficulty stems from the fact that
"primal-type" subproblems, such as those resulting from a direct application of
methods of centers or feasible directions, cannot be solved directly and usually
require some sort of "dualization." Both of these sources of difficulty are taken
into account in the dual method presented in this paper.

The algorithm in this paper may be classified as a dual method of centers. It
has the very nice feature that it is implementable essentially without recourse to
heuristics, since both its direction finding and step size finding procedures are
finite, in the sense that they require only a finite number of function evaluations
per iteration. Since a closely related algorithm presented in 63 converges linearly
on finite-dimensional problems, it is reasonably certain that the algorithm
presented in this paper also converges linearly on problems in En. However, since
certain sets, used in the proofs in I6], loose their compactness in general Banach
spaces, the proof of rate of convergence given in 6 cannot be extended to general
Banach spaces. In spite of this, there are heuristic reasons which lead us to believe
that the algorithms presented in this paper do converge linearly at least on a class
of optimal control problems with linear dynamics and convex costs.

Basically, the algorithm in this paper is designed for problems with inequality
end constraints and without constraints on the control. However, as we shall
show, simple constraints on the controls can be handled by means of a minor
modification of the algorithm.

The only other algorithms which solve the problems for which our algorithm
was designed are based on the use of penalty functions. Since penalty function
methods suffer considerably from "ridge paralysis" when the penalty becomes
high, we expect our method to be superior in moderate to high precision situations.
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2. Optimality and convergence. Because of the peculiar nature of optimal
control problems, which necessitates the simultaneous use of both the Le- and the
L-norms on a space of regulated functions 31, we need the following abstract
structure and accompanying theorems.

Let V be a linear space, let l" be a norm on V and let (.,.)2 be a scalar
product on V, such that 3 {V, I1" is a Banach space and 2 {V, (’,")2
is a subspace of a Hilbert space. Let I" 2 be the norm induced by (.,.)2 On 2
(i.e., IIz 2 (z,z)/2)

Assumption 2.1. There exists a C > 0 such that z 2 =< CIIzlll for all z V.
Now consider the problem

(2.2) min {f(z)lfJ(z __< 0,j 1,2,..., m},

wherej’J’V 1 forj 0, 1, 2,..., m.
Assumptions 2.3.

(i) The functions j(. ), j 0, 1, 2, ..., m, are Fr6chet differentiable on
with the Fr6chet derivative at . being denoted by f()(. ), j 0, 1, 2, ..., m.

(ii) The restrictions to {z2l z111 < M} of the functions f(.),
j 0, 1, 2, ..., m, are continuous for any M (0, ) (i.e., they are continuous in

2 on {z e Vl z < M}).
(iii) There exist functions Vfa’V---, V, j O, 1, 2,..., m, with the following

properties" (a) the Vf are continuous on , (b) the Vf have continuous restric-
tions on {z e ’211 z < M} for any m e(0, m), (c) the Vf satisfy

(2.4) j’(5)(h) (VJJ(5), h)2, j 0, 1,2, ..., m,

for any , h in 1.
THEOREM 2.5. Suppose that e is a solution of (2.1)(i.e., j’J() <= 0 for

j 1, 2,..., m, and j.0() min {f(z)lfJ(z _<_ 0, j 1, 2, ..., m}). Then there
exist multipliers/t(.) >= 0,/1() _>_ 0, ..., pm(.) > 0 such that

(2.6) pJ()VJ’J() 0,
j=0

pJ()J’i(P.) 0 forj 1,2, m,(2.7)

and

(.) Y ()= .
j=O

Theorem 2.5 is a straightforward generalization of the well-known F. John
condition of optimality [4]. It can be proved in essentially the same manner as
the F. John condition (see the proof of Theorem 3.5.11 in [2]).

DEFINITION 2.9. Let the set offeasible points f2 1 be defined by

(2.10) f {z llfJ(z) 0,j 1,2, m},
and let the set of desirable points A f be the set of points f2 for which there
exist multipliers/tJ(), j 0, 1, ..., m, which satisfy (2.6)-(2.8).

Thus, A is the set of feasible points which satisfy the optimality condition
(2.5). Since in general it is not possible to identify points in f which are optimal
for (2.2), the best we can hope to achieve is to compute a desirable point.
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The algorithm which we shall describe in the next section uses a map A:
f -, 2a and is of the following form.

ALGORITHM MODEL 2.11.
Step O. Compute a zo f), and set 0.
Step 1. Compute a y A(zi).
Step 2. If f(y) < fO(zi) set zi+ y, set + 1, and go to Step 1; else,

set zi, and stop.
The convergence properties of our algorithm are summarized by the following

result.
THFOREM 2.12. Suppose that Assumption 2.3(ii) is satisfied, thatfor every M > O,

flM ____a {Z fl IlZl[ < m}, and that for every z f, z (f A, there exist an (z) > 0 and
a 6(z) < 0 such that for every m > [Iz[I 1,

(2.13) f(z")- f(z’) =< 6(z)

for all z’6 {z’ 6fM[ [[Z’ Z[[2 _--< e(z)},for all z" A(z’).
Suppose that {Zg} is a sequence generated by Algorithm model 2.11. /j’ {zi} is

finite, then its last element is in A. IlK {0, 1, 2,... is an infinite subset and
z* f is such that either (i) limiK Ilzg z* 111 0 or (ii) limiK ]lz z* 2 0 and
Ilzg[ll < M for some M > 0 and all K, then z* A.

We omit a proof of this theorem since it follows directly from Theorem 1.3.10
in [7] and the Assumption 2.1.

With the preliminaries out of the way, we can now get down to the task of
establishing a specific algorithm for finding points in the set A.

3. A dual method of centers. For the algorithm below to make sense, we need
the following additional hypothesis, as is usual in conjunction with methods of
centers and methods of feasible directions (see 4.2 and 4.3 in [7).

Assumption 3.1. The set {z e llfJ(z) < 0,j 1, 2, m} is not empty.
ALGORITHM 3.2. (/ e (0, 1) is a step size parameter.)
Step O. Compute a zo fL and set 0.
Step 1. Compute l(Zi) (/(z/),/l(z/), lu’(zi))r + to be a solution

of the quadratic programming problem

(3.3) (zi) max JfJ(zi)--
j=l

/-- 1,/ => 0
j=O

Step 2. If 4)(zg) 0, set zi, and stop; else, set

(3.4) h(zi) lt(z)VfJ(zi)
j=O

and go to Step 3.
Step 3. Compute the smallest nonnegative integer k(zi) such that

(3.5) 0((z’), h(zi) zi) 1/2k(zi)((zi) O,

When is empty, the algorithm below stops at z and hence is useless.
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where 0:N x 1 x /1 1 is defined by

(3.6) O(2, h,z) max {f(z + 2h)- f(z);fJ(z + 2h),j 1,2, ..., m}.

Step 4. Set zi+ zi + flaZ’)h(z), set + 1, and go to Step 1.
The following result is obvious.
PROPOSITION 3.7. Let 4):1 Rt be defined as in (3.3) and let z f be arbitrary.

Then O(z) <= O, and qS(z) 0 if and only if z A.
LEMMA 3.8. Suppose that z f2 is such that qb(z) O, and let h(z) be defined

as in (3.4). Then

(3.9)
max {(V[(z,), h(zi)) 2 fJ(zi) + (VfJ(zi), h(zi))2,

(Zi)- (1/2) h(zi)l]22 < O.

j= 1,2,.-., m}

This lemma follows directly from the fact that the dual of (3.3) is

(3.10)
(Zi) min {(1/2)llhll 2 + max {(Vf(z,), h)

j 1,2, m}}.
COROLLARY 3.11. Suppose that zi f is such that ((Zi) < O. Then there exists

an integer k(zi) > 0 such that (3.5) holds.
Proof This corollary follows directly from the definition of a Fr6chet dif-

ferential, (2.4) and the fact that by (3.9), (Vf(zi), h(zi))2 <= c])(zi), and (VfJ(zi), h(zi))
<= O(zi) for all j e 1, 2, m} such that fJ(zi) O.

THEORFM 3.12. Let {z} be a sequence generated by Algorithm 3.2 in the process
ofsearching the set ffor a point in A (see Definition 2.9), and suppose that Assump-
tions 2.1, 2.3 and 3.1 are satisfied. Then, either {z} is finite and its last point A,
or {zi} is infinite, in which case any z* f satisfying either limit(llz z* I1 0 or

limi/ z z* 2 O, where K is an infinite subset of {0, 1, 2,... }, also satisfies
z* A, provided there exists an M (0, or) such that zill <= M for all K.

Proof Algorithm 3.2 is of the form of Algorithm 2.11, with A(. defined as
follows. Let S’Y --, 2v be defined by

(3.13)

{S(Z) #JvfJ(Z)I O, ]gJ
j=O j=O

y .JfJ(z)
j=l

]gJvfJ(z)

Then A "f2 -, 2a is given by

(3.14) A(z) {z’-- z + flk(z’h)hlh S(z)},

where k(z, h) is the smallest nonnegative integer which satisfies (3.5) for zg-- z,
h(z) h and k(zi)= k(z, h). (Since by (3.6) and (3.5), fJ(z’) <= (1/2)fl(’h)C(Z) <= 0
for j 1, 2, m, it is clear that A(. maps f into 2n.) To complete our proof,
we only need to show that (2.13) is satisfied by the mapsj( and A(. ), as defined
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in (3.14). Since this is straightforward, we omit it.

4. An aliflieation to an optimal control problem. We shall now show that
the algorithm, presented in the preceding section, can be used to solve the follow-
ing problem:

min h(x(t), u(t), t) h(x(t), u(t),

(4.1) e [to, tf]; go(X(to) <= O, gx(x(tx)) <= O;

u e L[to, t]},
where h:N" x [s x [to, I] -- N1, h:N" x N x [to, tl]--
N" Nm2, and L[to, ty] is the space of equivalence classes of essentially bounded
integrable functions from [to, ty] into NS.

We must begin by transcribing problem (4.1) into the form of problem (2.2).
Therefore, let V {(, u)l e N", u e L[to, ty]}, let the norm II" I"V -- N be
defined by

(4.2) (, u)l I12 / ess sup lu(t)l 2,
t6[to,ty]

where I. denotes the Euclidean norm, and finally, let the scalar product (.,.)2
on V be defined by

(4.3) ((, u), (’, u’))2 (, ’) + (u(t), u’(t)) dr,

where (.,.) denotes the Euclidean scalar product. Then we see that the space
’1 {V, II1} is a Banach space and the space 2 {V, (. )2} is a subspace
of a Hilbert space. Furthermore, setting 2 x//( ", ")2, it is not difficult to show
that there exists a C e(0, oo) such that I1" 112 _-< CII, [Ix, Next, let x(t, ,u),t e[to,
denote the solution of the differential equation

d
--x h(x u t) X(to) e Eto,(4.4)
dt

corresponding to a given (, u) V. Then we define the functions f:V--, 1,
J; V N?1 and f2:Nm2 as follows:

(4.5) fo(, u) h(x(t, , u), u(t), t)dt,

(4.6) j’(, u) g0(),

(4.7) f2(, u) g,(x(t, , u)).

With the above definitions, problem (4.1) can be written as follows, setting
z (, u):

(4.8) min {f(z)lJ’(z <= 0, fz(z) _-< 0},

i.e., it can be written in the form (2.2).
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Assumptions 4.9.
(i) For every (, u) V, the solution x(., , u) of (4.4) exists and is unique.

(ii) The functions h and h are continuously differentiable in x and in u, and
h, h, c?h/c?x, ch/c3u, ?h/c3x, ch/c?u are piecewise continuous in t.

(iii) The functions go and g are continuously differentiable.
(iv) The set {z (, u) Vlfx(z) < 0, fz(z) < 0} is not empty.
LEMMA 4.10. Suppose that Assumptions 4.9(i)-4.9(iii) are satisfied. Then the

functions fo, fl and f2, defined in (4.5)-(4.7), are FrOchet differentiable on ]1, with
their differentials j.o, j., f2, defined as jbllows"

(4.11) J’(z’)(h) (Vf(z’), h) 2,

(4.12) ’i ’iJ kz(z)(h)= ( ,h i= 2 mk k= 2VJ (z ).

where, for z’ (’, u’),

(4.13)

h ,,, ’(Vf(z’) (-qo(to, ’, u’), -u(X( u’), u ),"

h ,,,"qo(’,’,u’) +-u(X(. u’) u’(.),.)

(4.14) Vj’](z’)---I--X(’)T,0 i= 1,2, ..., ml,

and

(4.15)

ch ,,, )rVJ’(z’) (-qi(to, ’, u’), -u(X( u’) u’( )," qi( ’, u’)),

i= 1,2,..., m2,

with qi(t, ’, u’), 0, 1, 2, ..., m2 defined (with o 0 if O) by

dt
qi(t’ u’) x(t, ’, u’), u’(t), qi(t, ’, u’)

(4.16)
[-cho

+ o[-x(x(t, ’, u’), u’(),

[to, t], qo(t, ’, u’) O,

qg(tf ’, u’) k-x (x(tf u’)

COROLLARY 4.17. Forany M > O, thefunctions f, (l,f2,Vfi,i 1,2, ..., ml,
and Vf’2, 1, 2, m2, have continuous restrictions on {z e 2 A ]]z < M}.

This lemma and the corollary follow directly from Theorem 10.7.1 in [-3]
and from Theorem A1 in [5]. We therefore omit their proofs.

Thus we see that the functions fo, fl and j satisfy the Assumptions 2.3. We
now show that the set A defined in Definition 2.9, withf .[’{, forj 1, 2, -.., m 1,
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and fJ+m’ .1", for j i, 2, ..., m2, is the set of initial states and controls for
which the Pontryagin-maximum-principle-in-differential-form2 is satisfied.

PROPOSITION 4.18. Let {) and A be defined as in Definition 2.9, with f f,
forj 1,2, ..., ml, andf+’ f1/2,forj 1,2, ..., m2, and let rn m + m2.
If (, fi)e A, then there exists a multiplier finction " [to, t] N", and a scalar
o < 0 such that

(4.19)
----(x(t, , ), D(t), t)T(t)

+och
-Ux x( n n 0’,

(4.20) (to) cg0()T
X

(4.21) ,(t) c&(x(t, , fi))T
,X Z’

t6to, ty],

where o >= O, 9f >= 0 are such that (o, ) :/: O,

(4.22) <9o, go()) (gy, gy(x(ty, , h))) O,

and

(4.23) --[.h(x(t, , fi), fi(t), t) + ((t), h(Yc(t, , t), fi(t), t)>] O.

(Since (, fi)e A c , we must have g() =< 0 and gy(x(tf, , fi)) =< 0 by definition.)
For the problem (4.1), Algorithm 3.2 assumes the following specific form.
ALGORITHM 4.24. (Solves (4.1); fie (0, 1) is a step size parameter.)
Step O. Compute ({o, Uo)e 1 such that go(o) =< 0 and g(x(t, o, Uo)) =< 0,

and set 0.
Comment. The Algorithm 4.24 can be used to compute such an ({o, Uo(" ))

by solving the problem

min x(t) dt x_ h(x, u, t);

(4.25) go(X(to))- x(to) =< O,j 1,2,..., m"

g)(x(t)) x(ty) <= O, j 1,2,. ",m2

where _x (x,x) and _h (0, h), and for which an initial point (o,to(’)),
o (, o), can be chosen as follows "let o, o(" be arbitrary, and let

X max {g(o),J 1,2, ..., m g(x(t, o, u)), j 1,2, ..., m2}.
Since the optimal value of (4.25) is strictly negative, a ({o, Uo(" )) for Step 0 above
can be computed by means of a finite number of iterations.

In the maximum principle in differential form, the condition of maximum on the Hamiltonian
is replaced by the condition (#H(, fi, , t)/gu)6u < 0 for all admissible 3u and for almost all e [to,
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Step 1. For zi (i, ui), compute Vf(zi), Vf{(zi), j 1,2,..., ml, Vf2(zi),
j 1,2,..., m2, according to (4.13)-(4.16).

Step 2. Compute p(Zg), p{(Zg),j 1, 2,..., m 1, p1/2(zg),j 1,2,.-., m2, as a
solution of

c/)(z,) max /ago(,) + p2g}(x(tz, ,, u,))
j=l j=l

(4.26) 2
//0gf0(zi) .qt_ gf(zi)-- 2 {gf(zi)

j=l j=l

ml m2

+ + >=
j=l j=l

p>__0,j= 1,2,-..,m2

where [[zl[. (z, z)2 is defined as in (4.3).
Step 3. If dp(zg) 0, set g, fi(. ug(. and stop; else, go to Step 4 (see

(4.13)-(4.16)).
Step 4. Set

ci P(zi)qo(to, i, IAi)
j=l

m2

nt- 2 tAJ2(zi)ql(tO i, Igi),
/=1

Vi(’)" itlO(zi) I(X(’, i, lli), //i( ), )T

ch
ui) u(. )r1qo(’, i’ b/i) --(X(", i,- Z J2(zi (X( i’ l/li)’ li( )’" )Tqj( i’ tli)’

j=l

(4.27)

(4.28)

and go to Step 5.
Step 5. Compute the smallest integer k, such that

max Eh(x(

(4.29) go(i + flkcoi),J 1,2, ..., m g}(x(tz, i + flkcoi, U + [3Vi)),

j 1,2,..., m2 } (flk/2)dp(zg) <_ O.

Step 6. Set i+ i _qL k(Di, set Ui+ 1(" Ui(" -Jr- kvi(" ), set + 1, and
go to Step 1.

The following result is obvious.
PROPOSITION 4.30. Theorem 3.12 holdsjbr Algorithm 4.24, with the set A defined

as the set offeasible points (, ft) ]1 satisfying the Pontryagin-maximum-principle-
in-differential-form for problem (4.1).
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5. An extension to problems with instantaneous constraints on the control.
We shall now show that Valentine-type transformations 9] can be used to adapt
Proposition 4.30 for the solution of the following optimal control problem"

min h(x(t), u(t), t) -x() h(x(t), u(t), O,
(5.1)

e to, ty go(X(to)) -<_ O, gy(x(ty)) <= O; u e L [to, ty

bk<= (ak, u(t)) <= c k= 2 r for allt[to ty]t
where h, h, go, g are as in (4.1); ake [s for k 1, 2,..., r; cke 1 for k 1, 2,

r’ < r, and bk -or for k r’ + 1,... r.r, bke for k 1,2, r’,
Assumptions 5.2.
(i) We shall assume that (4.9) is satisfied.
(ii) The vectors ak, k 1, 2, .-., r, are linearly independent.

(iii) There exists a control fie L [to, t.] and an initial state e " such that
go() --< 00 g(x(t, , u)) 0, and b < (ak, (t)) < c for k 1, 2, ..., r and all

[to, tf ].
To apply the Valentine trick, we must use certain substitutions for the

inequalities on the control. Thus, consider the constraints

(5.3a) bk <= (ak, u(t)) <= c k 2 r’

(5.3b) (ak, u(t)) < c k r’ + r e [to t]

Suppose that u e L[to, ty] satisfies (5.2) and (5.3). Then we can associate with
this u functions vk’[to, tz] --, [ k 1, 2,... r’, and wk’[to t] --,

k 1, 2,.-., r r’, such that

2 C + b
(5.4) cos vk(t) ck bk (ak, u(t)} ck bk, k 1,2,... r’ e [to, t]

(5.5) (Wk(t))2 ck+’ (ak+,, u(t)), k 1,2,..., r r’, [to, ty].

We shall now use these functions to construct a problem which is equivalent
to (5.1). Let Ar be the s x r matrix whose columns are (2/(c bk))ak, k 1, 2,
.., r’, and -ak, k r’ + 1, r’ + 2,..., r. Then its transpose, A, is an r x s
matrix which can be partitioned as follows: A [A’!A"] (rearranging the com-
ponents of u(.), if necessary), where A" is an r x r nonsingular matrix. We
partition u similarly, i.e., we set u (u’, u"), with u" e [r and u’ e Ns-r. Then, if u,
vk, wk satisfy (5.4) and (5.5), we obtain

U"(t) A’- I(cos/)l(t), cos/)r’(t), o)l(t)2, 60r-r’(t)2)T

C + b c’+ b"’
(5.6) + c-1 D1 ,"

c’ b
cr’u

A"- 1A’u’(t) u"(u’(t), l)(t), w(t)).

C

T1
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Let fi (u’, v, w), let

(x, fi, t) h(x, (u’, u"(u’, v, w)), t),

h(x, , t) h(x, (u’, u"(u’, v, w)), t)
and consider the problem

min f(x, , t) dtl2 h(x, , t), [to, tz];
(5.7)

g0(x(to))

where all the quantities are as in (5.1) and (5.6). It is trivial to show that if(, fi’, , )
is any optimal solution of (5.7), (, (fi’, cos , 2)) is also optimal for problem (5.1).
However, not all the points (, ’, , ) which satisfy the Pontryagin principle for
problem (5.7) result in a pair (, a) & (, (’ cos , #2)) which satisfy the maximum
principle for problem (5.1). Hence, although Algorithm 4.24 is directly applicable
to problem (5.7), it is desirable to modify it so as to prevent convergence to points
which do not satisfy the optimality conditions for problem (5.1). This can be done
by modifying the step length rule in Step 5 of Algorithm 4.24. To explain how this
is done, without loss of generality, we assume that there is only one constraint of
the form (5.3a) and only one constraint of the form (5.3b), i.e., we assume that
(5.3a) and (5.3b) have the following specific form"

(5.8) U l(t) 1, u(t) >_ O, [to,

and that the remaining components of u(t) are unconstrained. For this specific
case, given zi, Algorithm 4.24 computes the following feasible direction
(co,, v,(. ))"

(5.9) co, fl(zi)Pi(to)- llkl(Zi) (i)T q- 2 lltz(Zi)ql.i(to),
k=l /=1

(5.0) (v’, v, v)

with

v’,( (z,)[u (x,( ), u( ),. )p,( u, (x( ), u,( ),. )

me h
,’) ql,i(’),-Jr- 2 12(Zi)-(Xi( )’bli( T

1=1

vi .)=-sinvi( (zi) (xi( ui( )rqo(

+ (. (x(. u(u-(x(’,u(’,l Us-1 ," ql,i(’)

( w( (z3 (x( , u( , ’p(.

h
(xi(.), ui( ),. )r + (zi)(xi( ), ui( ),. )rql,i(s
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where the q,i(" ), 0, 1, 2, ..., m2, are computed by solving (4.16) for ’ i,
x’ u; and h, h as in (5.1). 3 The new step length rule can be stated as a substitute
Step 5, which, for the problem in hand, becomes:

Step 5’. Compute the smallest integer ki satisfying

max [h(x(t, i + ki(J)i’ (Ui 2t- kivti, COS (U + flkivis-1), (W + flkiv)2)),

(.) (u’,(t) + ’v’,(t), cos (,(t) + ’v-(t)), (w() + ’v()), t)

+ ’v’,, cos (, + v-), (w, + ’v))))- (’/2)() o,

(5.12) < 2 x esssup max
o, sin vi(t) wi(t)

LMa 5.13. The conclusions of Theorem 3.12 remain true for the modified
Algorithm 4.24 with respect to problem (5.7).

Proo The modified algorithm differs from Algorithm 4.24 only in the addi-
tional bound (5.12) on . Now, since this bound, in turn, has a denominator
which can be bounded from above by a continuous function of (, u’, v, w),
i.e., since

max
sin vi(t) wi(t)

i { uh h
qo,i(t)T(xi(t), Ui(t), t) (Xi(t), Ui(t), t)

k=s-1

+ Z ql.,(O (xi(t)..,(t). ) 3’/=1

it follows from arguments essentially duplicating the proof of Theorem 3.12
that the conditions of Theorem 2.12 are satisfied.

LEMMA 5.15. Let ((i, u’i, v i, wi)}= o be a sequence generated by Algorithm 4.24,
modified to use Step 5’ instead of Step 5 in the process of solving problem (5.7).
Suppose K is an infinite subset of the positive integers such that limiK (i, u’i, vi, wi)
-(,fi’, , &) 2 0 and suPiK (i, U’i, Vi, Wi) < . Furthermore, let K’ be an

infinite subset of K, such that limiK, {(M(zi),Mi(zi),M2(zi)} {fi,fi,fi2}, where
z (i, (u’i, vi, wi) and p(zi), pl(Z) and 2(zi) are defined as in Step 2 of Algorithm
4.24 (jbr problem (5.7)). Then,

h h
u_ (2(t), a(t), t) u_

(5.a

(O0(t) + l)l O’(r))} (- 1) O,

The form of (5.10) is due to the fact that we have used the chain rule to calculate the needed
partial derivatives.
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for almost all {tl(t) kn}, k 0, 1, and

ch ch
(5.16b) u((t), fi(t), t) s()(t), fi(t), t)T fioOo(t) -+- Z fll20l(t)

1=1

for almost all e {tiC(t) 0}, where fi (fi’, cos , &2), 2(0 x(t, , ft), and
gl, O, 1,..., m2, are defined by (4.16) for u’(t) =_ (t), x(t, ’, u’) 2(0, ’ .

Proof Let H’[" x R x R" x [ - E be defined by

(5.17) H(x, u, O, t) -h(x, u, t) + (O, h(x, u, t)).

Then, from (5.10) and the instructions in Step 6 of Algorithm 4.24, we find that
for [to, tz], and with

m2

(5.18) Oi(t) p(zi)qo,i(t + 2(zi)qt,i(t), [-to, tf-],
/=1

we must have

(5.19) Di + 1(/7 1)i(t) ki sin vi(t) cuS (xi(t), ui(t), qi(t), t),

(5.20) w,+ l(t) Wi(t -1- 2[3 ’wi(t)-us(X,(t), ui(t), Oi(t), t).

Now, the purpose of the bound (5.12) on ilk; was to ensure that for almost all
e [to, tz],

(5.21) 0 < 1/2Ui(t Ui+ l(g) 1/2( -[- l)i(t))<

(5.22) 21-wi([) wi+ l(t).

Since we must have limi/, vi(t)= (t) for almost all [to, ty], suppose that
t’ [to, ty] is such that limiK, vi(t’) (t’) kn, with k 0 or 1. It now follows
from (5.18), since ilk, < 1, and since (cH/cuS-1)(xi(t’), ui(t’), /i(t’), t’) is bounded
for i6 K’, that we must also have

(5.23) lim vi, (t’) kn,
ieK’

for almost all t’ such that limi/, Vi(t’ kn.4

By construction, Vo(t)e (0, n) for all t Eto, tzl, and hence, sin Vo(t’) > 0. Let
K" be an infinite subsequence of the positive integers defined by K"- K’U
{i[(i 1)6 K’}. Itnow follows from (5.21) and (5.23) that {(- 1)k+ l(kn vi(t))}iic,
is a strictly positive sequence which converges to zero, and hence there must exist
an infinite subsequence K’" K’ such that

(5.24) (- 1)k+ (kn /)i+ l(t’)) < (-- 1)k* a(kn vi(t’)) for all iK’"

Note that {tllimirVi+l(t) =/= limiKvi(t)} is a null set.
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Combining (5.24) with (5.18), and recalling that sin vi(t’) > 0 for all i, we conclude
that

(5.25) (-1)
cH

(xi(t’) ui(t’) i(t’) t) > 0 for all ie K’"
tb/s-

It now follows from the continuity of cH/cu that

(5.26)

_
((t’), (’), (t’), t’) >= 0,

where t(t’) =//5(t’) + Z’ [201(t’). This establishes (5.16a)" (5.16b) can be estab-
lished in a similar way.

The following result is now obvious.
COROLLARY 5.27. Let {(i, ui)} be a sequence generated by the modified

Algorithm 4.24 in solving problem (5.1) by means of(5.7). Then, either {(i, ui)} is

.finite and its last element satis.fies the Pontryagin-maximum-principle-in-dOCferential
form, or {(i, ui)} is infinite and every pair of points (, fi) which satisfies for some
K c {0, 1, 2,...} either (i) lim,c

(, fi)ll2 0 and suPiK (i, Ui) < c, also satisfies the Pontryagin-maximum-
principle-in-d(fferential-jbrm.

6. Experimental results. To illustrate the behavior of our algorithm, we
have applied it to two problems. The first was,

(6.1) min X(t) X0) --}- X0 @ U 2 dt,

where
x0 (10, 10, 10, 10)’*" xs (2 2 2 2)r

with x(t) e 4, u(t) e 2 and

k -1 0 0

)2 0 -2 0
(6.2)

k3 0 0 -3

k4 0 0 0

and with the constraints

(6.3) Ilx(0)- Xo[] 2 =< 1,

Then, we added the constraint

(6.4) lul(t)l =< 1,

to obtain the second problem.

O\/X11 5 01(0l/X2 / + 0 5 tll

Olx31 10 0/12]
-4/\x/ 0 10

x(2) x 12 < 1.

lu2(t)l 1, [0, 2],

The program we used was designed for general situations and did not exploit
the structure of (6.1) and (6.2). The integration was performed using the Euler-
Cauchy method, with an initial step size of 1/32. The algorithm was programmed
to increase the integration precision on demand, according to the scheme out-
lined in 8]. This adaptive integration scheme was used so as to reduce computer
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70-

60

50-

40-

3O- with constraints

.,./ on control

20-

without constraints

10 on control

0
0 10 20 30 40

Iterations

FIG. 1. Solution of the problems (6.1)-(6.3) and (6.1)-(6.4)

3.0-

2.0-

1.0-

0.0-

-1.0

Initial Guess
5th iteration Initialization

10th iteration
20th iteration Optimization
40thiteration

..... 2_--. ./,1
1.0 - / 2.0-- Time

FIG. 2. Solution of the problem (6.1)-(6.3). The 5th iterate of initialization cycle is feasible and is

used as first iterate of minimization cycle.
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Initial Guess
104 5th iteration Initialization

1" 10th iteration
’......._ 20thiteration Optimization

40th iteration

0
0 110 20 Timet

FIG. 3. Solution of the problem (6.1)--(6.3)

time. The computations were carried out on a CDC 6400 computer and were
stopped after 40 iterations. (The first problem required about 20 o less time than
the second.) In each case, the program required fewer than 5 iterations to compute
an initial feasible solution (o, u(. )) and (0, fi(" )), respectively. The results of the
computation are shown graphically in the accompanying figures.

7. Conclusion. In the form stated, Algorithm 4.24 is readily implementable
either by using fixed precision integration or adaptive integration schemes such
as those described in [8]. Our experience has been that the adaptive precision
schemes are invariably considerably faster than fixed precision schemes. Although
we have not had the opportunity to confirm the following conjecture by experi-
ment, we feel reasonably sure that our algorithm will outperform its rivals, the
various penalty methods, at least in the case when the constraints are such as to
cause "ridge paralysis" in the penalty methods.

In modifying Algorithm 4.24 in 5, a substitution formula (Valentine’s trick)
was used to extend Algorithm 4.24 to problems with affine instantaneous inequality
constraints and, in addition, a perturbation method was added to ensure that
convergence was possible only to points satisfying both a first and a second order
optimality condition for the derived problem (5.7). This eliminated points which
satisfy a first order condition for (5.7) but not for (5.1). Industrial experience with
the substitution formula, used in conjunction with simpler algorithms, indicates
that it performs quite well; our own experimental results confirm this view.

Acknowledgment. We wish to thank Dr. R. Klessig for his helpful comments,
Mr. H. Mukai for preparing the computer code and performing a number of
experiments for us, and Dr. H. J. Kelly for sharing with us his experience in the
use of the Valentine transformation.
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ON STATE REALIZATION AND CAUSALITY DECOMPOSITION
FOR NONLINEAR SYSTEMS*

ROMANO M. DESANTIS

Abstract. While most of the research on the subject has either concentrated on the formulation and
analysis of a state realization, or has dealt exclusively with causality decomposition, in this paper
attention is focused on the interconnections between these two types of studies. More specifically, the
following basic questions are considered: Does the knowledge of the causality structure of a system
supply any information about the system state structure? Can the state structure tell something about the
causality structure? The proposed answer can in part be summarized as follows. If a system is repre-
sented by the sum of strongly causal, strongly anticausal, memoryless, and strongly crosscausal parts,
then strongly anticausal and memoryless components have nothing to do with a state realization of the
system. On the other hand, any state realization of the system defines uniquely its strongly causal and
strongly crosscausal parts. These and other relevant results are stated in quite a general context. They
are applicable, for example, to systems which can be time-invariant or time-variant, linear or nonlinear,
discrete-time or continuous-time or hybrid, finite state or infinite state.

1. Introduction. A common feature of most of the developments concerned
with the notion of state and those associated with the notion of causality is that
they are essentially based on the time related properties of systems. This is natural
if one considers that, for instance, the state of a system at a given time gives the
description ofhow past and present configuration of the input to the system is going
to affect the future configuration of the output. On the other hand, causality
related concepts such as memorylessness or crosscausality can be viewed as basic
tools to characterize the various modes by which past, present and future con-

figuration of the input to the system affect the present configuration of the output.
In spite of this conceptual link between state and causality developments, most

of the studies on the subject have been carried out independently. They have either
concentrated on the formulation and analysis of state concepts (as, for example,
[23, [93, [153, [19) or they have dealt exclusively with causality concepts (as, for
example, [3], 1-10], [11], 13]). As a consequence, little has been done to clarify
relevant interconnections such as those, for instance, that one intuitively expects
to exist between the state related structure of a system, and its causality related
structure. In particular, for example, the following natural question arises: "Does
the knowledge of the causality structure of a system supply any information about
the system state structure?" Conversely one also wonders whether the state struc-
ture might tell something about the causality structure.

The present study is addressed to questions of the above type, and. it can be
viewed as an extension of some preliminary work recently done by Saeks [12. In
particular, while this latter reference is confined to linear systems in Hilbert spaces,
here nonlinear systems in nonlinear spaces are considered. This explains in part
some of the unconventional features of the development, namely, the adoption of a
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group-valued function space setting and a somewhat unusual formulation of the
concept of state.

The development is organized as follows. The objective of the first two sections
is to make the paper self-contained. In particular, 2 describes the mathematical
framework in which the study is embedded, and 3 reports the most relevant
causality definitions and results which will be used. The basic notion of state and
associated concepts are introduced and discussed in 4 and 5. Though these sec-
tions can be considered as a part of the preliminary setting for the intended study,
in view of the originality of the formulation and the generality of the results, they
should be of interest in themselves. The results in 6 provide the main contribution
of the development. These results give mathematical rigor to the heuristic idea that
whenever a system has something special with respect to its state structure, then
it has also something special with respect to its causality structure, and conversely.
The paper is finally completed by 7 which offers a critical overview of what has
been presented.

2. Mathematical preliminaries. Given a group G and a linearly ordered set
v, the space SFG, vl is defined as follows"

S[G, v] {xlx is a mapping v G}.
In words: if x S[G, v], then x associates to every e v a well-defined element
x(t) G. The space S[G, v] comes equipped with a family of truncation operators
P’, Pt. These operators act on S[G, v] and are defined as follows: If x, y, w belong
to S[G, v] and y ptx, w Ptx, then

x(s) fors<t,
y(s)=

otherwise,

w(s) { x(s) for < s,

5 otherwise,

where the symbol indicates the null element of G. The space S[G, v] together with
the family of truncation operators will be called a group resolution space (in short
GS).

The family of operators dP(t):S[G, v] S[G, v] is defined as follows:if x
and y belong to S[G, v] and y dP(t)x, then y(s) x(s) if s and y(s)
otherwise. Clearly alP(t) PtPt PtP’. For later use the notations pt and P, will
indicate the following operators:

pt p, dP(t), P P, dP(t).

Occasionally dP(t)x, Ptx and Ptx are referred to respectively as present, past and
.future of x at time t.

A GRS is given a group structure in the following way. If x, y,z SG, v,
then z is the sum ofx and y, z x + y, when z(s) x(s) + y(s) for all s e v. Similarly
z is the difference between x and y, z y x, if y(s) z(s) + x(s). By virtue of these

Most of the material appearing in this section is taken directly from [31 and is reported here to

render the paper self-contained.
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definitions, every x SIG, v] can be represented as follows" x ,v dP(t)x. This
sum of infinite elements is well-defined since dP(t)x(s)# only when s t,
and if the convention is adopted that in G, the sum of infinite times, the element
is still . With this understanding the following additional representations will also
be used"

P’x Z dP(s)x, P,x Z dP(s)x.
s.<__t s>=t

A system is given by an operator T mapping S[G, v] into S[G, v]. If y, x S[G, v3
and x Ty, then y and x are respectively called the input and the output of the
system. Consider now systems (operators) T, T’, T". The system T is the sum of
T’ and T", T T’ + T" if for every x S[G, v] the following relation holds"
Tx T’x + T"x. T is the difference between T’ and T", T T’- T", if Tx

T’x T"x. T is the composition of T’ and T", T T’ T", if for every x S[G, v]
the following relation holds" Tx T’ (T"x). T is unbiased if T[] , where

indicates the element x in S[G, v] such that x(s) 25 (the null element in G)
for all s e v. In the sequel only unbiased operators will be considered. T is weakly
additive if it has the following property"

Tx Tptx + TPtx TPx + TPtx
for all x S[G, v] and every e v.

3. Basic causality concepts. As in the previous section, the notation Tis used to
indicate an (unbiased) system and x and y indicate two elements in S[G, v]. The
basic causality concepts to be considered in the sequel are as follows.

DEFINITION 3.1. T is causal (anticausal) if

ptTx etTy when Ptx pry (PtTx =PtTY when Ptx PRY)"
DEFINITION 3.2. T is memoryless if it is simultaneously causal and anticausal.
DEHNITION 3.3. T is strongly causal or strongly anticausal if T is respectively

causal or anticausal and
T dP(t)x .

DEFINITION 3.4. T is strictly causal (strictly anticausal) if

ptTx-- ptTy when ptx- pry (PtTx-- PtTY when Ptx PRY)"
DEFINITION 3.5. T is crosscausal if

PtTx-- when Ptx , ptTx when Ptx-- ,, and T dP(t)x- .
DEFINITION 3.6. T is strongly crosscausal if

PtTx whenPtx , and ptTx whenptx- .
For a relevant discussion about the properties of the above concepts the

interested reader is referred to I3] or 4]. Here, for brevity, we limit ourselves to
reporting the following useful results.

LEMMA 3.1 [3]. The Jbllowing statements are equivalent"
(a) T is causal.
(b) ptT= ptTpt for all v.
(c) T has the .;following representation" T sv dP(s)TPS"
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LEMMA 3.2 [3. Every system can be uniquely decomposed into the sum of
strongly causal, strongly anticausal, strongly crosscausal and memoryless parts.

LEMMA 3.3 [4]. Every system can be uniquely decomposed into the sum of strictly
causal, strictly anticausal, crosscausal, and memoryless parts.

In analogy with the procedure adopted in [3], in the sequel we will use the
following alphabetic code"

A anticausal, C strictly causal,

C causal, X crosscausal,

M memoryless, _X strongly crosscausal,

strictly anticausal, _A strongly anticausal,

C_ strongly causal.

4. The concept of state. In view of the rich and authoritative literature on the
subject, the task of formalizing a concept of state may appear, at first, as a simple
routine exercise. This task appears no longer simple, however, if one considers the
constraint of satisfying the following two partially competing requirements" the
concept has to be of sufficient generality to encompass the variety of systems of
interest, and, at the same time, it has to be maneuverable enough so as to lead the
investigation to meaningful results. A state formulation of the type proposed by
Mesarovich [9], or Zadeh I153,,for example, would, no doubt, be quite adequate
in regard to generality. Such a procedure, however, appears to lack the maneuver-
ability requirement.

A formulation of state via a state realization format, as recently proposed by
Sacks 12 (see also 16), is another potential alternative. Translated in the frame-
work of GRS, this formulation becomes the following" a state realization of a
system T on S[G, v] is a triple (, S, ’), where S is a set (state set) and ,, are
families of mappings, indexed by v, such that

O(t) SEG, v] -+ S, g,(t) O(t)P ((t) S SEG, v] ((t)

and
(t)(t) PtTU for every 6 v.

This formulation, though satisfactory in a linear systems context, is not, however,
general enough as to accommodate the nonlinear framework under consideration.

A shortcoming of the above definition resides in the easily verifiable fact that,
in the case of nonlinear systems, it does not satisfy the "consistency conditions"
which are usually associated to a meaningful concept of state (see, for instance,
Arbib [1, Mesarovich 9 or Zadeh [15]). As a consequence, it can happen that the
knowledge of the state of a system T at a certain time, t, may not be sufficient to

give a full description of the behavior of T after t. This shortcoming, however, can
be eliminated by introducing the following generalization. In stating this generaliza-
tion, S 1, S2 are sets and S S x S2 plays the role of the state set. Similarly
tl, 02, 1, 2 are parametrized families of mappings, while (01, 02) and

" (’1, ’2) play the role of input-to-state and state-to-output mappings. The
proposed format definition is then the following.
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DEFINITION 4.1. A st:at:e realization of a system T is a triple (q, S, ) such that"
(i) S $1 x S2 is the state set;
(ii) ff (if l, if2) is such that the domain of @i(t) is US[G, v], and the range

of ffi(t) is contained in Si, 1, 2, v;
(iii) (1, ’2) is such that the domain of i(t) is Si, the range of x(t:) is

contained in PtS[G, v], and the range of 2(t:) is contained in the space of operators
on PtS[a, v]

(iv) for every x, y S[G, v] the following relations are satisfied"

((t) l(t)ptx Pt Tptx,
2(t:)(2(t) [Ptx])Pty 3 Tetx[Pty]

where the symbol 6T,[y] stands for T[x + y] Tx Ty.
Note that, according to the above definition, a state realization of a system

can be viewed as given by two components. The first component, (1, $1, #1),
reflects the influence of the past of the input over the future of the output with the
constraint that the future of the input is null. The second component, (2, $2, #2),
indicates how the past of the input influences the effect of the future of the input
over the future of the output. "Thus, if at a given to e v the system T has the initial
state (s l, s2), then the behavior of T after to can be described as follows"

If y, x ProS[G, v] and x PtoTY, then

x l(to)Sl + 2(to)(sz)Y + PtoTY.
This formulation is clearly a natural extension of that adopted by Saeks, and the
main difference between the two consists of the appearance of (2, $2, 2), the
second component of the state. This inclusion is essential in that it allows our
definition to satisfy the abovementioned consistency conditions. On the other
hand, as it will become clear from Proposition 6.1, the concept of state proposed
in [12] satisfies these conditions only in the particular case in which the system is
"separable" (in particular" linear). This explains why Saeks did not need a format
of the present generality.

By the substitution of the term "state" with "costate" and by a subsequent
substitution of symbols of the type indicated in the forthcoming principle of
causal duality, Definition 4.1 provides a concept which is dual to that of a state
realization. As this concept will also be useful, the following additional definition
is introduced.

DEFINITION 4.2. A costate realization of a system T is a triple (fl, fL 7) such
that"

(i) f fl x "2 is the cost:ate set;
(ii) fl (ill, f12) is such that the domain of fli(t:) is PtS[G, v], and the range of

fl(t) is contained in fi, 1, 2, e v;
(iii) 7 (71,72) is such that the domain of 7g(t) is Og, the range of 71(0 is

contained in ptS[G, v], and the range of 72(t) is contained in the space of operators
on P’S[G,

(iv) for every x, y S[G, v] the following relations are satisfied"

fl t)y t)Ptx P’TP,x

flz(t) (T z(t) Ptx])pty
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For later use, the section is concluded with the following statements.
PROPOSITION 4.1. Let (O’,S’, ’) and (", S", ") be two state realizations for

T’ and T" respectively. Then an admissible state realization for T T’ + T" is

given by the triple (, S, ), where Oz(t)= (O’z(t), O7(t)), S S’ x S I’ and z(t)s
’i(t)s’i + ’i’(t)s’i’, where (s’i, s’i’) S x S for 1, 2, and all v.
PROPOSITION 4.2 (Principle of causal duality). Let a statement or equality be

phrased using relations involving the causality alphabet {A, C, M, X, A, C,
A_, C_, X_ }, the families of projection operators pt, Pt, P’, fit, the families of mappings, , , 7, and the sets S and f. Then this statement or equality remains valid if the
following interchange in symbols occurs"

C--, A C--, A_, A-,C, A_ --, C,

CA, AC, X_X_, XX,

5. State related concepts and properties. The structure of systems with
respect to the notion of state can be diverse. One way to describe the variety of
situations which can occur is to start by introducing the concepts of controllability,
observability, minimality, equivalence and separability. For details on the genesis
of these concepts the interested reader is referred to [1], [5], [7.

DEFINITION 5.1. The state realization (,S,’) is completely controllable
with respect to the first (second) component if l(t) (O2(t)) is onto.

DEFINITION 5.2. The state realization (, S, ’) is completely observable with
respect to the first (second) component if l(t) (2(t)) is one-to-one.

DEFINITION 5.3. The state realization is minimal with respect to the first
(second) component if it is completely controllable and completely observable with
respect to the first (second) component.

DEFINITION 5.4. A state realization is strictly minimal (strictly completely
controllable, strictly completely observable) ifit is minimal (completely controllable,
completely observable) with respect to both first and second components.

DEFINITION 5.5. Two state realizations (q,S, ) and (O’,S’, ’) are strictly
equivalent if there exists a unique family of invertible mappings K indexed by e v
such that the following conditions are satisfied"

q(t) K(t)q’(t) and (t) ’(t)K- (t).
DEFINITION 5.6. A system T with state realization (, S, ) is separable if for

all e v and x S[G, v] one has

PtTx (l(t)s1 -b- PtTPtx, where sl 01(t)x.

In the sequel it will be said that a state realization (, S, () has its first component
given by the triple (, , ), if $1 has only one element, indicated by , and
’1(t) maps this element into the zero element of PtS[G, v]. Similarly, it will be said
that a state realization (, S, ) has its second component given by the triple
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(3, , ) if S2 has only one element (again indicated by ) and 2(t) maps this
element into the null operator on P,S[G, v]. Finally, a state realization is given by
the triple (, , ) if both its first and second components are given by the
triple (, , ).

PROPOSITION 5.1. A system is separable if and only if it admits a state representa-
tion whose second component is given by the triple (, (25, )..

Note that our formulation of state and state related concepts is more general
than that usually encountered in the technical literature. To illustrate some of its
powerful features we introduce the following relevant results. To begin with,
Proposition 5.2 gives a connection between the mathematical concept of minimal
state realization and the intuitive notion of a state set which contains only
"essential" elements.

PROPOSITION 5.2. Suppose that the completely observable (/,S, () and the
strictly minimal (, S, ) are admissible realizations of a given system. Then there
exists a uniquefamily ofmappings K taking S into S_ and such that

_(t) K(t)O(t) and (t) _(t)K(t).
The next proposition shows that all strictly minimal state realizations of a

system are strictly equivalent. This is a generalization of a similar well-known
result in the context of linear dynamical systems [7], [15]. A result of this type was
also given by Saeks for linear systems in Hilbert space [12].

PROPOSITION 5.3. All strictly minimal state realizations are strictly equivalent.
An additional property of a strictly minimal state realization is that it allows

one to define the notion of a "transition operator." The proof is illustrative of the
techniques used to obtain all these types of results and is therefore given in detail.

THEOREM 5.1. Suppose that (, S, ) is a strictly minimal state realization, and
for q <= t, t, q v, assume that no input to the system occurs between q and t. Then
there exists a well-defined mapping a)(t, q) such that

v(t) O(t, q)v(q),
where v is the state oj the system.

Proof. To every element v and each element v S, associate U(t), a subset
of PtS[G, v], such that U(t) is maximal with respect to the following property"
ifu e U(t), then v g/(t)u. This defines the family of mappings M(t)’S - F{S[G, v)},
where P{S[G, v]} indicates the power set of S[G, v]. Conversely, to every subset
U(t) ptS[G, v] with the property that there exists a v e S such that

v (t)u, for any u e U(t),

associate the element v. This defines a family of mappings

[M()]- . P{S[G, ]} --, S.

Let t, q e v, >= q, and suppose that _u is an input to Tsuch that [U Pq]u j.
Consider the states v(t) and v(q) given by the following equations"

(5.1) v(t) O(t)V’u, v(q) O(q)equ_.

In what follows it is shown that

(5.2) v(t) [m(t)]-m(q)v(q),
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where (I)(t, q) [M(t)]-1M(q) is the mapping whose existence was to be proved.
The proof of equation (5.2) is equivalent to the proof of the following equation"

M(q)v(q)
_

M(t)v(t).

Suppose that u U(q)= M(q)v(q). From the definition of state realization and
equation (5.1) we have the following"

(q)v(q)
L2(q)va(q)]

for all u e U(q). It follows that

F(t)Vl(t) [ P, TP’u
(t)v(t)

L2(t)v2(t)_]

From the above equation and the fact that ’(t) is one-to-one we have

v(t) (t)Pqu for all u U(q)

and therefore U(q)
_

U(t). The proof is thus complete.
By identifying the operator (I)(t, q) as the transition operator of the state

decomposition, Theorem 5.1 can be viewed as a far reaching generalization of a
similar well-known result for linear dynamical systems [15]. This proposition is
also an extension of a perhaps less familiar result about the properties of a state
decomposition for a linear and bounded system in a Hilbert resolution space [12].
The extent of these connections is further illustrated by the following corollary.

COROLLARY 5.1. Let O(t, q) be the transition operator of a strictly minimal
state realization (p, S, ). Then

O(t,t) I,

O(t, r) O(t, q)O(q, r), >= q >__ r.

6. Connections between causality and state concepts. We begin with a connec-
tion among the concepts of separability, weak additivity and causality. This
connection creates a link among various apparently independent developments
such as those, for instance, in [1], 3] and [6].

THEOREM 6.1. If a system is weakly additive, then it is separable. Conversely,
if a system is causal and separable, then it is also weakly additive.

Proof. Suppose that T is weakly additive. By Proposition 5.1, to prove that
T is separable it is sufficient to show that it has a state decomposition whose second
component is given by the triple (, , ). To this purpose, choose a triple
(q/, S, ’), where q/= (q/, ), S (S1, ), (’, ), and (/,S, 1)is any
admissible first component for a state decomposition of T. To prove that (q/, S, ’) is
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admissible it is sufficient to show that (g’2, $2, 2) (, , 3) satisfies the require-
ments of Definition 3.1. That this is indeed the case follows from the relation

Pt6gptlIPtX? PtT[Prx + P’u]- PTP,x- PTP’u
which is valid for all P,x e P,S[G, v] and P’u e US[G, v].

Suppose now that T is causal and separable. IfT were not weakly additive,
then there would exist a e v and x e S[G, r] such that

Tx :/= TUx + TPx.
As T is causal this inequality can hold if and only if

PTx g= PTptx + PtTPtx
This latter inequality cannot hold, however, because, from the separability of T,
there exists a state representation (,, S, ’) such that

P, Tx {,(t)s, + P, TP,x,

where sl Ol(t)P’x and (t)Ol(t)Ptx P, TP’x. One can then conclude that T
is weakly additive.

The next theorem formalizes the intuitive idea that if a system is anticausal,
then its state space should be vacuous. This is a natural extension of a similar
result in [12].

THEOREM 6.2. If a system is anticausal, then it admits a state realization given
by the triple (, , ). Conversely, if the triple (, , ) is an admissible state
realization, then the system must be anticausal.

Proof. Suppose that T is anticausal. Then for every element u S[G, v] and
e v we have P, Tu PtTP,u and therefore P, TP’u . Similarly, for any
x P,S[G, v] and e v we have

,6Tp,,,Ex-I P, TEP’u + Ptx3 P, Tptu- P, TP,x

and, from here, P,6 Tpt, . Choose now the triple (, S, ) such that S (5, ),
,(t) (3, 5) and (t) (, ). In view of the above equations it is trivial to
verify that this triple satisfies the requirements of Definition 4.1 and therefore it is
an admissible state realization for T. Conversely, suppose that the triple (, , )
is an admissible state realization for T. Then from Definition 4.1, we have

P, TP’ and P, T[P’u + P,x] P, Tptu P, TPx 5J.

From this it follows that P, T P, TP, and applying the principle of causal duality
to Lemma 3.1 we can conlude that T is anticausal.

COROLLARY 6.1. A necessary and sufficient condition for a system to be
memoryless is that the triple (, , ) be simultaneously an admissible state and
costate realization.

COROLLARY 6.2. If a system is anticausal, then it admits a strictly minimal state
realization.

When a system is crosscausal or when it is given by the sum of crosscausal
and anticausal parts, then Theorem 6.2 has the following counterpart. The proof
utilizes a line of reasoning already seen, and is omitted for brevity.
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THEOREM 6.3 4] A system is given by the sum of a crosscausal plus an anticausal
part if and only if it admits a state realization with the first component given by the
triple (, , ).

COROLLARY 6.3. A crosscausal system admits a state realization which is

minimal with respect to its first component.
Using Proposition 4.1, the foregoing results can be applied in more general

situations. This is illustrated by the following.
THFORFM 6.4. Every system has a state realization with the property that the

first component depends only on the strictly causal part.

Proof. Applying Lemma 3.3, T can be represented as follows:

T= T+ Te+ T+ Tx.

Suppose that (O,S, (), {A, C,M,X}, are state realizations for T3, Te, Tx
and Tt respectively. By Theorems 6.1 and 6.2, (, S, ’), e e {, M, X}, can be
chosen in such a way that the first component is given by the triple (, , ).
A state representation (, S, ) for Tcan now be obtained by the procedure indicated
in Proposition 4.1. The first component of this state realization depends clearly
only on Te.

THEOREM 6.5. If the strongly causal part of a system is weakly additive, then
there exists a state realization such that the first component depends only on the
strictly causal part and the second component depends only on the strongly crosscausal
part.

Proof. Consider again the representation T T3 + Te + Tt + Tx. By the
application of Theorems 6.2 and 6.3 it is possible to find state realizations for
T,, Tt and Te with the property that the second component is given by the triple
(, , ). The rest of the proof can be obtained through an argument identical
to that used in the proof of Theorem 6.4.

THFREM 6.6. A necessary and sufficient condition for a system to admit a
state decomposition with a first component given by the triple (;25, , ) is that the
strictly causal part is null.

To help motivate the next result observe that a system can clearly have many
state realizations, and, conversely a state realization can correspond simultaneously
to many systems. The natural question arises then about what must be in common
to two systems in order that they can both have the same state realization.

THEOREM 6.7. A state realization of a system defines uniquely its strongly
causal and strongly crosscausal parts.

Proof. We have to show that if two systems T and T’ admit an identical
state realization (O, S, ), then T_c Tc and T_x Tx_, where Tc, T_x, and T_c, T_x
are strongly causal and strongly crosscausal parts respectively of T and T’. By the
application of Proposition 4.1, a state realization of T- T’ is given by (0, , ),
where using the notation of Proposition 4.1"

q,,(t) (q,,(t), q,,(t)), s, =_ s, x s,;
and (t) is defined as follows" if i (vi, vi) Si, then (t)f)i (ivi- ivi. Clearly
(, , ) has the property that i(t)i(t)= , for i--- 1,2. From Definition 4.1 it
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follows that Pt(T T’)P’ and Pt6T,,x[ for every x e SEG, v] and e v.
This implies that the triple (, !Z/, !Z/) is an admissible state decomposition for
T- T’. From Theorem 6.2 it follows that T- T’ must be anticausal. This means
that Tc + Tx Tc’ T . From Lemma 3.2 it then follows that Tc r’c and
Tx rx

Interesting aspects of the above result are illustrated by the following
corollaries.

COROLLARY. A state and a costate realization of a system define uniquely its
strongly causal, strongly anticausal and strongly crosscausal parts.

COROLLARY. If a system is given by the sum of strongly causal and strongly
crosscausal parts, then it is completely defined by any one of its state realizations.

COROLLARY. Suppose that (/, S, ) and (/, S’, ’) are state realizations of T and
T’. If (0, S, ) and (’, S’, ’) are strictly equivalent, then T and T’ have identical
strongly causal and strongly crosscausal parts.

Note that the above statements provide results which in the context of linear
dynamical systems are well known. In particular, for instance, from the last
corollary one obtains that two strictly equivalent dynamical systems have the same
weighting pattern [7].

Summary. The paper considers systems defined in a group-valued function
space, and gives various interconnections between causality related structure on
the one hand and state related structure on the other. To do this the investigation
utilizes a causality decomposition setting of the kind proposed in [3, and a
modified state realization format of the type adopted in [12]. The significance of
our state realization format is illustrated by the generalization of a number of
results previously confined to the case of linear systems. In this regard, for example,
Theorem 5.1 shows that the concept of a transition operator, usually associated
to linear dynamical systems, is meaningful in a much wider, nonlinear, non-
dynamical, and noncausal context.

The main results of the paper are contained in 6. More specifically, Theorem
6.1 establishes a connection between the concept of separability, and the concepts
of causality and weak additivity. Theorems 6.2-6.7 are all addressed "o clarify the
connection between state realization and causality decomposition. In particular,
Theorem 6.2 states that a system is anticausal if and only if it admits a trivial
state realization. Similar results for the case of systems with a more involved
causality structure are given by Theorems 6.3 and 6.6. For example, Theorem 6.6
states that a system has a null strictly causal part if and only if it admits a state
realization with a trivial first component.

Theorems 6.4, 6.5 and 6.7 provide further clarifications about what causality
related information might be obtained from a state realization. In particular,
using Theorem 6.7 it follows that from the knowledge of a state realization of the
system one can reconstruct its strongly causal, strictly causal and strongly cross-
causal parts, Moreover, if the causal part of the system is weakly additive, then,
by Theorem 6.5, the strongly causal and the strongly crosscausal parts of the
system are uniquely defined respectively by the first and the second component of
the state realization.
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MULTIPERSON CONTROLLED DIFFUSIONS*

STANLEY R. PLISKAt

Abstract. A multiperson controlled diffusion process is formulated as both a zero sum, two-person
game and a nonzero sum, N-person game. Necessary and sufficient conditions are provided for a control
to be a solution of these games. The value of a game, if it exists, is shown to be the solution of a second
order, nonlinear differential equation. Existence theorems are included. Discounted cost, undiscounted
cost, and average cost criteria are considered.

Introduction. This paper generalizes the concept of a controlled one-dimen-
sional diffusion process by allowing the process to be controlled by N persons.
If the process is controlled by two persons with opposite objectives, then the
problem of optimally controlling this process may be viewed as a zero sum,
two-person game. On the other hand, if the process is controlled by N >= 2 persons
with possibly different objectives, then the problem of optimally controlling this
process may be viewed as a nonzero sum, N-person game.

The results in this paper are intimately connected with those for single-person
controlled diffusions (see Pliska [8] and Mandl [7]). In addition, minimax problems
in the theory of diffusions have been treated by Girsanov I63. The multiperson
controlled diffusion process is formulated in the following section, the zero sum,
two-person game problem is discussed in the succeeding three sections, and the
nonzero sum, N-person game problem is treated in the final three sections. Both
discounted and undiscounted costs are considered for both game problems, and
existence theorems are provided. A major result of this paper is that the value of
a zero sum, two-person game is the unique solution of a differential equation.

1. The multiperson controlled diffusion process. The multiperson controlled
diffusion process is formulated as in Pliska 8], only taking into account the
multiple number of controllers. Consider a diffusion process with state space S, a
compact interval I-to, r l] of the real line E, which is controlled by N persons
(integer N >= 2). For each 1, 2,-.., N, some positive integer hi, and some
compact set K c E"’, the ith person’s control is a vector-valued function on S
with range Ki. Let A be a point-to-set map from S into Ki such that A is piecewise
continuous in s in the Hausdorff metric and for each s s S the set A is a nonempty
compact subset of Ki. Each time the process is observed in state s, the ith person
chooses an action a from the set A. The set M of admissible controls for the ith
person consists of all piecewise continuous functions ai(s) on S with range in Ki
such that the action ai(s) A for each s S.

Let M Mll M2 Mu, K K x Ku, a(s)= (a(s), ...,
aN(S)) and A (A, Au), so that M is the set of admissible controls, a function
a(s) is an admissible control if and only if a(s) M, and a(. )e M implies a(s) A
for each s e S. Throughout this paper it should be clear from the context whether the
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letter a denotes an admissible control a a(.)e M or an admissible action
a e As for some s e S. The map As is characterized in Pliska [83. We assume M #- K5
hereafter without further mention.

The definition of a multiperson controlled diffusion process is a slight
generalization of Mandl’s [7, p. 157 controlled diffusion process. Let d(s, a) be a
continuous, positive real-valued function on S x K. Then for a(. )e M the piece-
wise continuous function d(s,a(s)) is the diffusion coefficient of the process.
Similarly, let b(s, a) be a continuous real-valued function on S x K so that b(s, a(s))
is the drift coefficient of the diffusion process.

Following Mandl, with a given control a(. ) M, the multiperson controlled
diffusion process is completely specified by the generalized classical differential
operator

d2 d
D =_ d(s, a(s));-s + b(s, a(s)) d--as-

together with Feller’s [4], [5] boundary condition

tcjv(rj)+Oj(v(rj)-sv(s)dj(s) (-

+ crj(Dv)(rj)= O, j O, 1,

where v(s) is some function whose second derivative is piecewise continuous on S.
At each boundary r0, r the four nonnegative parameters r, at, cr and 0r, at least
one of which must be positive, correspond respectively to the phenomena of
absorption, adhesion, reflection and instantaneous return. Corresponding to 0
is the probability distribution function #r(s), where.fro,r) dlar(s) 1. This boundary
condition is interpreted more fully in Pliska [8].

The multiperson controlled diffusion process generates costs according to its
sample path and control (Mandl [7, p. 148]). With the zero sum, two-person game
problem, exactly one stream of costs is generated, as is the case with the single-
person controlled diffusion (Pliska [8]). But with the nonzero sum, N-person game
problem, exactly N streams of costs will be generated, with one stream correspond-
ing to each controller. The costs of a multiperson controlled diffusion will be
formulated below for the N-person problem, but it should be borne in mind that
the formulation for the zero sum problem is exactly the same, except that the
subscript relating the cost streams with the controllers will be dropped.

Each cost stream is comprised of the same three types of costs that were
specified in Mandl [7] and Pliska [8]. The continuous movement cost for the ith
person is defined by the bounded, continuous real-valued function ci(s, a) on
S x K1 x x KN; let c(s, a) denote the N-component vector of these functions.
The cost for the ith person due to instantaneous returns from the boundary r is
expressed by the real-valued function vri(s on S, which is integrable with respect
to/r(s); let vr(s denote the vector of these functions. Finally, the cost for the ith
person due to the termination (absorption) of the process at boundary r is 2ri
and 2 denotes the vector of these costs.
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If Ci(t) is the total of the ith person’s costs generated by the process up through
time t, and C(t)= (Cl(t), ..., CN(t)) is the vector of these costs, then the N-
component vector

v(s) E e- xt dC(t)

denotes the conditional expectation of the total discounted costs of the process
given an initial state s, a control a(.)e M, and a discount factor e -x, . > 0.
From Mandl 7, p. 149 we have the following result.

THEOREM 1. The vector of expected discounted costs corresponding to a(. e M
is the unique function v(s) on S such that v’(s) is continuous,

(1) d(s, a(s))v"(s) + b(s, a(s))v’(s) 2v(s) + c(s, a(s)) 0

holds for every s (ro, r 1) which is a continuity point of a(s), and

+ )v(r) O f (v(s) + (s))t(s) (-

(2) + aj(2v(rj) c(rj, a(rj))) tcj2 O, j O, 1.

If the process is nonconservative and neither boundary is purely adhesive,
that is, if

:0 + 1 > 0, + rca + 0 > 0, j= 0,1,

then by Mandl 7, p. 152] the vector v(s) E.C(m) of the expected total undis-
counted costs is finite and is the unique solution of (1) and (2) for 2 0. If the
process is conservative (o + 1 0), then the total undiscounted costs may be
infinite. The vector 0 (01,..., 0N) in the following theorem, which is an
immediate consequence of Mandl 7, pp. 152-157, 168], can be interpreted as the
vector of mean costs per unit time.

THEOREM 2. Let o t1 0 and assume at least one boundary is not purely
adhesive, that is, rro + Oo + rrl + 01 > O. If v(s, 2) is the vector of expected dis-
counted costs corresponding to 2 > 0 and some a(. M, then

lim)tv(s,))=0 and lira
d

o o s v(s’ ) w(s),

where 0 is some vector independent of the state s, and w(s) is some absolutely continuous
vector-valued junction on S. Moreover,

P(lim t- 1C(t) O) 1,

and (0, w) is the unique pair satisfying

(3) d(s, a(s))w’(s) + b(s, a(s))w(s) 0 + c(s, a(s)) 0

jbr every s (ro, r 1) which is a continuity point of a(s), and

O s {f,.i.w(y) dy + v(s)} dl(s) + (- )rw(r
(4) + aj(c(rj, a(r)) O) O, j O, 1.
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2. The zero sum, two-person game problem. In this and the following two
sections we consider diffusion processes which are controlled by two persons
(N 2), but which generate single streams of costs. The persons have opposite
objectives; the first wants to minimize the costs while the other wants to maximize
the costs. Note that this zero sum game can be regarded as a special case of the
nonzero sum game problem for N 2 by letting the second player’s costs equal
the negative of the first player’s.

We shall consider a single stream of costs and therefore omit the subscript
on all cost symbols. For any particular problem, player 1, who operates the first
control component, endeavors to choose a control al(" ) M1 so as to minimize
the expected costs generated by the process. Player 2, who operates the second
control component, endeavors to choose a control a2(" ) M2 so as to maximize
the expected costs ofthe process. By a solution to this game is meant some admissible
control which is a saddle point of the expected cost function. Thus, if player
unilaterally deviates from this optimal control, then the expected costs cannot be
decreased but they may increase. Similarly, player 2 can unilaterally only decrease
the expected costs.

The following two sections provide results respectively for the discounted
cost case and the undiscounted cost case. The method for solving a problem is
basically the same in each case. A differential equation is solved and the solution is
used to determine the saddle point of a function with respect to all admissible
controls. If this saddle point exists, then it is used to obtain an optimal control,
that is, a solution to the zero sum, two-person game.

3. The zero sum problem with discounted costs. Let v(s, a a2) t)(s) denote
the expected discounted cost of a process corresponding to the admissible control
a (a a2) M. Then v(s, a 1, a2) will be the unique solution of (1) and (2). The
control 8 e M is said to be optimal if for all al e M1, all a2 M2, and all s e S we
have

1)(S, 1, a2) /)(S, 1, 2) V(S, al,

in which case (s, 1, :) is said to be the value of the game. We shall later prove
that the value of a game, if it exists, is provided by the following.

THZOEM 3. There exists a unique solution v(s) to

v"(s) + min max {d(s, a l, a2)-lib(s, a l, a2)v’(s)
As az eAs

(5) V(S) -}- C(S, a l, a2)]} 0

satisfying

(6)

where

(0 + tcj)v(rj) Oj Js (v(s) + vj{s))d#j{s) (-1)Jcjv’{r)

+ aj(2v(rj)- 7j)- tcj2j 0, j 0, 1,

?j min max c(rj, al, a2),
al 6A rj azA2rj

j =0,1.
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Before proving this theorem, some notation will be introduced and a number
of preliminary lemmas will be proved.

Define:

(S, a l, a2) d(s, a l, a2)-1,

(S, al, a2) b(s, al, a2)d(s al, a2)-1,

7(s, a, a2) c(s, al, a2)d(s, al, a2)- 1,

gl(S, Vl, V2)

gz(s, Vl, V2) -min max {fl(s, al, az)v2 2e(s, al, az)vl + 7(s, al, a2)},
aleAs azeA2s

gl(S, Vl,/92)
g(s, v, v)

g2(S, Vl,/)2)

We have the following result from Berge [1, pp. 115-1161.
LEMNA 4. Let X and Y be compact topological spaces. Iff is a lower (upper)

semicontinuous numericalfunction on X x Y and F is a lower (upper) semicontinuous
mapping of X into Y such that for each x, Fx ./= , then the numerical function h
defined by

h(x) sup f(x, y) y e Fx}

is lower (upper) semicontinuous on X.
LENMA 5. If A and A2 are continuous at Cs, and (f), 2) are arbitrary, then

g(s, v, v2) is continuous in (s, v v2) at (cs, f) 2).
Proof. For i= 1, 2 let Ci E denote a compact set containing an open

neighborhood of i. With the notation of Lemma 4, identify X with
S x KI x C x C2, YwithKz,fwithfl(s, ax,az)v2 -2(s, ax,az)v + 7(s,a,a2),
and F with A2. Conclude by Lemma 4 that the numerical function

max {fl(s, a, az)v2 2(s, a, az)v + 7(s, a, a2)}
a2A

is continuous at (g, , 2) for all a e K. Repeating this reasoning in a similar
manner, conclude that gz(S, V, V2) and hence, trivially, g(s, v, v2), are continuous
in (s, v, v2) at (g, , 2).

In the following lemma, we use the norm

g(s, v, v2) max {sup Ig(s, Vl, v2), sup Igz(s, v, v2) }.
sS sS

LEMMA 6. The function g(s,v,v2) is Lipschitzian with respect to (v,v2),
that is, for some positive constant L not depending on s, v or v2,

g(S, Vl, /)2) g(S, 1, 2) L (/)1,/)2) (1, 2)

for every s S and every pair (v l, v2), (1, 2).
Proof. Let s, (Vl, v2), and (1, 2) be arbitrary, and without loss of generality

assume g2(s, 1, 2) -<_ g2(s, Vl, v2). Suppose fi e A is such that

--g2(S, Vl, V2) max {fl(s, 2, a2)v2 J(o(s, 21, az)V + 7(s, 21, a2)},
azA
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and suppose a2 A2 is such that

max {(s, fix, a2)2 /(s, 1, a2))l + 7(s, 1, a2)}
a2eA

Then

--g2(S, 1, 2) min max {fi(s, al, a2)2 ,(s, al, a2) -+- 7(s, al, a2)
alA a2A

=< max {(s, al, a2)2 2(s, hi, a2) + 7(s, 1, a2)}
a2eA}

so that

g2(s,/)1’ U2) g2(s, 1’ 2)

__< max {(s, ill, a2)2 2(s, a, a2), + 7(s, a, a2)}
a2eA

max {fl(s, ax, az)v2 ,O(S, 2x, az)Vx + 7(s, al, a2)}
az6A.

/(S,al, a2)2 ,o(S,al,a2) -- (S,al, 22)

{fl(S,21,22)/)2 /(S,21,22)/)1 -1- (S,21,22)}

Cllg2 v2l + 2Czlg vl

where

C max Ifl(s, al, a2) and C2 max I(s, a, a2)l.
seS seS
aeK aeK
a2K2 a2K2

Thus the desired result follows with L max 1, C +/C2}.
In subsequent lemmas we use v(s, u, u2) to denote the solution of (5) on S

satisfying v(ro, u, u2) Ul and v’(ro, ul, u2) u2 where, of course, v’(s, ul, u2)
(8/Ss)v(s, u u2). This is not to be confused with the notation at the beginning of

this section. It should be clear from the context whether the second and third
arguments of v(s, u l, u2) are initial conditions or admissible controls.

LEMMA 7. For u 1’ //2 (-- 00, 00), equation (5) has a unique solution v(s, u 1, u2)
on S satisfying v(ro, ul u2) Ul and v’(ro, u u2) u2.

Proof. It suffices to show that the equation

d Vl
R(S, /)1’ /)2)

ds )2

has a unique solution on S satisfying v(ro)= u and to2(ro)--u2 because then
v(S, Ul,U2) v(s). By differential equation theory and the piecewise continuity
of A., Lemmas 5, 6 and a result in Edwards [3, pp. 153-155] imply the result.

LEMMA 8. The jhnctions v(s, u l,//2) and v’(s, u x, U2) are continuous, strictly
increasing functions of u2 with limits +_ ov as u2 --* + o jbr each fixed s (ro, r]
and each fixed U (-or, ).

Proof. We first show that the function v’(s, ul,.) is strictly increasing.
Suppose not, so that for some Ul e (-o, or), So e(r0, rl], and pair u2 < fi2, say,
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we have v’(So, u l, u2) v’(So, u l, fi2) and v’(s, u 1, u2) < v’(s, u 1, fi2) for all s e [ro, So).
It follows that v"(s, ul, u2) > v"(s, ul, 2) for some s < So in every neighborhood
of So and V(So, u l, u2) < V(So, u l, fi2). But since o(s, al, a2) > 0 and by continuity
we have v"(s, ul, u2) <_- v"(s, Ul, fi2) for all s < So in some neighborhood of So, a
contradiction. Thus/12 < 2 must imply v’(s, ul, u2) < v’(s, u1,2), in which case
v(S, Ul,U2) < v(s, ul,-2), for each s6(ro,r]. The continuity of v(s, ut,u2) and
v’(s, u l, u2) with respect to u2 follows by standard differential equation theory.

To show the limiting behavior of v(s, u l, u2) and its derivative, it suffices to
consider u2 --* oo and u < 0; the situation with u >= 0 reduces to this case and
the proofwith u2 oo is similar. For arbitrary u < 0, so (r0 r ], and L (0, 00),
it suffices to show v’(So, ul, u2) >= L for some u2 e (- 00, 00). To do this, we consider
the differential equation

(7)
where

y"(s) C,y’(s) + 2CaT(s)-

max Ifl(s, al, a2)[, C > max 17(s, at, a2)l,
seS sS
aK aK
a26K2 a26K2

and C2 > 0. Now if y(s) is a solution of (7) with y(ro)= u 6(-00, o0) and
(dy/ds)(ro) u2 e (-o0, o0), then it is easy to verify that y’(s) oo as u2 oo
for each s e S. In particular, with

C2 C_ min cz(s, a l, a2),
aleKt
a2K2

there exists some constant L > L such that if p e[ro,(ro + So)/2, then the
solution to (7) satisfying y(p) 0 and y’(p) >= L will be such that y’(s) >__ L for
all s [p, Sol. Also, with

C2 C max a(s, a l, a2),
sS
axK1
a2K2

there exists some constant /t2 such that the solution to (7) satisfying y(ro)=
and y’(ro) u2 will be such that y(g) 0 for some
for all s e [ro, g]; let (s) denote this solution on [ro,

We now claim that v’(So, u l, u2) >= L because v(s, u l, u2) is bounded below by
appropriate solutions of (7). For example, suppose g e[ro,g] is such that
0 > v(s,u,u2) _>_ y()and v’(s, ul,u2) y’(g). Then for some (al,a2)e A,

)"(g, Ul, U2) y"(%) [C/ fi(s, al, a2)]’(% -t- [o(s, al, a2) C]v(, u,, u2)

+ ,C[v(, u,, u) y()] + [C, y(, a,, a)].

Note the last term on the right-hand side is positive and the others are nonnegative
so v"(, ul, u2) > .V’(). By continuity, v"(s, ul, u2) > Y"() for all s in some neighbor-
hood of . In particular, if we let ro, then it becomes apparent that v’(s, u l, u2)

y’(s) is impossible with v(s, u l, ld2) 0 for s (ro, g]. Thus v’(s, u l,/12) > y’(S)
for each such s and there exists some p (ro, ] such that v(p, u, u2)= 0 and
v’(p, b/l, U2) L.
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Now let _y(s) be the solution to (7) with _y(p)= 0, _y’(p)= v’(p, u l,/22), and
C2 C_, and note that _y’(s) >__ L for all s [p, So. By comparing v(s, u l, u2) with
_y(s) as we did with y(s), we conclude the desired result.

LEMMA 9. For fixed u the junction

V(rl’ U l’ U2) Ji t)(S, U l, U2) dlA I(S

is continuous and strictly increasing in u2 and diverges to +
Proof. Let u2 < u2 and Iro, r l] be arbitrary. By Lemma 8, v’(s, u l, u2) is

increasing in u2, so v(rl,ul,u’2)- v(,ul,u’2) > v(rl,ul,u2)- v(3, ul,u2). The
function in this lemma is just a convex combination of the right-hand side of this
inequality, so by this inequality the function in Lemma 9 is increasing in u2.

Since v’(s,u,u2)--+ +_ as /22 _+c, we have for any s(ro,rl) that
v(rl, ul, u2) v(g, u, u2) --+ +_ oo as u2 +_ oo. Thus, by the convex combination
argument, the function in this lemma has the same limits. Continuity follows from
the continuity of v(s, u l, u z).

LEMMA 10. Let (s), (s) and ?(s) be measurable real-valued functions on S with
[(S) Cfl < (30, o(s) C2 > O, and ?(s) >= 0, and suppose for some g [ro, rl),
U > O, and u2 >= O, the function v(s) is a solution to

v"(s) (s)v’(s) + (s)v(s) +
satisfying v()= Ul and v’(a)= u2 Then for all s6(g,r] we have v(s) > 0 and
v’(s) > O.

Proof. Suppose there is a smallest So >_- such that v’(So) 0. Then V(So) > O,
and by continuity, v"(s) > 0 in some neighborhood of So. Hence v’(s) < 0 for all
large enough s < So, contradicting u2 ->_ 0 and the definition of So.

Proof of Theorem 3. Denote

Oj fs Vj(S)dlj(s + trj7 + tcj2j, j O, 1.Nj

By Lemma 7 it suffices to show that v(s, u, u2), the unique solution of (5) with
V(ro, ul, u2) ux and v’(ro, u, u2) u2, satisfies

(2erj + Oj + j)v(rj, u l, u2) Oj ; v(s, u u2) dlAj(s)

(8) U2) Nj j 0(- 1) 7jv (rj,/21
for unique values of ul and u2. There are two cases.

Case 1. 0o 7o 0. By (8), u No/(2ao + o)- By Lemmas 8 and 9, the
left-hand side of (8) for j increases continuously and strictly from
as u2 increases from - to . Hence (8) for j is satisfied by a unique value
of/22.

Case 2. 0o + rio > 0. For P e (-c, o0)denote

fp(s, Vl, v2) -min max {fl(s, al, az)v2 2(s, al, a2)vl + PT(s, al, a2)}
aleAs azeA2s

and let Vp(S, u l, u2) denote the unique solution to

(9) v,(s, /21’ /22) fp(S, Vp(S, Ul, /22), /)(S, b/l, /22))
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and

(10) VAro, u, u) u, VAro, u, u2) u.

Then by differential equation theory, re(s, u l, U 2) and V’p(S, u l, U 2) are continuous
in (P,s, ul, u2). We seek to show that vl(s, ul, u2) satisfies boundary condition (8)
for a unique choice of the pair u l, u2.

We can rewrite (8) for j 0 and general P as

(11) 0o;
where

vAs, u, u.) /o(S) + oU2 4(u ),

(12) qS(u 1) (2ao + 0o + o)Ul No-

We first show that for each ul (-, o) and P e (-o, o) there exists a unique
u2 =-- uz(P, Ul) satisfying (11). But this follows from Lemma 8, because then the
left-hand side of (11) is continuous and strictly increasing in u2 with limits _+
as u2 --, _+ oc. Note that, since both sides of (11) are continuous in (P, ul, u2), the
function u2(P, ul) is continuous in (P, ul).

It remains to show that v(s, ul) vl(s, ul, U2(1, Ul)) satisfies (8) with j
for a unique value of u l, that is, there is a unique u for which

(13) (20-1 _+_ O1 .qt_ tCl)V(rl ill) 01 fs V(S, Ul) d//l(S + :rclv’(rl, ul) N

We first show that some u e (- o, ) satisfies (13). Since the left-hand side of (13)
is continuous in u l, it suffices to show that the left-hand side of (13) diverges to
+ o as u ---, __+ o. We discuss only the case u --, + since the other is similar.

We show this result by considering the limit of Pv(s, P- 1) as P $ 0. To this end,
for P > 0 denote u(P) Pu2(1 P- 1) and O(P) P4)(P- 1). Now PVl(S, P- 1, u2)

Vp(S, 1, Pu2) so Pv(s,P-) Vp(S, 1, u(P)). In view of this and (11), u2 u(P)
is the unique number satisfying

(14) Oo fs vAs, , u) do(S) + rtoU 4’(P).

Since O(P) has a limit as P 0, which we denote by (0), equation (14) has a unique
solution /2 for P 0. Since v,(s, 1, u2) and O(P) are continuous in (P, s, u2), it
follows that u(P) is continuous in P and has the limit 2 as P , 0; we denote
U(0) /2" In summary, Pv(s, P-1) _, Vo(S, 1, u(0)) as P $ 0.

We are now in a position to show that the left-hand side of (13) diverges to
+_ as u +_. If (dvo/ds)(ro, l,u(O))> O, then Lemma 10 applies and
v’(s, 1, u(0)) > 0 for each s e (ro, r]. On the other hand, if V’o(ro, 1, u(0)) < 0, then
by (14),

Oo l Vo(S, 1, u(0))dido(S)= 2ao + Xo + 0o rCoV’o(ro, 1, u(0)) >= 0o.
ds

Now 0o > 0, for if not, then rco > 0 and by (14), V’o(ro, 1, u(0)) (2ao + Co)/rto > 0,
a contradiction. Thus for at least one sl e (to, rl) where d/o(sl) > 0 we must have
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Vo(S 1, u(0)) > Vo(ro 1, u(0)). It follows for some so [ro, Sl] that Vo(So 1, u(0))
> 0 and V’o(So, 1, u(0)) _>_ 0. Applying Lemma 10, we conclude for all s (So,
that Vo(S, 1, u(0)) > 0 and V’o(S, 1, u(0)) > 0.

Let Y denote the left-hand side of(13) with vo(s, 1, u(0)) substituted for v(s,
We have by the preceding arguments that vo(r 1, u(0)) > 0 and v(r, 1, u(0)) > 0.
Moreover, for any s [ro, r) we have vo(rl, 1, u(0)) > Vo(S, 1, u(0)), so if 0 > 0,
then

OlvO(rl, l,u(O)) fsVo(s, l,u(O))d(s) >0,

in which case Y > 0. Letting U in the left-hand side of (13), we have

lim {(Aa, + ()l + l)V(rl,u) Ox fsv(S,Ul)dpl(S) + lv’(rl,u)}
P0

(G1 + 01 + K1)Vp(S’ 1, u(P)) 01 Up(S, 1, u(P)) dl(S

r u(P+ vp( ,

Y
lim-
e+o P

Thus, by the remarks following equation (13) there exists some u e (-v, m)
which satisfies (13); it remains to show that this u is unique.

Suppose there exist two numbers Co < C1 and corresponding solutions
Vo(S) and vl(s) of (5), (6) such that vo(ro)= Co and vl(ro)= C1. Let the Borel
measurable function al(s) from S into K1 be such that al(s) e A. and

min max {fl(s, a az)V’o(S) 2(s, al, az)Vo(S) + 7(s, al, a2)}
a AI. azA

max {fl(s, al(s), az)V’o(S) 2(s, al(s), az)Vo(S) + 7(s, al(s), a2)}
azA

for each s S. Let the Borel measurable function a2(s from S into K2 be such that
az(s) e A. and

max {fl(s, al(s), a2)v’l(s) 2a(s, al(s), a2)vl(s) + 7(s, al(s), 02)}
a2eA

fl(S, al(S), a2(s))’l(S o(s, al(S), a2(s))t31(s + 7(s, al(S), a2(s))

for each s e S. Then

0 v’(s) + min max {fl(s, al, az)v’l(s) 2(s, al, a2)/)l(S + /(s, al, a2)
A.s a2A

<= v’(s) + max {fl(s, al(s), a2)v’(s) 2(s, al(s), a2)vl(S + 7(S, a,(s), a2)
a2eA

t)’(S) at- fl(S, al(s), az(s))v’(s) Rex(s, al(s), a2(s))t)l(S -+- "2(s, al(s), az(s))
and similarly,

t)’(s) at- fl(S, al(s), a2(s))V’o(S /O(S, al(s), az(S))Vo(S) + 7(s, al(s), az(S)) _--< 0.
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Defining the Borel measurable function

d2 d
O(s) ---s2(Vl Vo)(S) + fi(s, al(s), a2(s))-s(V Vo)(S)

/0(S, al(s), a2(s))(v Vo)(S),

we see that 0(s) -> 0. Letting v(s) v(s) vo(s), we see that v(s) is a solution to

v"(s) -fi(s, a(s), az(s))v’(s) + 2(s, a(s), az(s))v(s + O(s)

satisfying (by subtracting boundary conditions (6))

(15) (2aj + 0j + )v(rj) Oj v(s) dlaj(s) 1) rtv (r) O, j O, 1,

as well as V(ro) C Co.
It remains to show that v(s) cannot simultaneously satisfy all three of these

boundary conditions. Assume that V(ro)= C- Co and (15) holds for j 0.
Let So min {s e Sly(s)= C Co and v’(s) >= 0}. Note that So exists because if
v’(ro) >= O, then So ro, whereas if v’(ro) < 0, then by (15),

0fs v(s) d#o(S) (2ao + Oo + tCo)V(ro) rCov’(ro) >= Oov(ro).

Thus0o > 0andforsomes e(ro,r)withdlao(Sl) > 0wehavev(s) >__ v(ro) in which
case So e (ro, s. By Lemma 10 we have v(s) > 0 and v’(s) > 0 for all s e (So, r].
In particular, the left-hand side of (15) is positive for j 1, and Theorem 3 is
proved.

The following theorem provides a necessary and sufficient (saddle point)
condition for an admissible control to be a solution to the zero sum, two-person
game. We now revert to the original notation, where v(s, al, a2) denotes the expected
discounted cost of a process corresponding to the control a (al, a2) 6 M.

THEOREM 11. Let (s) be the unique solution of (5), (6). A control fi (fi, 2)@M
is optimal if and only if

(16)

min {d(s, al, fiz(S))-l[b(s, al, gtz(S))b’(s 2b(s) + c(s, a, fiz(S))}
aleA

for every s S which is a continuity point of a and, .[’or j 0 and j 1, a > 0
implies that

(17)

max c(rj, a(rj), a2) c(rj, al(rj) a2(rj)
a2eAj

min c(rj, al,
eArlj

Moreover, if gt is optimal, then b(s) v(s, gt, a2) is the value of the game.
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Proof. Suppose (16) and (17) are true. By the theory of saddle points we
have

min max {d(s, al, a2)-lib(s, a az)b’(s /b(s) + c(s, al, a2)]}
aAls a2A

d(s, al(s), a2(s))-lib(s, al(S), a2(S))’(S (S) --]- C(S, al(S), 82(S))

and, if a > 0,
min max c(ra, al, a2) c(r.j, al(ra), az(rfl).
al Arj a2eA2rj

Substituting these in (5) and (6), we see that (s) is also the unique solution of (1)
and (2), that is, b(s) v(s, 1,82).

With 82(s) fixed, in a similar manner we see that b(s) is the unique solution
in Pliska [8, Theorem 1], that is, (s) is the minimal expected discounted cost for an
ordinary optimal control problem involving the control al(s). In view of (16) and
(17), we have by Pliska [8, Theorem 11 that v(s, 81,82) < V(S, /7/1,82) for each a M
and each s e S. Similarly, v(s, 81, a2) v(s, 81,82) for all a2 M2. Hence 8 is
optimal and (s) is the value of the game.

Conversely, suppose 8 is an optimal control. First we shall show that

a(s, a(s), (s))- lib(s, al(S), a(s))v’(s, 1, ) 2v(s, al, )

ma5 {d(s, fi l(s), a2)- lib(s, l(S), az)v’(s, 81, 82) //)(S, 81,82)
a2eAs

+ c(s, fi,(s), a2)]}

>= min max {d(s, al, a2)- lib(s, al az)v’(s, al, 82) 2v(s, gt 2)
al A,I azA2s

+ c(s, a, a2)}

>= max min {d(s, al, a2)- lib(s, al a2)v’(s, 1, 82) 2v(s, gt 82)
azeA2s aeA

+ c(s, a l, a2)]

min {d(s, al, 82(s))- lib(s, a a2(S))/)’(S 1, a2) V(S, al, a2)

+ c(s, al, 82(s))]}
d(s, al(s), 82(s))- lib(s, al(S), 82(s))/)’(s (1,82) I)(S, al, 82)

+ c(s, a(s), a
Now v(s, al,82)--infalt, v(s, al,82) SO by Pliska [8, Theorem 1], the last
equality is true; similarly, the first one is true. The inequalities are true by saddle
point theory, so all are equalities. Similarly, if aj > 0, then

c(rj, 81(rj) (2(rj)) max c(rj, 81(r), a2)
a2 eA

min max c(ra, a l, a2) min c(ra, a l, a2(rfl).
eArj a2 eA2rj 6Arj

Substituting these equalities into (1) and (2), we see that v(s, 81,82) is the unique
solution of (5) and (6), that is, v(s,81,a2)= b(s). Substituting b(s) for v(s, , a2)
in the above equalities yields (16), and Theorem 11 is proved.
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A diffusion process two-person, zero sum game problem can be solved in
principle as follows. First, obtain the solution v(s) to (5) and (6). Second, consider
the map F from S into K x K2 such that (a, a2)G F(s) if and only if a e A,
a2e A2, and (a, a2) is a saddle point of d(s,a, a2)-[b(s,a, a2)v’(s)- 2v(s)
+ c(s, a, a2)]. If aj > 0, j 0, 1, then redefine F(r) so that (a, a2)e F(r) if and

2 a2) is a saddle point of c(rj ax a2) Note thatonly if a e A., a2 A, and (al
F(s) is possible for some s e S, in which case the game is without solution.
On the other hand, if F(s) - for each s e S, then v(s) is the value of the game,
even if it cannot be attained. Finally, endeavor to choose a piecewise continuous
function a(. such that a(s) F(s) for each s e S.

The following result is a sufficient condition for (16) and (17) to be satisfied
by v(. and some Borel measurable control a(. ), that is, for the map mentioned
above F(s)4:3 for each s e S. The real-valued function h(. on the compact,
convex set C c E" is said to be quasi-convex.if {z C[h(z) _<_ } is convex for each
e E. This function is quasi-concave if -h(. is quasi-convex. Corollary 13 is an

immediate consequence of Theorem 12 which, in turn, follows easily from a
minimax theorem by Sion [10].

THEOREM 12. Let v(s) be the unique solution of (5), (6) and suppose A is convex

Jbr each s S, i= 1,2. Then there exists some Borel measurable control a(s)
(al(s), a2(s)), with al(s A and az(s) A2 for each s S, which satisfies (16) and

(17) provided that

d(s, al, a2)- lib(s, al, az)v’(s /v(s) + c(s, al, a2)

and ac(rj, al a2), j 0, 1, are quasi-convex in al A for each a2 e AZs and s S
and are quasi-concave in a2 AL2 jbr each a A and s S.

COROLLARY 13. Let v(s) be the unique solution of (5), (6) and suppose A is

convex for each s S, 1, 2. Suppose d(s, al a2) is constant with respect to (al a2),
b(s, al,a2) is affine with respect to (al,a2), c(s, al,a2) is convex in al for each
a2 AZs, and c(s, a l, a2) is concave in a2 for each a A, all for each s S. Then (16)
and (17) are satisfied by some Borel measurable control (al(s), a2(s)) with al(s)e A
and a2(s) A2.

Example.

0%r0%r
A {ale Ella1[ zls},

A2 {a2 El lazl ZzS},

z > 0,

z2 >0,

d(s, a l, a2) A > 0,

b(s, al, a2) ala2/s,

c(s, a l, a2) C.

r0 boundary condition" v’(ro) 0 (reflection);
rl boundary condition" v(rl) 21 (absorption with cost 21).

For any value of s, v(s), or v’(s) we have

min max A-l[ala2v’(s) )Lv(s) + C]ai A.I azA S

a2eAmax amineA A-l[ala2v’(S)--S )v(s) + C[
A-1[C-
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so a(s)= (0, 0) is the optimal control for all s e S. Therefore, the value of the
game is given by (1), (2) to be v(s) C e’x + C2 e -’x + C/2, where x///l/A, C1

erl(21 C/2)/(ezt(rl -to) + 1)err1(21 C/2)/(e2’1 + eZra), and C2

4. The zero sum problem with undiscounted costs. The zero sum, two-person
diffusion process game problem with undiscounted costs will be one of two types,
depending on whether the boundary conditions are conservative or nonconserva-
tive. The results in this section parallel those of 3, and, consequently, they will
be brief. The conservative case will be treated in the second half of this section.
For the purposes of this section, the boundary conditions are said to be non-
conservative if at least one boundary is absorbing and neither boundary is purely
adhesive, that is,

K0 -[-- K > O, Kj + TC, Ac- Oj > O, j 0, 1.

Let v(s, a l, a2) v(s) denote the expected undiscounted cost of a nonconservative
process corresponding to the admissible control a (al, a2) M. Then v(s, al, a2)
will be the unique solution of (1), (2) with 2 0. The control a M is said to be
optimal if for all a M1, all a2 M2, and all s S we have

v(s, al, a2) v(s, al, a2) V(S, al,

in which case v(s, ill, )2) is said to be the value of the game. It will subsequently be
proved that the value of a game, if it exists, is provided by the following result whose
proof is a generalization of one by Mandl 7, pp. 158-167].

THEOREM 14. With nonconservative boundary conditions, there exists a unique
solution v(s) to

(18) v"(s) + min max {d(s, al, a2)-lib(s, al, a2)v’(s) + c(s, al, a2)]} 0
alA a2A

satisfying

(19)

where

(0 + :)v(r)- Oj fs (v(s) + v(s))

(- 1) zjv (r) aaya caAa 0, j =0,1,

7i min max c(ra, a l, a2), j 0, 1.
al .Arj a2eA2rj

Proof. Lemma 7 does not depend on/l > 0, so for every H1, ///2 C (--(30, C),
equation (18) has a unique solution v(s) satisfying v(ro)= u and v’(ro)= u2.
For fixed u and u2 denote w(s, u2) v’(s) and note that w(s, u2) is independent of
u since it is the solution of a first order differential equation under the initial
condition w(ro, u2) u2. Writing for j 0, 1:

vs(s) d#s(s) + ajy + s2s,
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we have that (19) is equivalent to

/0b/1 00 W(t, U2) dt d#o(S) n0b/2 No,

(20) KlUl _qt_ (01 ..[._ K1 W(I, H2) dt 01 w(t, /22) dt dlal(s

-t- TClW(rl,U2)= N 1.

Eliminating U from (20), we obtain the equation for u2"

o(01 + 1) w(t, u2) dt

(21) + /100 w(t,u2) dtd#o(S)-1t" /10b/2 -1- KOTrlW(rl,tA2)

1o01 W(t, u2)dt dl(S IcoN /tiN0

It remains to show that (21) is solved by a unique value of u2, since then Ul can be
obtained from (20). By Lemma 8, w(s, u2) is continuous and strictly increasing in
u2 and w(s, u2)--, +_ oo as u2 +__ oc, in which case the left-hand side of (21) has
these same properties (see Mandl 7, p. 163). Hence (21) has a unique solution
and Theorem 14 is proved.

THEOREM 15. With undiscounted costs and nonconservative boundary conditions,
let v(s) be the unique solution of(18), (19). A control a (al,a2)M is optimal if
and only if

max {d(s, al(s), a2)-lib(s, al(s), az)v’(s) + c(s, al(s), a2)]}
a2A

(22) d(s, al(s), az(s))-[b(s, al(s), az(s))v’(s) + c(s, al(s), az(s))]

min {d(s, al, az(s))-lib(s, al, az(s))v’(s) + c(s, al, a2(s))]}
aA

for each s S which is a continuity point of a(s), and, for j 0 and j 1, aj > 0
implies

(23)

max c(r, al(rj) a2) c(rj, al(rj) a2(rj))
a2A

min c(r), al, a2(r))).
aA

Moreover, if a(s) is optimal, then v(s) v(s, a l, a2)is the value of the game
The proof is essentially identical to that for Theorem 11, so it will be omitted.

A diffusion process zero sum, two-person game problem in the undiscounted cost,
nonconservative process case can be solved, in principle, in the same manner as
with the discounted cost case. Moreover, there exist sufficient conditions analogous
to those of Theorem 12 and Corollary 13 for equations (22) and (23) to be satisfied
by some Borel measurable control a(s).
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Example.

S= [0, 1],

A=[-Y,Y]=E,

[-z,z] =
Y>0,

Z>0,

d(s, a l, a2) A > 0,

b(s, al, a2) ala2,

c(s, a l, a2) C.

r(R) boundary condition" v(ro) 2o (absorption with cost 2o);
rl boundary condition" v’(rl) 0 (reflection).

For,any value of s or v’(s) we have

min max {A-l[alazv’(s + C]} max min {A-llalazv’(s) + C]} A-
at A.l azA2s azA2s al Als

so a(s)= (0, 0) is the optimal control for all s S. Therefore, the value of the
game is given by (1) and (2) to be v(s) -1/2(C/A)s2 + (C/A)s + o.

We now discuss the other type of undiscounted cost problem, the conservative
case. For the purposes of this section, the boundary conditions are said to be
conservative if neither boundary is absorbing and at least one boundary is not
purely adhesive, that is,

/0 K;1 ---0, 70 AV 00 -[- 7 -’[- 01 > 0.

Let (R)(a l, a2) (R) denote the mean cost per unit time of such a process correspond-
ing to the admissible control a (a l, a2) M. Then (R)(a l, a2) is the unique number
to which there exists a solution to (3) and (4). The control fi M is said to be
optimal if for all a M1 and all a2 m2 we have

(R)(a a2) _-< (R)(al, a2) (R)(al, fi2),

in which case (R)(ill, 2) is said to be the value of the game. The following result
characterizes the value of a game.

THEOIEM 16. With conservative boundary conditions, there exists a unique
number (R) such that the equation

(24) w’(s) + min max {d(s, al, a2)- lib(s, al, a2)w(s) (R) + c(s, al, a2)]} 0
As a2As

has a solution w(s) satisfying

(25) O[;s ; W(y) dy + v(s)l
where

d#j(s) + (- 1)Jcjw(rj) + aj(Tj O) 0, j 0, 1,

7j min max c(rj, a l, a2).
al Arj azA2rj

Proof This proof is rather similar to that for Theorem 3, so it will only be
sketched. By Lemma 7, for every u2, (R) e (-o, o) there exists a unique solution
w(s, u2, (R)) to (24) satisfying w(ro, u2, (R))= u2. By Lemma 8, w(s, u2, (R)) is con-
tinuous and strictly increasing in u2 and w(s, u2, (R))--. +_ o as u2

--, _+ . It
follows that the left-hand side of (25) with w(s, u2, 6)) substituted for w(s) is con-
tinuous and strictly increasing (decreasing) in u2 and diverges to ( o) as
u2

---,

__
oe for j 0 (j 1). Thus, if boundary rj is purely adhesive, then (R) 7i

and u2 can be determined uniquely from the other boundary condition.
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On the other hand, if neither boundary is purely adhesive, then to every (R)

there exists a unique number u2 u2((R) such that w(s, (R)) =_ w(s, u2((R)), (R)) satis-
fies (25) for j 0. It remains to show that w(s, (R)) satisfies (25) for j 1 with a
unique value of (R). Consider (R)-lw(s, (R)) for (R) > 0. It can be shown as with
Theorem 3 that (R)- w(s, (R)) (s) as (R) o(R) for all s e S, where (s) is the solu-
tion to

’(s) -min max {d(s, al, a2)- lb(s, a az)(s)
alA a2A

satisfying

Oo (y) dy dido(S) + rCo(ro) Oo O.

After showing that

01 ff(y) dydktl(S 7r1(rl)- 0" < 0,

we conclude that the left-hand side of (25) for j 1 with w(s, O) substituted for
w(s) diverges to as O +__ . By continuity, w(s, O) satisfies (25) for j 1
with some value 0. This solution (R) is unique; otherwise a contradiction can be
derived as was done with Theorem 3 to show the unicity of v(ro).

THEOREM 17. With undiscounted costs and conservative boundary conditions,
let 0 be the unique number such that (24) has a solution w(s) satisfying (25). A control
a (a, a2) M is optimal if and only if

(26)

max {d(s, a,(s), a2)- ’[b(s, a,(s), a2)w(s) 0 + c(s, al(s), a2)]}
a2A

d(s, al(s), az(s))- lib(s, a(s), az(s))w(s) 0 + c(s, a(s), az(s))-]
min {d(s, al, a2(s))- lib(s, a a2(s))w(s --0 + c(s, 6/1, a2(S))]}
aA

for every s S which is a continuity point of a(s), and, for j 0 and j 1, aj > 0
implies

max c(rj, al(r), az) c(r), al(rj) az(r)))
a2 eA 2rj

(27)
min c(rj, a, az(rj)).
al -A lrj

Moreover, if a(s) is optimal, then O O(al, a2) is the value of the game.
This proof is essentially identical to that for Theorem 11, so it will be omitted.

A diffusion process zero sum, two-person game problem in the undiscounted cost,
conservative process case can, in principle, be solved in the same manner as with
the discounted cost case. Moreover, there exist sufficient conditions analogous to
those of Theorem 12 and Corollary 13 for equations (26) and (27) to be satisfied by
some Borel measurable control a(s).

Example.

s o,],

A. =[-Y,Y] E,

A [-Z,Z] E,

Y>0,

Z>0,

d(s,al,a2) A > O,

b(s, al, a2) aa2,

c(s, a, a) Cs.
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Suppose both boundary conditions are pure reflection. For any values of s, w(s),
and (R) we have

min max {A-lalazw(s)- 6) + Cs}
a c:A.l a2c:A

max min {A-lala2w(s (R)
a2A al

so a(s) (0, 0) is the optimal control for all s S. Therefore, the value of this game
is given by (3), (4) to be (R) C/2, with w(s) ((R)/A)s 1/2(C/A)se.

5. The nonzero sum. N-person game problem. The remainder of this paper
describes a class of controlled diffusion processes whose control problems can be
viewed as nonzero sum, N-person games. We consider the multiperson controlled
diffusion process of these processes are controlled by N persons and generate
N streams of costs (N > 2). Controller i(i 1,..., N), who operates the ith
control, endeavors to choose a control a M so as to minimize the costs of the ith
cost stream generated by the process. A game situation exists by virtue of the fact
that the cost to the ith person is influenced by the actions of the other players.

The optimality criterion used for these processes is that of a Nash equilibrium
point. Ifan admissible expected cost is defined to be the expected cost corresponding
to some admissible control, then the solution to this game will be some admissible
control whose corresponding expected cost is a Nash equilibrium point with
respect to all admissible costs. This if player unilaterally deviates from his com-
ponent of this optimal control, then his expected costs will either be unchanged or
increased. The adoption of the Nash equilibrium point optimality criterion is
made in recognition of the fact that a variety of meritorious optimality criteria
exist for nonzero sum, N-person game problems. In particular, a "prisoner’s
dilemma" situation might exist where the players would gain by deviating from the
Nash equilibrium point solution in a cooperative manner.

The following two sections provide results respectively for the discounted
cost case and the undiscounted cost case. The main result of each section is a
necessary and sufficient condition for a control to be optimal. In addition, a
method based upon the theory of differential games is provided for solving a
diffusion process nonzero sum, N-person game problem. This method is substan-
tially the same as a method used for solving an ordinary diffusion process optimal
control problem. The optimizing solution of an equation is substituted into a
differential equation whose solution, in turn, is used to obtain the optimal control.

To minimize ambiguity, the following terminology is used. The ith control
ai Mi is operated by the ith player and is generally a vector-valued function on S.
The control a (a l, aN) is the vector consisting of the N players’ controls.

6. The nonzero sum problem with discounted costs. Let v(s, a)
t)(S, a l, aN) denote the expected discounted cost of a process corresponding

to the admissible control a e M, and let vi(s, a) be its ith component, 1, ..., N.
Then v(s, a) will be the unique solution of (1), (2). The control fi e M is said to be
optimal, that is, a solution of the game if it is a Nash equilibrium point of the
expected discounted cost functions’that is,

Ui(S l) Vi(S 19 i- 1, ai, ii + 1,’’" lN)
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for all s S, all a Mi, and each 1, ..., N. In this case v(s, t) is said to be a
value of the game.

To simplify our notation, define

val g(z) {g(z)[z is a Nash equilibrium point of g on Z},
zeZ

whereZicEfori= 1,...,
The main result of this section is the following.

THEOREM 18. A control h M is optimal i] and only ifjbr each s S which is a
continuity point of

(28)
d(s, h(s))- [b(s, h(s))v’(s) 2v(s) + c(s, h(s))]

e val {d(s, a)-[b(s, a)v’(s) 2t)(s) + c(s, a)]},
aAs

where v(s) =- (s, h), and

(29) aj(c(r, a(r)) 7) O, j O, 1,

where

7 val c(ra, a), j O, 1.
aArj

Proof. Let h be optimal. For arbitrary let ill,’", hi_l,hi+l,’", fin be
fixed so that

vi(s, ) inf vi(s, 1, i- 1, ai, li+ 1, IN)
aiMi

is the minimal expected discounted cost of an optimal control problem and hi
is one of its optimal controls. By Pliska [8, Theorem 1 we have

d(s, l(S))- lib(s, i(S))l)’i(s /],l)i(s + ci(s i(s))

(30) min {d(s, l(s), a, fiN(S))-lib(s, l(s), ai, N(S))VI(S)
aiA

)ovi(s) + ci(s ill(s) ai (N(s))]

for each s S which is a continuity point of h(s) and

(31) aj(ci(r2, t(r2)) 7i2) 0, j 0, 1,

where
7i2 min ci(rj, fii(r2), ai, fiN(r2)), j O, 1.

ai6A

Since is arbitrary, (28) and (29) must be true.
Conversely, suppose (28) and (29) hold and let be arbitrary. Now (30) and

(31) must hold, so by Theorem of Pliska 81 we see that v(s, fi) is the minimal
expected discounted cost of the ordinary optimal control problem" minimize
v(s, hi,..., a,..., hN) subject to a Mi. Since is arbitrary, h defines a Nash
equilibrium point for this game.

Theorem 18 is substantially different from Theorem 11 for the zero sum,
two-person game situation in one respect. In each case the necessary and sufficient
condition is a function of the solution to a differential equation. With Theorem 18,
this solution is explicitly a function of some control a M, whereas in the case of



582 STANLEY R. PLISKA

Theorem 11 the corresponding differential equation solution is explicitly indepen-
dent of any control a e M. Thus, given a control a e M, one can determine v(s, a)
with Theorem and then ascertain whether a(s) is optimal with Theorem 18.
Conversely, an optimal control a(s) will satisfy (28) and (29). However, Theorem 18
does not provide an explicit procedure for solving the diffusion process nonzero
sum, N-person game problem.

The following computational procedure is based upon a method devised by
Starr and Ho 11 as well as Case [2 for solving nonzero sum differential games.
Let (t 1,’", tN) and u (u 1,..., uN) and define g(s, t, u, a):S x E2N K

EN by

g(s, t, u, a) =- d(s, a)- [b(s, a)u 2t + c(s, a)].

Now consider the point-to-set map F’S E2 K defined by

F(s, t, u) {a Alg(s, t, u, a) val g(s, t, u, a)}.
aeAs

If aj > 0 for j 0 or j 1, then redefine F(rj, t, u) so that

F(rj, t, u) {a Arj c(rj, t, u, a) val c(r3, t, u, a)}.
aArj

If F(s, t, u) 4: for each (s, t, u), then choose a function a(s, t, u) with a(s, t, u)
e F(s, t, u) for each (s, t, u), substitute a(s, v(s), v’(s)) for a(s) in (1) and (2), and solve
for v(s). If v(s) exists, then it is a value of the game. If a(s) a(s, v(s), v’(s)) is piece-
wise continuous, then it is an optimal control and v(s) v(s, a).

Note that this procedure may break down in three different ways: F(s, t, u)
may not exist, v(s) may not exist, and a(s, v(s), v’(s)) may not be piecewise continuous.
The reason why v(s) may fail to exist, although a(s, t, u) does, is that the Euclidean
norm of g(s, t, u, a(s, t, u)) may fail to be continuous on S E2N. Since most
differential equation theory existence theorems specify some form of continuity
requirement, counterexamples can be easily constructed. The following proposi-
tion serves to characterize F.

PROPOSITION 19. If A is continuous on S, then F is a closed map on S E2N.
Proof. For each 1,..., N, define the point-to-set map Fi:S E2N K

Kiby

[’i(S, t, U, a) arg min gi(s, t, u, a).
aiA

The continuity of gi(s, t, u, a) implies that Fi is a closed map, so its graph Di
{(s, t, u, a)lai Fi(s, t, u, a)} is a closed set. The map F is thus closed because its

graph D1 (3 Du is closed.
PROPOSITION 20. Suppose each component of g(s, t, u, a) is quasi-convex in

ai Ki for each s S, each a Kj (j= 1,...,i- 1, + 1,...,N), and each
t, u E, and assumeA is convexfor each s S and 1,..., N. Then F(s, t, u) 4:
for each (s, t, u) S E2.

The proof of Proposition 20 is omitted because it follows easily from Rosen
[93 and Sion [103. If Proposition 20 holds and the Nash equilibrium point is unique
for each (s, t, u), then the closed map F(s, t, u) is simply a piecewise continuous
function. This observation leads to the following existence theorem. Following
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Rosen [9], the function g’EN --, EN is said to be diagonally strictly convex for
a e K if for each a, a e K we have

(a a)rf(a) + (a al)rf(a ) < O,

wheref(a) (Sg t/Sa 1, "’", 8gu/Sau)r. A sufficient condition that g(a) be diagonally
strictly convex is that the symmetric matrix [F(a) + Fr(a)] be positive definite
for a e K, where F(a) is the Jacobian with respect to a of f(a) (Rosen [9]).

TEOREM 21. Assume A is continuous on S with A convex for each s S and
1,..., N. Also assume d(s, a) is constant in a, b(s, a) is ane in a, and c(s, a) is

diagonally strictly convex in a, all jbr each s S. Then a solution exists for this

diffusion process game.
Proof. The function g(s, t, u, a) is strictly diagonally convex, so by Rosen [9]

there exists a unique Nash equilibrium point for each (s, t, u), that is, by the above
remarks, F(s, t, u) is a continuous function on S x E2u. By differential equation
theory and the arguments of } 3, there exists a solution v(s) to (1), (2) with F(s, v(s),
v’(s)) substituted for a(s). Hence a solution of the game is a(s) F(s, v(s), v’(s)) M,
and the corresponding value of the game is v(s) v(s, a).

Example. This example is a two-person game. Let the state space and sets of
admissible control values equal the unit interval. Let d(s, a x, a2)= 1, b(s, a l, a2)
a + a2, and c;(s, a, a2) C + a;, 1, 2, where C is a constant. Suppose the

boundary condition at ro is reflection and that absorption occurs at r with cost 21.
Following the above procedure, we have for 1, 2 that a;(s, t, u) for u;
and a;(s, t, u) 0 otherwise. By symmetry we have that v (s) v2(s) is the solution

to

(32) v"(s) -2a,(s, v(s), v’(s))v’(s) + 2v(s) K aa(s, v(s), v’(s))

satisfying v’(ro) 0 and v(r,) 2,. In some neighborhood ofro we have v’(s) > 1,
so in this neighborhood a(s, v(s), v’(s))= (0, 0) and, for some constant q, v(s)
=q ex + q e-x + C/2. If

e(x + e-(x C

then q can be chosen so that v(1) 21 and v’(s) for all s e S, in which case
a(s) (0, O) is optimal for all s e S. If

ed + e-d C

@(e-dy edy) 2’

then for some so e (0, 1) we have v’(So)= -1 and a(s)= (0, 0) optimal for all
s e [0, So). For v(s) to exist, we must have v"(So) < 0 when a(so, V(So), v’(So))
in (32). But this is easily verified, so for all s So in some neighborhood of So we
have a(s)=) optimal and v= tie"+ t2e"+(C+ 1)/2, where ul

-1 +1 +2, u2 -1-1 +2, and and t2 are constants.
It remains to show that a(s) (1, 1) is optimal for all s So. Suppose not, but

that s < 1, say, is the smallest s > So such that v’(s) 1. Then v"(s) < v"(So)
< 0, a contradiction. The unknown constants q, t, t2, and So can be solved from
the boundary conditions and the fact that v’(s) is continuous with v’(So) 1.
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7. The nonzero sum problem with undiscounted costs. The nonzero sum,
N-person diffusion process game problem with undiscounted costs will be one of
two types, depending on whether the boundary conditions are conservative or
nonconservative. The results in this section parallel those of 4 and 6, and, conse-
quently, they will be brief. The conservative case will be treated in the second half
of this section.

For the purposes of this section, the boundary conditions are said to be non-
conservative if at least one boundary is absorbing and neither boundary is purely
adhesive, that is,

to + t > 0, tc + rc + 0 > 0, j 0,1.

Let v(s,a)= v(s,a,..., as)= v(s) denote the expected undiscounted cost of
such a process corresponding to the admissible control a e M. Then v(s, a) will be
the unique solution of (1), (2) with 2 0. The control a e M is said to be optimal
if it defines a Nash equilibrium point with respect to the expected cost functions,
that is,

Ui(S (/l) l)i(S il, li__. 1, ai, li+ 1, lN)

for all s S, all a Mi, and each 1, ..., N. In this case v(s, h) is said to be a value
of the game.

THOaM 22. With nonconservative boundary conditions, a control a M is
optimal ![ and only !/’.[’or each s S which is a continuity point of a(s),

d(s, a(s))- lib(s, a(s))v’(s) + c(s, a(s))] val {d(s, a)- [b(s, a)v’(s) + c(s, a)]},
aAs

where.v(s) v(s, a), and

tTj(c(rj, a(r))- 7j)= 0, j 0, 1,

where 7j 6 val, c(rj, a), j O, 1.
The proof is essentially the same as that for Theorem 18, so it will be omitted.

Moreover, the remarks and computational procedure that follow Theorem 18
apply to this case as well.

Example. This example is identical to that of the preceding section except
that the costs are undiscounted. Proceeding in a similar manner, we have that
UI(S /)2(S) is the solution v(s) to

v"(s) -2a(s, v(s), v’(s))v’(s))v’(s) C al(s, v(s), v’(s))

satisfying v’(ro)= 0 and v(rl)= 2, and that a(s,v(s),v’(s))= az(S,V(s),v’(s))
(= 0) if v’(s) =< (=> 1). If C < 1, then a(s) (0, 0) is optimal for all s e S

and v(s)= 2 + C(1- s2)/2. If C > 1, then a(s)= (0, 0) is optimal and v(s)
2 + C/2 + (C- 1)(exp(-2 + 2/C)- 1)/4- Cs2/2 on I0,1/C), and a(s)
(1,1) is optimal and v(s) 2 + (C + 1)(1 s)/2 + exp(-2 + 2/C)

(1 exp (2 2s))(C 1)/4 on (l/C, 11.
We now discuss the other type of undiscounted cost problem, the conservative

case. For purposes of this section, the boundary conditions are said to be conserva-
tive if neither boundary is absorbing and at least one boundary is not purely ad-
hesive, that is,

/0 hI- /1 0, T0 .ql_ 00 .Ar_ 1 At- 01 > 0.
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Let (R)(a) (R)(al,..., aN) (R) denote the vector of mean costs per unit time of
such a process corresponding to the control a e M. Then (R)(a) is the unique vector
to which there exists a solution w(s, a) to (3) and (4). The control fi e M is said to
be optimal if it defines a Nash equilibrium point with respect to the mean costs,
that is,

(R) a < (R) t t a t t1, i-1, +1, N

for all a Mi, 1,..., N. In this case (R)(fi) is said to be a value of the game.
THEORE 23. With conservative boundary conditions, a control a6 M is

optimal if and only i[’jbr each s S which is a continuity point of a(s),

d(s, a(s))- [b(s, a(s))w(s) (R) + c(s, a(s))]

val {d(s, a)-[b(s, a)w(s) (R) / c(s, a)]},
aeAs

where w(s) w(s, a) and (R) (R)(a), and

aj(c(rj, a(rj)) 7j) 0, j 0, 1,

where 7j val,A c(rj, a), j O, 1.
The proof is essentially the same as that for Theorem 18, so it will be omitted.

Moreover, the remarks and computational procedure that follow Theorem 18
apply to this case as well.

Example. This is an example of an N-person game. Let S A
for 1, ...., N and all s 6 S, d(s, a) 1, b(s, a) a + + aN, and ci(s, a)
for i= 1,..., N. Suppose reflection occurs at each boundary. The ith control
ai(s) if wi(s) >= 0 and ai(s) otherwise. By symmetry, w(s) wN(s)
so w(s) is the solution to

-Nw(s)- 6) + Is, wl(s) > O,
W’l(S)

NWl(S 0 / Isl, Wl(S) _-< 0,

satisfying w(1) w(- 1) 0. By symmetry we must have wl(0) 0, so we verify
that O 1/(1 e -N) 1IN and that for i= 1,..., N,

1, se[-1 0),
ai(s

-1, se(O, 1].
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ON THE EXISTENCE OF OPTIMAL POLICIES IN
STOCHASTIC CONTROL*

M. H. A. DAVISS"

Abstract. In this paper a sufficient condition is presented for the existence of an optimal control for
a system described by stochastic differential equations, the solutions of which are defined for any non-

anticipative control policy, by the Girsanov measure transformation technique. The result is that if a
Hamiltonian function achieves its infimum pointwise then an optimal nonanticipative policy exists.

1. Introduction. In this paper conditions are given for the existence of an
optimal control policy for a system described by stochastic functional differential
equations of the form

(1.1) dz, f(t, z, ut) dt + a(t, z) dBt, [0, 1],

where z, is the state and B,I is a vector process ofindependent Brownian motions.
The drift j’ depends at any time on the past {z, s =< t} of the state and on a control
u, which takes values in a metric space U and is itself allowed to depend on the
complete past. The control policy is to be chosen so as to minimize the cost

J(u) E h(t, z, ut) dr.

The solution to (1.1) is defined by the Girsanov measure transformation technique
(see 2). The result is that iff satisfies the technical conditions F l-F3 in 2, then
an optimal policy exists so long as a Hamiltonian function (2.4) achieves its absolute
minimum at each time and past trajectory up to t.

This problem has been considered in the same framework by Beneg [_2] and
Duncan and Varaiya [5]. The result here is obtained under significantly weaker
hypotheses (the stipulation that f(t, x, U) be convex, made in [2, [5], is not re-
quired here); and the approach is entirely different. References [2] and [5] are
based on compactness arguments, whereas the present paper relies on the
Hamilton-Jacobi theory developed in [4 to construct an optimal control policy
(though no computational scheme is, even in principle, provided). The methods are
in fact more akin to those of Beneg’ earlier paper [1] and to those used in Markovian
problems [63, [113. See 4 for further comments on these points.

2. The notation is as follows: C is the set of continuous functions from
0, 1 to R", {zt]. is the family of evaluation functionals on C, and, for each [0, 1],

is the a-field of subsets of C generated by {zs, s < t}. ’ is the a-field of subsets
A of [0, 1] C having the property that the section of A at is in t for each

[0, 1 and the section of A at x is Lebesgue measurable for each x C. A function
g on 0, 1] C is /-measurable if and only if g(t,. is -measurable for each and
g(., x) is Lebesgue measurable for each x.

Let U be a separable metric space which is a countable union of its compact
subsets and be the Borel sets of U. An admissible control policy is a measurable
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function u :([0, 1] x C, Jq/) --, (U, 2). The set of such functions is denoted by .
The function f is assumed to satisfy the following conditions (’" is the Borel

a-field of R"):
(F1) f:[0,1] C x U--, R" is measurable with respect to the a-field

(F2) For each (t, x)e [0, 1] x C, f(t, x,. is continuous on U.
(F3) There exists a constant K such that

]f(t,x,u)l <= K(1 + Ilxll) for all(t,x,u)e[O, 1] x C x U,

where I1" is the uniform norm in C.
a(t, x) is an n x n matrix for each (t, x) e [0, 1] x C whose elements cr(t, x) are

&-measurable functions and satisfy a uniform Lipschitz condition in x. The inverse
matrix rr-l(t, x)is assumed to exist and be bounded for (t, x)e [0, 1] x C. The
cost rate h is a bounded function from [0, 1] x C x U --, R / which also satisfies
FI-F2.

Let (fLd,/) be a probability space carrying an n-dimensional separable
Brownian motion process {w,}. With the above conditions the following equation
has a unique solution (with fixed initial value zo e R"):

d, a(t, ) dwt.
Since {{,} has continuous paths it induces a measure Po on its sample space
(C, )according to the formula

PoA =/{co .(co) e A }, A ( ’1"
The probability space (C,, Po) will be taken as the "basic space" from now on.

Let denote the set of sC’-measurable functions 0:[0, 1] x C R" such that
IO(t, x)l < K(1 + Ilxll). For O e define

(O) O,.a[-1 dz,-- O,.a[-ic/),dt,

where

and

Let

4’, O(t,

a {aiJ(t, z)} ry(t, z)ry’(t, z).

() {exp[(0)] :0 e }.

LEMMA (Beneg [2], Girsanov [7]). Let the measure P4) on (C, ) be de.fined by

I- exp [’(4)] dPo, A e 1.

The dot denotes the R" inner product.
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Then
(i) P4) is a probability measure;

(ii) P4, is mutually absolutely continuous with respect to Po.
(iii) B,, [0, 11} is a Brownian motion under P, where

dB, or- l(t, z)dz, O(t, z) dt

Lemma allows the solution of (1.1) to be defined in the following way:
for u e h’ and (t, x) e [0, 1 x C, define

(2.1)
f"(t. x) f(t. x..(t, x)).

l"(t, x) h(t, x, u(t, x)).

Nowfu e ; denoting Pu Piu, P, is the measure (it can be shown to be unique
see 5]) corresponding to the solution of (1.1) in the sense that under P,,

(2.2) dz, f(t, z, u(t, z)) dt + a(t, z) dBt,

where {B,} is a Brownian motion.
The purpose of condition (F3) is to ensure that (i) holds in Lemma 1, i.e.,

P4,C 1; (F3) could be replaced by any other sufficient condition for this. Let
E, denote integration with respect to measure P,; then the cost of a control policy
ue is

(2.3) d(u) E, h(t, z, u(t, z)) dr.

It is the objective of the controller to minimize the cost. The main result of this
paper is the following. For p eR",(t,x,u)e[O, 1] x C x U, the Hamiltonian
function ’ is defined by

(2.4) ’(t, x, u, p) p. f(t, x, u) + h(t, x, u).

The following condition will be required:
(H) For each (t, x, p)e 0, 11 C x R", octa’(t, x, p,. achieves its minimum;

i.e., there exists u0 e U such that

(t, x, p) g min Jg’(t, x, p, u) *(’(t, x, p, u0).
uU

Notice that (H) is satisfied if, for example, U is compact.
THEOREM. Suppose condition (H) is satisfied. Then an optimal policy exists.
The proof of the theorem, and the form of the optimal control policy, are

given in the next section. It will be seen that the result follows easily from the results
of [-4], encapsulated in Lemma 2 below, together with Lemma of [1]. The idea in
4-] is to notice that the value function W,} is a semimartingale [91, and to show,
using martingale-theoretic methods, that its bounded variation and local martin-
gale components are as in (3.3). Thus one might say that the "basic existence results"
at work here are really Meyer’s decomposition of supermartingales [8] and Beneg’

implicit function lemma.
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3. Full details of the following will be found in [4] and [10].
For u e @’ and e [0, 1], the expected remaining cost from time on is

O(t) g h(s, z) ds

It can be shown that O,(t) only depends on the control policy used on It, 11.
Since {O(t):ue’} is a subset of L,(C,,Po), which is a complete lattice, the
following infimum exists in Lo
(3.1) Wt= / ,(t).

This is the "value function" for the control problem. Notice in particular that

(3.2)
W 0 a.s.,

Wo inf J(u) A j,.

It is shown in I41 that W has an Ito process representation. Using this, conditions
for optimality analogous to the Hamilton-Jacobi equation can be obtained, in-
volving the drift and diffusion terms in the representation of W. These facts may be
summarized as follows.

LEMMA 2. (i) There exist processes {AW}, {VW} taking values in R,R" re-

spectively, and adapted to ,2 such that

(3.3)

Igwl 2dt < oo a.s., E IAW dt < oo,
o

W J* + AW.ds + VWdz.

almost surely under measure Po.
(ii) For any u ,

(3.4) AW, + VW, f(t, z, u,) + h(t, z, ut) >= 0

for almost all (t, z). u hf is optimal !f and only !f (3.4) holds with equality a.e. Jbr
bl---bl O.

The next result about the set of densities ((I)) will also be required.
LEMMA 3. ((I)) is compact in the Lo topology of L
This fact is not explicitly stated in the literature but is implicit in 2], 5.

Lemma of [2 shows that ((I)) is uniformly integrable, and hence relatively
compact in a(L 1,Loo). The argument of Theorem 2 of [5] shows that ((I)) is
convex and strongly closed, and hence weakly closed.

Proof of Theorem. The optimal policy u* is constructed in the following way:
for each (t, x, p), y*(t, x, p) is a control value which minimizes ’, i.e.,

(t, x, p) p. f(t, x, y*[t, x, p]) + h(t, x, y*[t, x, p]).

I.e., the r.v.’s at each time are ,-measurable.
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Then the function u*" [0, 1] x C --, U is defined by

u*(t, x) y*(t, x, VW[t, x]),

where VW is the function appearing in Lemma 2. Thus the proof consists of show-
ing, first that u* , i.e., that the function y* can be selected in a suitably measur-
able way, then that u* achieves the minimal cost.

For fixed (t, x, p), ’ is continuous in u, while for fixed u U, it is evident that
Yf’ is measurable with respect to //{ ,_ * " in (t, x, p). Let S be a countable
dense subset of U. Since o’ is continuous in u,

,(t, x, p) inf ,X’(t, x, p, u).
eS

Thus

{t,x,p’’(t,x,p) < a} U {t,x,p’g/f’(t,x,p,u) < a}

so that is //-measurable. In view of (H),

,,uf(t, x, p) e ’(t, x, p, U) for each (t, x, p).

According to Lemma of[l these facts are sufficient to guarantee the existence of
an /-measurable function y*’[0, 1] x C x Rn U satisfying (3.5). Define the
measurable function t)’([0, 1 C, .) ---, ([0, 1 x C x R", ,#/[) by"

qJ(t, x) (t, x, VW(t, x)).

Then, from (3.6), u* y* , so that u* is s-measurable, i.e., u* e ’.
To prove that u* is optimal one has to show that

(3.7) AW(t, z) [VW,. f(t, z, u*(t, z)) + h(t, z, u*(t, z))] a.e.

For denote the right side of (3.7) by 0(t, z) and let u e ’. Using (2.2), the representa-
tion (3.3) of W can be written

W J* + (AW. + VW.f) ds + VW,.a,dB,,

where (B,, , P,) is a Brownian motion (see [7, Lemma 6). Taking expectations at
and using (3.2) gives

In view of (H),

(3.9)

and hence

(3.o)

J* + E,, (AW + VW.f")dt O.

VW.f"+h">= - a.e.

J* <= E,, h" dt E, (AW- )dt
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Equality holds a.e. in (3.9) for u u* so that

(3.11) J* E,. hu* dt Eu. (AW ) dt

Now (3.10)-(3.11) say that u* is optimal, as long as (3.7) holds.
I(AW- )dt" then X is an a.s. positive random variable, fromLet X J’0

(3.4). Define for each integer N,

XN(z) min (N, X(z)).

In view of (3.2), given any t: > 0 there is a u e @’ such that

E, hdt < J* + .
Then, from (3.10), E,X < . Thus there exists a sequence {u} c # such that

E,X 0.
Since 0 <= X < X, EuX O, n - oo. Let 0 exp [-’(f)3. Then 0 e @((I)) for
each n and EoOX - O. From Lemma 3 there is a subsequence, also denoted by
0, and an element 0 e (I) such that - 0 in r(L1, L). Thus

lira EockX-- 0- EoOX:.
Now 0 ) 0 a.s. in view of (ii) of Lemma 1, so that XN 0 a.s. Since this applies
for every N, X 0 a.s., so that (3.7) holds and the proof is complete.

4. Additional remarks.
(a) In Markovian problems, as studied by W. H. Fleming [6], R. W. Rishel

11] and others, the system is described by

dz, f(t, z,, u,) dt + a(t, z,) dB,, z(O) xo R",

where u u(t,z) is a function of the current state only, and the process {z} is
stopped at the first exit time from a cylinder Q [0, 1] x B, B R". The value
function W(t, x) is obtained formally as the solution of the semilinear parabolic
equation

(W (2W-- 2 Li

aij(t’ x)Z-xjvxiu + min,v {V,,W. f(t, x, u) + h(t, x, u)} 0 in Q,

(4.1)
W(t, x) O, (t,x) e 8Q {0} B.

Results of the following type are obtained: If (i) there is a function u(t, x, p)
such that [p. f + hi is minimum on U when u u(t, x, p), and

(ii) (4.1) has a suitably smooth solution W(t,x), then u(t,x, V,,W) is an
optimal control, with cost W(0, x0). Attention is then devoted to finding conditions
under which (i) and (ii) are true. This gives a constructive procedure for finding
u" solve (4.1) for W(t,x)" then u, u(t,x, V,W). With the present approach,
however, it is known in advance that a function VW (or, more generally, a process
VW, in the non-Markov case) exists which plays the role of VxW above; thus
nothing corresponding to (ii) is required. This generality is achieved at the expense
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of the constructive procedure" there is no algorithm for computing the function
VW. However, from (3.7) one always has

(4.2) AW(t, z) .(t, z, VW,).

In Markovian problems it is known [4, 61 that the value function as defined by
(3.1) just depends on the current state, i.e., there is a function W: [0, 1] x R" R
such that W(t, z) W(t, zt). If W is smooth enough, then A and V are differential
operators"

+ 2 aiJ----AW
ct -J cx cx’

(4.3)
c3W

VW=--.

Combining (4.2) and (4.3), one recovers the Hamilton-Jacobi equation (4.1).
(b) The system considered in [11] is the following"

(4.4a) dx, f(t, x,, y,) dr,

(4.4b) dyt g(t, xt, yt, u) dt + a(t, Yt) dB.
Here f is Lipschitz in (x, y), so that (4.4a) has a unique nonanticipative solution
{x, e [0, 11} for any trajectory y e C" denote this solution symbolically by

(4.1 x,

Then (4.4)is equivalent to

dy g(t, Z,(Y), Y,, u,) dt + a(t, y,) dBt,

which is of the form (1.1). So there is an optimal policy u e q/for this problem.
Notice from (4.5) that a(x, s < t) = a(y, s =< t), so that q/consists of nonantici-
pative functions of y. It is intuitively clear that u must be just a function of (xt, y),
i.e., there is a function 0 such that

u(t, y) a(t, z,(y),

This is indeed the case, but more work--along the lines of [4, Lemma 6.2]--is
required to prove it" see [3].

(c) If the function f of (1.1) does not depend on the control, so that the con-
troller does not affect the system trajectory but only (through h) the payoff structure,
then the present result is a special case of Beneg’ "small investor" problem [1]. That
problem has the property that an optimal policy exists for a wide class of informa-
tion patterns. It would be very desirable to extend the present result also to the case
of partial observations, but this does not appear to be possible, for the following

2reason. Suppose l< n and the observation a-fields are t a{z,z,,..., z,
s =< t}, i.e., the first components of {z,} are observed.

The "remaining cost" function O,(t) is now
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and this depends on the control policy used over the entire interval [0, 1]. Processes
Wu(t), VWu(t), A Wu(t are obtained (in some cases) as before, but these are now
indexed by u, the policy used up to time t, reflecting the fact that past controls
affect the expectation of future performance. Inequality (3.4) becomes

(4.6) AW,(t) + E,[VW,(t).f(t, z, u,) + h(t, z, u,)],] > 0 a.e.

with equality a.e. if u is optimal; however it is still far from clear how u is to be
chosen to minimize (4.6).

Acknowledgment. I am indebted to E. Wong and to J. M. C. Clark for helpful
discussions.
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AN EXISTENCE THEOREM FOR OPTIMIZATION PROBLEMS
INVOLVING INTEGRAL EQUATIONS*

DAVID E. COWLES-

Abstract. An existence theorem is proven for Lagrange problems of optimal control in which the
state equation is an abstract integral equation. We formulate the existence theorem using properties of
variable sets defined by Cesari. The proof involves the application of a lower closure theorem in con-

junction with a growth condition. One- and multidimensional examples are given to illustrate possible
applications of the existence theorem.

1. Introduction. We consider one- and multidimensional problems ofoptimiza-
tion of the Lagrange type in which the state variable satisfies an integral equation.
Our state variable, x, will be a member ofa topological space, S. Let G be a bounded,
measurable subset of the t-space Ev, v > 1. Let and be two operators on S
with values in (LI(G))r’ and (LI(G)) respectively. For every (tl, v) in the
closure of G, let A(t) be a nonempty closed subset of the y-space E, y (yl, yS).
Let A be the set of all (t, y) such that t cl(G) and y A(t). For every (t, y) in A,
let U(t, y) be a nonempty subset of the u-space Em, u (u ..., u’). Let M denote
the set, M {(t, y, u)l(t, y) e A and u U(t, y)}.

We investigate the problem of finding an element x of S and a measurable
vector-valued control u(t), G, so as to minimize the cost functional

(1.1) I(x, u) Jo f0(t, (/x)(t), u(t))dt

subject to the state equation

(1.2) (Lx)(t) (t, (,/x)(t), fa K(t, z, (/x)(z))f(z, (x)(z), u(z)) dz)

for almost every G, and the constraints

(1.3) (#//x)(t) A(t), u(t) U(t, (,//x)(t)) a.e. 6 G.

Here K(t, r, y) is a q r matrix defined on G A and f is a vector-valued function
defined on M with values in U. Also, 4(t, y, d) is a vector-valued function defined
on A Eq with values in U’.

2. Preliminaries. In stating our theorems, we will use a property of set-valued
functions called property (Q). In defining property (Q), we shall use the notations
of paragraph one. Also, given a point (to, Y0) A and a number 6 > 0, N6(to Yo)
will denote the set of all points (t, y)e A at a distance less than or equal to 6 from
(to, Yo). We have the following definition of property (Q).
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DEFINITION 1. For every (t, y) A, let Q(t, y) be a subset of the z-space E + 1,
z (z, ..., zr). We say that the sets Q(t, y) have Cesari’s upper semicontinuity or
property (Q) at (to, yo) in A provided that

Q(to, yo) CI cl co Q(to, yo, ),
a>O

where

Q(to, yo, c,) tA Q(t, ).
(t,y)N(to,Yo)

In our proof of the existence theorem we will use the following.
LEMMA 2.1. Let G be a subset of the t-space E which has .finite measure. For a

fixed real number p, 1 < p < c, let f, f, and f, be functions in Lp(G), n 1, 2,
Suppose that lim, j; f weakly in Lp(G) and lim,_o f, f pointwise a.e. on G.
Then f(t) f(t) for a.e. G. If p > 1, there is a subsequence, say still n 1, 2,
such that lim,_ f, f strongly in LI(G). If p and the functions f, are equi-
absolutely integrable, then there is a subsequence, say still n 1, 2,..., such that
lim, f. f strongly in LI(G).

Proof. Given e > 0, we may apply Egoroff’s theorem to find a subsequence,
say still n 1, 2,..., and a set K, K

___
G, such that ]GI e, < ]K[ and f, f

uniformly on K, and hence in Lp(K). Since we also have lim,_. f, ./’weakly in
Lp(K), f fa.e. on K. From the fact that e > 0 is arbitrary, we infer that f f
a.e. on G.

Ifp> 1,

G 1/p

IL -.fP dt F, 1/q.
-K

Since lim,_, j f weakly in Lp(G), the sequences IIL IL() and f, fl/(),
n 1, 2, ..., are bounded. Because of these facts and the fact that e > 0 is arbitrary,
f, approaches f strongly in LI(G). If p 1, the functions If, fl are assumed to be
equiabsolutely integrable. Hence, given e’ > 0, we may assume that we have chosen
above small enough that

IL- f dt
-K

Since ’> 0 is arbitrary and lim,_of, =f strongly in LI(K), lim,_.f, f
strongly in LI(G).

3. A lower closure theorem. In this section we present a lower closure theorem
on which our existence theorem is based. The concept of lower closure, introduced
by Cesari [3] in connection with his existence theorems for optimal solutions, has
the same role for Lagrange problems that Tonelli’s lower semicontinuity has for
free problems.
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We will use the notations of paragraph one for the sets G, A, M. In addition,
let f(t, y, u) (J,fl, "’", fr) be a continuous (r + 1)-vector function on M, and
for every (t, y) A, let Q(t, y) denote the set

Q(t,y) {z=(z z) =(z,z, zr)lz >fo(t y u)

z f(t, y, u), u U(t, y)}.

We consider the functional

I(y, u) fo f(t’ y(t), u(t)) dt.

In the lower closure theorem below we shall deal with sequences of functions all
defined on G"

t) ) (t) (z z)

t) ( ) t) (
u(t)=(u,---,u’), tG, =1,2,...

THEOREM 3.1 (A lower closure theorem). Let G be bounded and measurable,
A, M be closed, and assume that the sets Q(t, y) have property (Q) on A. Let us assume
that there is a jhnction (t) O, G, L(G), such that J(t, y, u) -(t)
jbr all (t, y, u) in M. Let us assume that the [nctions z’(t), z(t), yJ(t), y(t), 1, ...,
r, j 1,... s, are in L(G), that the jnctions u(t) are measurable on G, that
.[(t, y(t), u(t)) are in L(G), and that

(t) A(t), u(t) U(t, (t)),

z(t) j(t, y(t), u(t)) a.e. on G, k 1,2,....

Finally, let us assume that as k we have

z(t) zi(t) weakly in L(G) 1, r(.)

(3.2) y(t) yJ(t) pointwise a.e. in G, j 1,...

and

lira inf I(yk, uk) <= ao < + co.

Then y(t) A(t) a.e. on G and there is a measurable function u(t) (u 1,
G, such that fo(t, y(t), u(t)) is in L(G), u(t) U(t, y(t)), and

,S,

zi(t) ji(t, y(t), u(t)), a.e. on G, i=l,...,r,

with I(y, u) <= ao
Lower closure theorem 3.1 is a simplified statement of lower closure theorem

3.1 of [7] for the case in which p r. The reader will note that the hypothesis (2.2)
in [7:

y(t) yi(t) strongly in L(G), 1,2, s,
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has been changed to the present hypothesis (3.2) of pointwise convergence. This
change is possible since in the proof of Theorem 3.1 of I7, hypothesis (2.2) was
only used to obtain the pointwise convergence (3.2) stated above.

4. An existence theorem. In this section we state an existence theorem for
optimal control of processes described by integral equations. For this discussion
we will let p, < p < v, be a fixed real number and let p’ be the conjugate real
number which satisfies p-1 + (p,)-1 1, with p’ o if p 1.

We will say that the pair (x, u) is an admissible pair for the problem described
in paragraph one provided that x e S, u(t) is measurable on G, fo(t,(Vx)(t),
U(t)) LI(G) f(t, (#x)(t), u(t)) e (Lp(G))r, the components of the matrix K(t, z,
(/C/x) (r)) are in Lp,(G) for almost every in G, and the equations (1.2) and (1.3) hold.
A class f of admissible pairs (x, u) is said to be closed if the following holds"

If (xk, uk) e f, k 1, 2, ..., if x approaches xo in S with lim_ inf l(xk, u)
=< ao < , and if there are admissible pairs (Xo, u) with I(xo, u) < ao, then there
is an admissible pair (x0, Uo) f with I(xo, Uo) <__ ao. For a class f2 of admissible
pairs, we denote by {x}n the subset of S defined by

{x}a {x e S (x, u)e f for some measurable control u}.
In the present situation we shall require a suitable growth condition called

condition (H)’
(H) If p 1, we assume that, given e. > 0, there are functions qS > 0,

4 e LI(G), such that

If(t, y, u) <= dp(t) + fo(t, y, u) for all (t, y, u)e M.

If p > 1, we assume that there is a function b0(t) > 0, q50 LI(G), and a constant
a > 0 such that

If(t, y, u) p < Cko(t) + afo(t, y, u) for all (t, y, u) M.

For p 1, this condition has been systematically used by Cesari [43, [5] as a suit-
able extension of previous more restrictive growth hypotheses used by Tonelli
and McShane. We note that iff is continuous on M, ifM is compact, and if there is a
function (t) _>_ 0, e G, with O e LI(G and fo(t, y, u) > -/(t) for every (t, y, u)e M,
then growth condition (H) is satisfied for any p.

THEOREM 4.1 (An existence theorem). Let G be a bounded, measurable subset of
E. Suppose that A and m are closed, that f(t, y, u) (fo,J),’", fr)(t, Y, u) is con-
tinuous on M, and that the sets

Q(t, y) {(z, zqlz >= fo(t, y, u),

(z , z") =f(t, y ,) u u(t y)}

have property (Q) on A. Let us assume that there is a function (t) > O, G,
LI(G), such that fo(t, y,u) >= -(t).[’or all (t, y,u) in M. Also assume that for

every sequence (xk, u), k 1, 2,..., of admissible pairs Jot which xk x in S,
there is some subsequence, say still (x, u), k 1, 2, such that

(4.1) (,J#x)(t) (#x)(t) pointwise a.e. in G,

(4.2) C#x)(t) Cx)(t) weakly in (LI(G))’, and
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(4.3) K(t, z, (/gxk)(z)) K(t, z, (x)(z)) componentwise strongly in Lp,(G)
for almost every in G, as k approaches infinity. Let 4)(t, y, d) be a continuous
r’-vector-valued function defined on A x Eq. Finally, assume that growth
condition (H) holds.

Let f be a nonempty closed class of admissible pairs (x, u) such that the set
is sequentially relatively compact in the topology on S. Then the costfunctional (1.1)
has an absolute minimum in f.

Proof. Let denote the infimum of I(x, u) in the class f. Since fo >-- - and
is nonempty, is finite. Let (xk, Uk), k 1, 2, ..., be a sequence for which l(xk, Uk)-- as k ---, oo. Since we have assumed that the set {x}n is sequentially relatively
compact, there is a subsequence, say still k 1, 2, ..., and an element x e S such
that x - x in S as k --, oo. We may even assume that the subsequence has been
chosen so that the limit relations (4.1), (4.2) and (4.3) hold. Let Zk(t f(t, (//Xk)(t),
Uk(t)),t G, k--1,2,--’. By growth condition (H) and the boundedness of
I(xk, uk) for all k, we see that if p > 1, the functions Zk(t), k 1, 2, ..., are equi-
bounded in the norm of (Lp(G)). If p 1, it follows from an argument of Cesari
[4 that the functions Zk(t are equiabsolutely integrable in G. In any case, there exists
a subsequence, say still k 1, 2, ..., and a function z(t), G, z (Lp(G))r, such
that limk_oo Z Z weakly in (Lp(G))r. In other words,

(4.4)

as k - oo, while

(4.5)

and

f(t, (/Xk)(t), Uk(t)) ---, z(t) weakly in (Lp(G))

lim I(xk, u)

(4.6) (/x)(t) A(t), u(t) U(t, (/dx)(t)) a.e. in G

for all k 1, 2, .... The limit relations (4.3) and (4.4) imply that

lim K(t, r, (.Xk)(r)) f(r, (,///Xk)(r), Uk(r‘))
koo

K(t, r, (x)(r)). z(r) weakly in LI(G) for a.e. in G.

Therefore,

(4.7)

lim fG K(t, r‘, (.////x)(r‘)). f(r‘, (///x)(r‘), uk(r‘)) dr‘
k--

fG K(t, r‘, (/[x)(r‘)). z(r‘)dr,

for almost every in G. The convergences (4.1), (4.7), and the continuity of 4 imply
that

(4.8)

lim dR(t, (/x)(t), fa K(t, r‘, (.’/x)(r)).f(r, (./xk)(r‘), uk(r‘))dr)
k-*oo

dR(t, (//x)(t), fo K(t, r‘, (,/x)(r)). z(r) dr‘)
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pointwise for almost every e G. Lemma 2.1 and the convergences (4.2) and (4.8)
imply that

(4.9) (fx)(t) oh(t, (o//x)(t), f K(t, r, (////x)(r)). z(r) dr)

for almost every G.
Relations (4.1), (4.4) and (4.5) show that we may apply lower closure theorem

3.1. To apply Theorem 3.1 we have assumed that the sets Q(t, y) have property (Q),
that m is closed, that f is continuous, and that fo(t, y, u) > -O(t), O(t)e LI(G),
for all (t, y, u)e M. From Theorem 3.1 we conclude that (x)(t) A(t) a.e. on G
and that there is a measurable control u(O, G, such that

(4.10) u(t) e C(t, (/gx)(t)), z(t) f(t, (////x)(t), u(t))

a.e. on G with fo(t, (/gx)(t), u(t)) e LI(G and I(x, u) <__ i. Relations (4.9) and (4.10)
imply that

(Cx)(t) dp(t, (/[x)(t), f; K(t, "c, (x)(r))f(r, (//x)(), u(r))dz).

Thus, the pair (x, u) is admissible, and since Y is closed, (x, u) and I(x, u) >= i.
Therefore, I(x, u) and existence theorem 4.1 is proven.

Remark 1. A sequence (x,u)6, k 1,2, chosen so that I(x,u)
approaches the infimum of I(x, u) in fi, is called a minimizing sequence in ft.
Actually, since we apply convergence properties (4.1)-(4.3) to a minimizing se-
quence, it is enough to verify these convergence properties for a minimizing sequence
in YL Since I(x, u) is bounded for a minimizing sequence, we may, alternatively,
verify (4.1)-(4.3) for any sequence of admissible pairs (x,u) with I(x,u)
bounded, k 1, 2, ....

5. Examples and applications.
Example 1. We consider the one-dimensional case: that is, E 1. We seek the

minimum of the cost functional

I(x, u) fo(t, x(t), u(t)) dt,

where x(t) is an n-dimensional continuous column vector which satisfies the equa-
tion

(5.1) x(t) g(t) + A(t, r)x(r) dr + B(t, r)u(r) dr

for in [0, 1]. We wish to have the m-dimensional column vector u(t) take its
values in a fixed, compact, convex subset U of E for every in [0, 1]. Here g(t),
e [0, 1], is assumed to be an n-dimensional continuous column vector, and

B(t, r) and A(t, r) are continuous n x n and n x m matrices on {(t, r)[O <__ r <__
=<1}.

The above problem may be placed in the frame of the existence theorem by
using the following designations of the objects S, L.x, ///x, K, f, and "
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S (LI[0 1;)n, (_x)(t) x(t) g(t), (/x)(t) y(t) (yl(t), y2(/)) with yl(/7)
o A(t, )x(z)dr, y2(t) x(t), f(t, y, u) u, O(t, y, d) y + d, and K(t, )
B(t, r))t(r), where gt(r) is the characteristic function of the interval [0, t. With

these designations r’ n, r m, s 2n, q n, and we set p with p’ c.
In order to apply existence theorem 4.1, we now show that the set 2 of all

admissible pairs (x, u) has the property that {x}a is sequentially relatively compact
in the weak topology on S. Also, we verify convergence properties (4.1)-(4.3).
For this purpose, let (xk, uk), k 1, 2,..., be a sequence of admissible pairs.
Since U is compact, the functions u(t) are equibounded and we may choose a
subsequence, say still [k], so that u(t) approaches a function u*(t) weakly in
(LI[0, 1) as k approaches infinity. We have x(0)= g(0) and for any solution
x(t) of (5.1),

Ix(t)l Ig(t)l / r)u(r) dr

Ig(t)l + IA(t, .)Ix()l d + IB(t, )llu()l d.

By the boundedness of g, A, B, and U, there are positive constants mo and m such
that

Ix(t) =< mo + m Ix(r) dr.

Hence, by Gronwall’s lemma, Ixk(t) L =mo exp (ml) and we may take for A
and M the bounded sets A I0, 1] x (- L, L])" and M A x U. By the bounded-
ness of the set A, we infer that there is a further subsequence, say [k] for the sake of
simplicity, for which xk(t) converges weakly in (L[0, 1-])" to a function x*(t). This
assures that {x}n is weakly sequentially relatively compact in (L[0, 1])" and that
property (4.2) holds. From here it follows that j’ A(t, r)x(r)dr and j’ B(t, r)u(r)dr
converge pointwise to . A(t, r)x*(r)dr and . B(t, r)u*(r)dr for every t 0, 1].
Thus by (5.1) for the pairs (x, u), we conclude that xk(t) converges pointwise in
[-0,1] to x*(t). This assures that property (4.1) is satisfied. Finally, K(t,r,y)

B(t, r)Zt(r) and property (4.3) is trivial.
To show that I(x, u) attains an absolute minimum in any nonempty closed

class fl of admissible pairs, we must verify that
(i) there is a function (t),t0,1], (t)> 0, (t)LI0,1], for which

fo(t, y, u) > -6(t) for all (t, y, u) in M"
(ii) fo(t, y, u)is continuous on M"
(iii) the sets Q(t, y) {(z, z)lz > fo(t, y, u), z u, u U} satisfy property

(Q).
Since M is bounded, we need not verify that growth condition (H) holds. For, as
we remarked earlier, if M is compact and (i) is verified, we may infer that growth
condition (H) holds.

We note a particular case. Here a square matrix A will be called nonnegative,
written A >= 0, if for any vector z we have (Az, z)>__ O. Let C(x, t), xE and

[-0, 1], be a continuous m x m matrix for which there is a fixed 0 > 0 such that
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C(x, t) OI >__ O, where I is the identity matrix, for all (t, x) in A. Let I(x, u) be the
following cost functional"

I(x, u) [(C(x(t), t)u(t), u(t)) + (a(x(t), t), u(t)) + b(x(t), t)] dt,

where a(x, t) is a continuous m-vector function and b(x, t) is a continuous real-valued
function onA.Wetakefo(t, y, u) (C(y, t)u, u) + (a(y, t), u) + b(y, t)for(t, y, u) M.
We may verify (i), (ii) and (iii) as follows.

By the assumed continuity of C, a, and b, we verify the continuity of fo(t, y, u).
By the boundedness of the sets A and U and the continuity offo, we may verify (i)
for a sufficiently large constant function (t). Finally, by applying a lemma of
Cesari [4, p. 521] and using the fact that C(x, t) OI >= O, we may verify that the sets
Q(t, y) satisfy property (Q). Hence, the problem has an optimal solution in any
nonempty closed class ofadmissible pairs. By using other methods, V. R. Vinokurov
obtained this result in [8].

Example 2. We consider a problem of optimization involving an evolution
equation. For this purpose, let G’ be a compact subset of the : (:1, ,:)-space
E, let T be a positive real number, and let G be the set G [0, T] x G’. Our state
variable x will depend on the time variable and the space variable : and will be an
element of the set W {x(t, :)[x(t, :) Lz(G and 8x/St Lz(G)}.. We give W the
norm

8x
X(t, ) w x(t, ) 26) + L2(G)"

We consider the problem of minimizing the cost functional

I(X, U) (X(t, r)) 2 + . + (u(t, ))2 dt

where the state vriable x(t, ) satisfies the equation

t
g(t, r) + A(t, r, s, )x(s, ) ds d

O,t] ’(5.

+ B(t, r, s, )u(s, ) ds d
0,t] G’

for almost every (, r) in G, with x(0, r)= g() for almost every r in G’. In the
integral equation (5.2), the variable s is in [0, T, (, ) is in G’, and
u(s, ) may take any values in E. Also, A(, r, s, ) is a real-valued square integrable
function on G x G, B(t, r, s, ) is a square integrable m-vector function on G x G,
g(t, r) is a square integrable function on G, and g(r) is continuous on G’.

The above problem may be placed in the frame of the existence theorem by
making the following designations" S is the set of functions W with the weak
topology,

x

(/x)(t, z) y(t, ) (y, y2, y3)(t, )
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with
X

Yl(t, z) x(t, ), Y2(t’ ) t’

Y3(t, "c) | A(t, r, s, a)x(s, a) ds
0,t] G’

K(t, z, s, a) B(t, , s, (QZt(s), fo(t, T, y, 13) .)221 At- Yl -- 132, f (t, , y, u) u, A
G E 1, U(t, , y) Em, and 0(t, z, y, d) y3 + d. Here Zt(s) is the characteristic

function of the interval 0, t]. We also take p p’ 2.
Let be any nonempty closed class of pairs (x, u) admissible for this problem.

Since fo x2 + ((x/t)2 + u2 and we are minimizing I(x, u), we may assume that
the sets {x}n and {u}n are norm bounded in W and [L2(G)J respectively. Hence,
{x}n is sequentially relatively compact in the weak topology on S W.

Before applying Theorem 4.1 to the set , we must verify convergence proper-
ties (4.1), (4.2), and (4.3). For this purpose, let (xk, uk) be a sequence of admissible
pairs in , k l, 2, .... Since the functions xk are uniformly bounded, we may,
by a theorem of Aubin l], find a function x*(t, ), (t, ) G, in W such that x
approaches x* weakly in W as k approaches infinity.

GSimilarly, since the functions u are uniformly bounded in L2( )] we may
find a function u*(t, z), (t, ) G, in [L2(G)] and a subsequence, say still kJ, such
that u approaches u* weakly in L2(G)] as k approaches infinity.

Hence, xk(t, ) approaches x*(t, ) weakly in L2(G), (oLfxk)(t, ) approaches
(Lfx*)(t, ) weakly in L2(G as k approaches infinity and (4.2) is verified. By the
weak convergence in L2 of xk(t, ) to x*(t, ) and uk(t, ) to u*(t, z),

and

A(t, r, s, a)xk(s, a)ds da ft A(t, r, s, a)x*(s, a) ds da
O,t] G’

lim fro,t] G’
B(t, "c, s, a)uk(s, a) ds da o,tl ’

B(t, "c, s, a)u*(s, a) ds da

pointwise for almost every (t, r) in G as k approaches infinity. Since the functions

CXk/Ct satisfy (5.2), cxk/#t approaches cx*/ct pointwise on G as k approaches
infinity. In addition, because

x(t, ) g() + 7 ds

for almost every (t, r) in G, Xk(t, "c) approaches x*(t, r) pointwise in G as k approaches
infinity. From the above statements we conclude that (4.1) is verified. Finally,
(4.3) is trivial.

We may now easily verify that the other conditions of Theorem 4.1 are
satisfied, for instance, that growth condition (H) holds with p 2, and that the sets

Q(t, y) {(z, Zm) Z0 y21 -J[-- y22 + 132, Z H 13 Urn}

satisfy property (Q). By applying Theorem 4.1 to fL we conclude that I(x,u)
attains its infimum in f.
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Example 3. We consider the multidimensional case. For this purpose, let G
be a compact subset of E2 with (t 1, 2) G G. We seek to minimize the cost
functional

I(x, u) t (Ix(t)l sin (u(t))) dr,

where x(t), e G, is an L1 integrable function on G which satisfies the integral
equation

(5.3) x()

and u(t), e G, is a measurable function on G which is constrained to take its values
in the set U [0, c]. Here g(t), te G, is an integrable function on G, and B(t, r) is
integrable on G x G.

This problem is placed in the framework of the above analysis by making the
following designations: S LI(G with the weak topology, (Cx)(t) x(t) g(t),
(x)(t) x(t), fo(t, x, u) Ix[ sin (u), f(t, x, u) u, A G x E, M A x U,
and K(t, z, x) B(t, z).

We now show that if is any nonempty closed class of admissible pairs (x, u),
then {x).n is weakly sequentially relatively compact in L(G) and we may obtain
convergence properties (4.1)-(4.3). Let (Xk,Uk), k 1,2, ..., be a sequence of
admissible pairs in ft. Since Uk(t e [0, rt], we may extract a subsequence, say still
[k], and find a function u*(t), G, so that Uk(t approaches u*(t) weakly in L(G)
as k approaches infinity. Let x*(t), G, denote the function

x*(t) g(t) + J’ g(t, )u*(v)a.

Since the functions Xk(t satisfy (5.3), for any function O(t) in L(G),

lim fG (xk(t) x*(t))O(t) dt

--klim;GfoB(t’)(Uk(Z)-u*(z))O(t)dzdt-O"
Hence, xk(t approaches x*(t) weakly in L(G) as k --, m, and we have obtained
(4.2) and the result that {x}n is weakly sequentially relatively compact. Since all
pairs (Xk,Uk), k 1,2, ..., and (x*,u*) satisfy (5.3) with limk_, uk(t u*(t)
weakly in L(G),

lira xk(t) x*(t) pointwise on G,

and (4.1) is verified. Finally, (4.3) is trivial.
Now that we have established (4.1)-(4.3), the other conditions of Theorem 4.1

follow directly. For example, property (H) follows with p since lu[ < rt

+ fo(t, x, u) for every (t, x, u) in M. Also, it is easy to see that the set

Q(t, x) {(z, zX)Jz >= Ixl sin (u), z

is convex and has property (Q). Hence, Theorem 4.1 assures that for the above
problem I(x, u) attains its infimum in any nonempty closed class of admissible
pairs (x, u).
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Example 4. In this example, G is a compact subset of E2 with (t,/2) ff G.
We seek to minimize the cost functional

I(x, u) f (x(t))2 + (u(t)) 2 dt,

where x(t)satisfies the integral equation

(5.4) x(t) fc, [A(t, "c)x(r) + B(t, "r)(u(r) + 2 -1 at(r) )] dr

and u(t), G, may take any values in E. Here A(t, r) and B(t, r) are L2 integrable
functions on G x G.

In order to apply existence theorem 4.1 we make the following designations"
S Lz(G) with the weak topology, (ck)(t)= x(t), (.gx)(t) (yl(t), yz(t))= y(t)
where yl(t) x(t) and yZ(t) ; A(t, r)x(r)dr, .f(t, y, u) u + 2-llu fo(t, y, u)
=(yl)2 +(u)z, qs(t,y,d)=y2 +d,r=r,=s =q= 1,andp=p’=2.

Let f2 be any nonempty closed class of pairs (x, u) admissible for this problem.
Since.l x2 + u2 ->_ 0 and we are minimizing I(x, u), we may assume that the sets

{x}c, and {t,}n are norm bounded in Lz(G). Hence, {x}n is sequentially relatively
compact in the weak topology on S Lz(G).

We now verify convergence properties (4.1) and (4.2) of Theorem 4.1. For this
example, (4.3) is trivial. Let (xk, uk), k 1, 2, -.., be a sequence of pairs in f. Since

{x}a and {1,}a are norm bounded in Lz(G), we may find functions x*(t), u*(t), and
v*(t), each in Lz(G), and extract a subsequence, say still [k], such that

lira Xk(t) x*(t),

lim uk(t) u*(t),

lira [llk(l) -I- 2-lluk(t)

weakly in L2(G) as k approaches infinity. Hence, (4.2) is verified. We also have

lim f B(t, )(Uk(r) + 2- lUk(r)l) dr f B(t, r)v*(r) dr,

pointwise for every in G as k approaches infinity. Since the pairs (Xk,llk)
k 1, 2, ..., satisfy (5o4), we have

lira x(t) x*(t) fc, A(,, r)x*(r)dr + f B(t, r)*(r)dr

pointwise for every in G as k approaches infinity. This shows that for the chosen
subsequence (////x)(t) approaches (/x*)(t) pointwise as k approaches infinity.
Convergence property (4.1) is thus verified. We note that although u approaches u*
and Eb/k -- 2-lukl approaches v* weakly in Le(G), it may well be that v* is not
equal to u* + 2-11u’1.
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The reader may easily verify that the other conditions of Theorem 4.1 are
satisfied, for instance, that property (H) holds with p 2, bo 0, a 4, and that
the sets

Q(t,x)= {(z,z) z >x2 +u2,z=u+ 2-11rI,ueE 1}

satisfy property (Q). Hence, Theorem 4.1 guarantees that I(x,u) attains its
infimum in any nonempty closed class 92 of admissible pairs (x, u).

Acknowledgment. The author is indebted to Professor Lamberto Cesari for
his valuable encouragement.
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GLOBAL CONTROLLABILITY AND BANG-BANG STEERING

OF CERTAIN NONLINEAR SYSTEMS*

GUNNAR ARONSSON

Abstract. Controllability is proved for certain nonlinear systems obtained by perturbing control-
lable linear systems. A simple covering lemma which treats the change of the reachable set caused by the
nonlinear term is essential for Theorems 1-3. If instead a "bang-bang covering lemma" is used, we

obtain theorems on "bang-bang controllability" (Theorems 4-7).

1. Introduction. In this paper we shall establish the controllability of certain
control systems

c A(t)x + B(t)u + g(t, x, u),

by assuming that +/- A(t)x + B(t)u is controllable and imposing various restric-
tions on the magnitude of g(t, x, u).

All the results concern global controllability on a fixed interval 0 < <= T.
The theorems of 4 treat "usual" controllability, whereas those of 6 concern
"bang-bang" controllability. Our method of proof is somewhat similar to one
used by Markus in 6]. An estimate for the difference between a solution of the
linear and a solution of the nonlinear system is combined with a topological cover-
ing argument.

A paper with similar results is Lukes [5]. Most controllability results of
are considerably generalized in this paper, but, unlike Lukes, we shall not consider
partially controllable systems, continuous controls, etc.. Lukes’ method of proof
is quite different from ours.

Linear perturbations of linear control systems were studied by Dauer 2].
A survey of controllability by special controls is given in Strauss 7, Chap. 53.

2. Preliminaries on the control systems. We introduce here some notation
and basic facts concerning the control systems.

2.1. The linear control system. Consider the linear control system A(t)x
+ B(t)u on the interval 0 <= <= T. Here, x R", u R", and the matrices A(t)
and B(t) have elements in L1(0, T). The admissible controls are all m-vector func-
tions with elements in L(0, T). We assume that the system is controllable on the
interval 0, T, that is, it can be steered from any initial point Xo at 0 to any
final point xr at T by means of an admissible control. For a control function
u(t), we shall use the norm

max Ilui(t)lli.
<i<_m
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Introduce the class of, control functions M {u[ u =< M}. The solution of the
control system, starting at x0, satisfies

x(T) X(T, O)xo + X(T, s)B(s)u(s) ds,

where X(t, s) is the transition matrix of the homogeneous system 2 A(t)x. Write

Xr x(r, O)xo, q(u) X(T, s)B(s)u(s) ds,

and

Oo(U) x + o(u).

The image set (49(’- 1) is compact and convex [4, p. 69], and 0 e q(’- 1). Now 0 must be
an interior point of q0(fl), since otherwise o(fl) and each q0(fN) Nq0(fl) would
lie in a certain half-space and this contradicts the controllability, which requires that

Put

U Oo(f/N)= R".
N=I

s() {xxeR", Ix <= }.

(Norms of vectors are Euclidean, unless otherwise stated.) We have

d max {rlS(r) q)(’-’l)} > 0.

IfM.d> XT it follows that

Oo(fi,) S(M d X ).

Observe that (I)0(fM) is a set of attainability for the linear system.
We shall also consider the class of bang-bang control functions M which

consists of all control functions u(t) such that each us(t is measurable on (0, T) and
lus(t)l M a.e., for j 1, 2, m. According to the famous bang-bang principle
of LaSalle, we have q()M) q(fM)" (Concerning this, see [3, pp. 25, 46, or [4, pp.
79-80] .)

2.2. The nonlinear control system. Consider a system 2 A(t)x + B(t)u
+ g(t, x, u), where the matrices A(t) and B(t) are the same as before. We need some
assumptions concerning regularity and magnitude of g(t, x, u). For the control
vector u we use the norm u max l_<s_<,, I@. We assume that"

(i) g(t, x, u) is measurable in for each fixed (x, u) Rn+m, g(t, x, u)is con-
tinuous in (x, u) for each fixed 0, T];

(ii) g(t, 0, 0) L1(0, T)"
(iii) for each M > 0, there is a(t) L 1(0, T) such that

g(t,Xl,U)- g(t,Xz,U) = a(t) X X2

provided that ull _-< M"
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(iv) for each M > O, there is b(t) L I(O, T) and a continuous nondecreasing
function p(s), satisfying p(O) O, such that

g(t,x,u)- g(t,x,u2) <= b(t)( x + 1)( u -u21)

provided that lu <= M and Ilu21 <- M.
Naturally, the functions a(t), b(t) and g(s) will in general depend on M. Put

f(t, x, u) =-- A(t)x + B(t)u + g(t, x, u).

If u _< M, then we have

g(t, x, u) _-< g(t, x, u) g(t, 0, u)ll + g(t, 0, u) g(t, 0, 0) + g(t, 0, 0)

< a(t) lxl + b(t)p(M) + g(t,0,0) =< c(t)(l[x + 1)

for some c(t) L (0, T). Take a control function (t) e tiM, and consider the ordinary
differential system 2 f(t, x, (t)). It is now clear that

(1) If(t,x,t(t)) < d(t)( x + 1)

for some d(t) LI(O, T). It follows from this and condition (i) that Carath6odory’s
existence theorem can be applied to the system and hence a solution exists through
any given point. Clearly,

f(t, X1, l(t)) f(t, X2, l(f)) e(t)[[x X2

for some e(t) L I(O, T), and uniqueness of the solution follows easily from this,
as is well known. Furthermore, it follows from (1) by standard arguments that the
solution can be continued over the whole interval [0, T] and that there is a uniform
bound" I[x(t) =< L L(xo, M) for the solution to 2 f(t, x, (t)), x(O) Xo, still
provided that (t) FM.

Putv(s)=s+p(s).If U =<Mand u2 =<M, thenwehave

f(t,Xl,Ux)-- f(t, x2,u2) <= [[A(t)(Xl- x2) -t-IB(t)(u-u2)[ + Ig(t,xl,u 1)

g(t,Xl,U2) + IIg(t,x,u2)- g(t, x2,u2)

=< ]lA(t) xx x2 + B(t) u u2

+ b(t).(L + 1)-p( u u2 )+ a(t) x, x2[t
<_ h(t). v(I U b2 t_ k(t). Ix1 x2 I,

for certain nonnegative functions h(t) and k(t) in L(0, T). Take two control func-
tions u(t), u2(t) in t and put

O(t)-- Ul(t U2(t

Consider solutions x(t), x2(t of :i f(t, xi, ui(t)) such that x(0) x2(0) xo,

and put v(t)= x(t)- x2(t Then v(t)is absolutely continuous, v(0)= 0, and

b(t) <= h(t). v((R)(t)) + k(t). v(t) a.e.

Integration gives

Ix(T) x2(T)ll =< exp k(s) ds h(t)v((R)(t)) dt.
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We need some more notation. Consider a fixed initial point x(0) Xo and a
variable admissible control u(t). For each u(t) we get a solution x(t) of, f(t, x, u),
starting at Xo. It satisfies

x(T) X(T, O)xo + X(T, s)B(s)u(s) ds + X(T, s)g(s, x(s), u(s)) ds.

Denote this quantity by (I)(u). We thus have

Put

where

Thus

or

It is clear that

where

(u) x + o(u) + X(T, s)g(s, x(s), u(s)) ds.

K max IlX(t,s)tl,
O<s<_t<_T

IX(t, s) sup X(t, s)x Ix Rn, x }.

(u) x e(u) _-< K g(s, x(s), u(s)) ds,

T

[O(u) O0(u) _-< K io g(s, x(s), u(s)) ds.

K __< exp A(s)ll ds

A(s) sup{ A(s)x Ix e R", x <= 1}.
Note finally that (fM) is a set of attainability for the nonlinear system.

3. A basic covering lemma.
LEMMA 1. Consider the control systems 2 A(t)x + B(t)u + g(t,x,u) and
A(t)x + B(t)u. Here, A(t),B(t) and g(t,x, u) satisfy all requirements of 2.

We also retain the notation of 2. Assume that O(M) S(rl) and that
IlO(u) Oo(U)ll <= p < rlfor u e fM. Let 0 < r2 < r ft.

Then O(fM) S(r2).
Proof. The method will be as follows: we shall consider a suitable sphere

S(r) c o(ft) and for each x S(r) we construct a certain control Ux(’)efu
which steers the linear system to x, i.e., o(Ux)= x. Then we consider the con-
tinuous mapping x OO(Ux). The result will follow by considering the image of S(r)
under this mapping. The control ux will be constructed as a convex combination ofa
finite number of "basis control functions" u

UjIj

Choose r such that r2 + p < r < r We divide R" into cubes defined by

,n.



CONTROLLABILITY AND BANG-BANG STEERING 611

Here, xi is a component of x R", {ki}’i are arbitrary integers, and p is a natural
number. Let E be the union of all such closed cubes that are contained in S(rl).
Fix p so large that E S(r). Let X1, X2, "’", Xu be the vertices of the cubes in E.
We shall need functions p(x), fl2(X), N(X) such that:

(a) pj(x)e C(E),
(b) 0 < #j(x) < 1" uj= #j(X) if x e E,
(c} x =, pj(x)X if x E.

Consider the function of s e R"
2P.s

p(s) + 2p" S

0

One easily verifies the identities

# s- and

Now, if

k k2

forOs__<2 -,
for -2- <__ s <= O,

for Isl -> 2 -.

Xj-- 2,2,

is one of the vertices in question we put

(x)=,x- .,x- ...x.-.
The continuity of #a(x) is clear and the properties (b) and (c) follow easily from the
identities above. Now S(r) c E c S(r ) c o(u), and Xj e E, for j 1, 2, ..., N.
Hence there exist uj e fu such that o(Ufl Xj, j 1, 2, -.-, N. Let x be a variable
point in S(r) and put

N

ux(t) Y 9(x)u(t).
j=l

It is clear that Ux fM and that u depends continuously on x, even in the L-norm.
Further,

u
o(Ux) x + q(ux)= x + (x)q,(u)

j=l

N N N

y (x)(X + o(u))= Z (X)o(U)= (x)X x.
j=l j=l j=l

Consider the mapping S(r) x T-L OP(u) R". It is seen from above and 2.2 that it is
continuous, and we further have ]Ix- T(x)l] [lbo(U,)- @(u)ll _-< p. From a
basic topological result [4, pp. 251-252] we have then T{S(r)) S(r p) S(r2).
Hence b(M) T(S(r)) S(r), which proves the lemma.

COROLLARY. There are controls {uj}, all in fM, such that the system 2 a(t)x
+ B(t)u + g(t, x, u) can be steered to an arbitrary point in S(r2) by means of some
convex combination of {uj}.
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4. Controllability of some nonlinear systems. We will establish controllability
of certain nonlinear systems

(2) A(t)x + B(t)u + g(t, x, u)

by means of our covering lemma. We know ( 2.1) that we can choose r rl(M
M, d IIXT and we need an estimate ofp, p p(M), such that limM_. (rl(M)
p(M)) . If this can be achieved for any x0, then the system (2) is controllable

on [0, T]. We shall perform this under varying conditions on g(t, x, u). Throughout
this section, A(t), B(t) and g(t, x, u) are assumed to satisfy the conditions of 2. Our
first theorem is a trivial consequence of the lemma, and may serve as a starting
point for a brief discussion of the restrictions on g(t, x, u)

THEOREM 1. Consider the control system

(3)

where

2 A(t)x + B(t)u + g(t, x, u),

Here, and 9 are nonnegative functions, (t) L I(O, T) and is nondecreasing.
Assume that 2 A(t)x + B(t)u is controllable on [0, T]. Put A fS a(t) dt.

If limM_oo (M. d- K. A. O(M)) + oo, then the system (3) is controllable
on [0, T]. In particular, this is true ![

O(M) d
lim <
M--,o M K.A

Proof. We apply Lemma 1, choosing r l(M M.d- XT and p(M)
K. A. q(M) (see end of 2). Clearly,

M-olim (r (M) P(M)) lim [M d K A
M

XT +

which proves the theorem.
Remark. This theorem is a generalization of Theorem 2.1 in Lukes [5] in that

it allows Jig(t, x, u)ll to be unbounded in u although in the bounded case Lukes’
proof requires only continuity of g and avoids conditions (iii) and (iv).

It is thus seen that the nonlinear system is controllable, if the function
in Theorem grows more slowly than a linear function. The same conclusion
holds if grows like a linear function, and A is small enough. The last condition is
essential, as follows from the trivial example g(t, x, u) B(t)u. Consider a system
(forn m= 1)

(4) 2 u + . h(u),

where h(u) is continuous and limlul_. (h(u)/lu[) + . It is not controllable on
[0, T] for any e > 0(<0), since the right member of (4) is bounded from below
(above). Hence, we cannot allow IIg(t, x, u)ll to grow faster than a linear function in

Ilull (without imposing conditions of some other type). Further, we assumed in
2.2 that IIg(t, x, u)ll (for Ilull _-< M) grows no faster than a linear function in Itxll.
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It therefore seems reasonable to consider perturbed systems 97 A(t)x
+ B(t)u + g(t, x, u) under the restriction

IIg(t,X,U)ll l(t)]lXII + 2(t)]lUl] -t- fl(t).

As is seen from above, f a2(t)dt must be assumed small enough. But this is also
the case for T A(t)x. Since we are noto 1(t) dr, as follows from the example g _=

aiming at the best constants, we simply assume

[[g(t,x,u)[[ <= a(t)(llxll + [lull)+ fl(t).

THEOREM 2. Consider the control system

(5) 97 A(t)x + B(t)u + g(t, x, u),

where

Ilg(t,x,u)[I <= (t)(llxl[ / [lull)/ (t).

Here, a(t) >= 0 and fl(t) >_ 0 both belong to L1(0, T). Assume that +/- A(t)x + B(t)u
is controllable on [0, T].

Then there exists an A0 > 0, which only depends on the matrix functions A(t)
and B(t), such that (5) is controllable on [0, T], provided that a(t) dt <= Ao.

Proof. (a) Let cl=A(t)x + B(t)u(t)+g(t, xl,u(t)) and c2=A(t)x2
+ B(t)u(t), with the same control u(t). Further, let x 1(0) x2(0). We then know
from 2.2 that

Ilxl(T)-x2(T) =< exp (fo A(s)ll ds Ig(t, Xl(t), u(t))ll dr.

(b) We now use the assumption

g(t, x, u)[I =< o(t)([lx[I + u[[) + fl(t),
and also assume that u(t)e M. Further, put

C1 =exp IIA(s) ds and A

We find that

or

Xl(T)- x2(T) =< C

IIxI(T)- x2(T) _-< C

Put

a(t) dr.

[a(t)( max xl(s + M)+ fl(t)] dt,
O<_s<T

A. (max IlXl(S -+- M) + C (t) dr.

(c) We need an estimate for maxs x l(s) We have

X l(t X(t, O)x0 q-- fO x(t, s)[B(s)u(s) + g(s, x,(s), u(s))l ds.

IB(s) sup { B(s)u R.I max lujl _-< 1}.
<_j<_m
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Assuming that u(t) fM, we thus have

IIXl(t)ll < K" IIXo + K. B(s)u(s)I + (s)(I xt(s) + M) + fi(s)] ds,

or

X l(t K. Xo + K. B(s) ds" M + K. M" A + K. fl(s) ds

+ g. (s) xt(s)[I ds.

Put

C2 K. Xo + K. fl(s) ds

We can then write

and Ca K. IlB(s)l ds + K. A.

[Xl(t)l < (C2 -1
t- C3 M) + K. (s) x(s)[[ ds.

Gronwall’s inequality gives

Xl(t) _-< (C2 + C3"M)’exp K. e(s) ds

Hence

max Xl(t) (C2 -[’- C3M eu’A.
O<_t<_T

(d) Combining our results from (b) and (c) we find

xI(T x2(T C A[(C2 -+- C3 M)eIA + M] + C fl(t)dt.

We thus have

where

x I(T x2(T p(M)= C, + Cs" M,

C CIA(C3 etA + 1) exp A(s) ds A

K. B(s) ds+ KA eKA +

This expression does not depend on Xo or fl(t) and tends to zero with A. Put r(M)
d. M IXrl Now, there exists A0 > 0, independent of Xo and (t), such that

C5 < d if A __< Ao. For such values of A we thus have limM (r(M)- p(M)), and it follows from the covering lemma that the nonlinear system is control-
lable on [0, r].

This completes the proof of Theorem 2.
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Remarks. If 2 A(t)x + B(t)u is controllable on 0, T], then it follows from
the above theorem that 2 (A(t) + A I(t))x + (B(t) + BI(t))u is also controllable

Ton [0, TI, provided that J’0 (llAl(t)l + B(t) )dr is small enough. This result is
identical with the case p 1, q , of Theorem 4 in Dauer 2-].

Also, the above theorem generalizes Theorem 2.2 in Lukes [5], as far as the
controllability is concerned. (Lukes assumes g(t, x, u) continuous and imposes a
uniform Lipschitz condition in (x, u).)

r (t)dt is small enough can be dropped if we replaceThe condition that J’o
[Ixll + Ilull by q(llxll) + ,(llul[), where q and grow sufficiently slowly.

THEOREM 3. Consider the control system

(6)

where

2 A(t)x + B(t)u + g(t, x, u),

g(t, x, u) z(t)(qo( x + P(llu ))+ /3(t).

Here, e(t) >= 0 and fl(t) >= 0 both belong to L(O, T). Further, q and are non-
negative, continuous, nondecreasing and satisfy limr (q(r)/r) 0 and
limt_ (/(m)/m) O. Assume that 2 A(t)x + B(t)u is controllable on 0, T.

Then the system (6) is controllable on [0, T].
Proof. We have q(r) =< r for r __> ro, and since we are free to add a multiple

of 0(t) to/(t), it is clear that we may assume that p(r) =< r for all r __> 0. Let 21
A(t)x + B(t)u(t)+ g(t, Xl,U(t)), 22 A(t)x2 + B(t)u(t), u et, and Xl(0)
x2(0). As before, we have

]x(T)- x2(T) < exp A(s) ds g(t,x(t), u(t)) dr,
0

or

xI(T x2(T) _-< C

Using the condition on g(t, x, u), we find that

g(t, Xl(t), u(t))

xI(T x2(Z C A.(D(msaX Xl(S At- A. O(M) + fl(t) d

In order to estimate maxs Xl(S) I, we write

Xl(t X(t, O)x0 + X(t, s)[B(s)u(s) + g(s, Xl(S), u(s)) ds.

Thus

Xl(t <= K. Xo + K. B(s) ds.M + K

[(s)(q)( Xl(S )-]- O(M))-]- /(s)] as.
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r B(s)ll ds and B rWrite B J’o o fl(s)ds. Since (p(r) __< r, we then have

Xl(t)l K( Xo[[ + B-M + A. O(M) + B1) + K. o(s) xl(s) ds.

Gronwall’s inequality gives

Xl(t <- K( x0 + B" M + A" /(M) + BI)" eKA.

Thus maxo_<t_< T Xl(t =< C2 - C3 M + C4" O(M). Finally, we obtain

[[xl(T x2(T __< CI[Aq(C2 + C3M + C/(M)) + AO(M) + B,] =- p(M).

It follows easily from our conditions on 99 and that limM (p(M)/M)= O.
Write r(M)= d. M- XT[. We thus have limM_ (rl(M)- p(M))= , and
the controllability of the nonlinear system follows from the covering lemma.

This completes the proof.
Remark. It is seen from the proof that the condition limM (O(M)/M) 0

can be replaced by the weaker assumption limM_. (O(M)/M) < d/(CA).

5. A bang-bang covering lemma. We first agree to say that a system j(t, x, u)
is bang-bang controllable on I0, T] if it can be steered from any initial point x0 at

0 to any final point XT at T by means of a control in ft, for some
M(= M(xo, XT)). It follows from the bang-bang principle that a controllable linear
system is also bang-bang controllable.

In order to establish bang-bang controllability for certain nonlinear systems,
we need a "bang-bang covering lemma."

LEMMA 2. Consider the control systems A(t)x + B(t)u + g(t,x,u) and
A(t)x + B(t)u. Here, A(t), B(t) and g(t, x, u) satisfy all requirements of 2.

Assume that o(fM) S(rl) and that (u) o(U) < p < r for U efM. Let
O<r2<r-p.

Then (ft) S(r2).
Proof. Choose r such that r2 + p < r < r. As in Lemma 1, we divide R"

into cubes" ki/2p <= x <= (k + 1)/2p, 1, 2, ..-, n. Let E be the union of all such
closed cubes that are contained in S(r). Fix p so large that E = S(r). Let X1,
X2, "", XN be the vertices of the cubes in E. Exactly as in Lemma 1, we construct
functions/zl(x), g2(x), "-’,/N(x) such that"

(a) /j(x)e C(E);
(b) O</j(x)< N /j(X)= lifxeE"

j=l

(c) x N lj(x)X if x e E
j=!

Now S(r) E S(r) o(f2) *0(fM) (see 2.1), and all Xj lie in E. Hence
there are bang-bang controls ujef such that *o(U)= Xj, j 1,2,.-., N.
Let x S(r). We want a control Ux e ft, such that *o(Ux) x, but, unlike the case
in Lemma 1, we cannot use a convex combination of {uj}, since a convex combina-
tion of bang-bang controls is in general not a bang-bang control. Instead, we
shall use a partition lemma of Markus [6, pp. 81-82], [4, pp. 372-373] which goes
back to a theorem of Blackwell [1, p. 392, Theorem 2]. Let # (/1, "’", N) be a
variable vector in R satisfying v= tj 1, #j >= 0 for j 1, 2, .-., N. According
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to Markus’ lemma there exists a continuous family of N-partitions of [0, T],
p (A I(P), A2(p), "", AN(P)), such that the function in L(0, r)"

satisfies

u(t, ,)

u(t) for

Uz(t for A z(#)

uzv(t) for e AN(fl)

T, s)B(s)u(s, p) ds #j X(T, s)B(s)uj(s) ds
j=l

for all # in question. The sets Aj(p) are Lebesgue measurable. Clearly, u(t, #) M.
Now consider the bang-bang control u(t, #(x)). It satisfies

X(T, s)B(s)u(, p(x)) ds p(x X(T, s)B(s)u(s) ,is
j=l j=l

N

y (x)(X- x)= x- x.
j=l

Hence q)o(U( , #(x))) x and u(., #(x)) e fM. Now let x, Xo e S(r), and consider Xo
as fixed. Let E(x) be the set where u(t, la(X)) :/: u(t, #(Xo)). Then limx_o mE(x) 0
(see [6, p. 81]). Further, u(t, #(x))e YM and u(t, #(Xo))e fM. It follows easily from
this and the inequality

)f oxI(T) x2(T < exp k(s) ds h(t)v((R)(t)) dt

of 2.2 that the mapping S(r) x w-L aP(u(., p(x))) is continuous. From our assump-
tions we have

x T(x) Io[U(.,p(x))] q)[u(., p(x))] =< p.

Now the rest of the proof follows as in Lemma 1.

6. Bang-bang controllability of some nonlinear systems. By using Lemma 2
instead ofLemma 1 in the proofs, we can change Theorems 1, 2 and 3 into analogous
theorems on the global bang-bang controllability of the system A(t)x + B(t)u
+ g(t, x, u). We also write YM instead of fM throughout the proofs.

Since these are the only changes in the proofs, we simply list the new theorems
without further discussion. This type of theorem seems to be new in the literature.

As before, A(t), B(t) and g(t, x, u) are assumed to satisfy the conditions of 2.
THEOREM 4. Consider the control system

(7) A(t)x + B(t)u + g(t, x, u),

where Ilg(t,x,u)[[ <-0(t).O(llu[[). Here, o are 6/ are nonnegative functions,
a(t) L(0, T) and /(M) is nondecreasing. Assume that 2 A(t)x + B(t)u is con-
trollable on [0, T]. Put A S a(t) dt.

If limM-.oo (M.d- K. A. O(M))= +oe, then the system (7) is bang-bang
controllable on [0, T].
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In particular, this is true if lim____._o ((M)/M) < d/(K. A).
THWORM 5. Consider the control system

(8)

where

5c A(t)x + B(t)u + g(t, x, u),

g(t,x,u)] <= o(t)( Ix + ul[) + fl(t).

Here, o(t) >= 0 and fl(t) >= 0 both belong to L1(0, T). Assume that 5c A(t)x + B(t)u
is controllable on [0, T].

Then there exists an Ao > O, which only depends on the matrix functions
A(t) and B(t), such that (8) is bang-bang controllable on [0, T], provided that

a(t) dt <= Ao.
THEOREM 6. Consider the control system

(9)

where

c A(t)x + B(t)u + g(t, x, u),

g(t,x,u) =< 0(t)(q( x + ( ull)) + fl(t).

Here, o(t) >= 0 and fl(t) >= 0 both belong to LI(0, T). Further, q and are

nonnegative, continuous, nondecreasing and satisfy limr_o (q(r)/r)= 0 and

limM.o (@(m)/m) O. Assume that c A(t)x + B(t)u is controllable on [0, T].
Then the system (9) is bang-bang controllable on [0, T].
An important detail in Lemma 2 is that the estimate (I)(u) (I)o(U) =< p is

only assumed to hold for u flt and not necessarily for all u fla. This will be used
in the next theorem.

THWORM 7. Consider the control system

(10) A(t)x + B(t)u + g(t,x, u),

where

]g(t,x,u) =< 0(t)( x + u )t(u]]) + fl(t).

Here, (t) >= 0 and fi(t) >_ 0 both belong to L1(0, T). Further, is nonnegative, con-
tinuous and limM_.o @(M) 0. Assume that c A(t)x + B(t)u is controllable on
[0, T].

Then the system (10) is bang-bang controllable on [0, T].
Proof. As in the proof of Theorem 2, let x l(t) be a solution of the perturbed

system, and x2(t) a solution of the unperturbed system, corresponding to the same
control u(t) and satisfying Xl(0) x2(0). Then

xI(T) x2(r) =< C1" | I]g(t, xl(t),u(t)) dt.
0

Let u(t) M. We then have

xl(T)- x2(T)] =< C1" [0(t)( xl(t + M)O(M)+ fl(t)l dt,
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or

Xl(r x2(r CI(AIIxl(. rk(M) + A M. @(M) + B1)

using the notation of 4.
In order to estimate max x(t) we write

x(t) x(t, O)xo + x(t, s)[B(s)u(s) + g(s, x(s), u(s)) as.

Thus

IlXl(t)ll K Xo + K. B(s) ds. M

+ K. [e(s)(x(s) + M)O(M) + (s)] ds,

or

Xl(t)ll <= K( IXol + B, + B. M + A. M. O(M)) + K. O(M). Ot(S)IIXI(S)I ds.

Gronwall’s lemma gives

max IlXl(t)ll =< K(llxoll / B1 -}- BM + AM/(M))exp(AK/(M)).

Now choose a sequence Mi oo, such that limi_, O(Mg) 0. We may assume that
O(M) N 1, and if u e u,, we thus have maxt Ilxx(t) _-< D + Da" M, where the
constants D De are easily specified. For u e flu, we thus have

Ilxx(T)- x2(T)ll < flEA(D1 -k- D2Mi)(Mi)-+- AMi(Mi) + B1] -= Pi.

We can now put rl,i Mid IIXTII, and apply Lemma 2. Since limi_,o (r,i Pi)
+ , it follows that U i= q)(M,) R", which proves the theorem.
Remarks. It is seen from the proof that the assumption limM_o if(M) 0

can be replaced by the weaker condition that limM_, (M) is small enough.
It is interesting that the bang-bang principle for linear systems via Lemma 2

thus offers a method to prove controllability for certain nonlinear systems.
Apparently, many variations of tbs theme are possible, but we hope that the above
theorem gives a sufficient illustration of the method. See also [8.
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SUFFICIENT CONDITIONS FOR A STRONG MINIMUM IN
SINGULAR CONTROL PROBLEMS*

H. GARDNER MOYER"

Abstract. This paper derives the conditions guaranteeing that a singular extremal that joins fixed
endpoints provides a strong minimum for the independent time variable. For the nonsingular case,
Weierstrass has shown that the extremal must be embedded in a field. The principal conditions that
imply the existence of a field for a nonsingular problem with an n-dimensional state vector x and a

scalar control variable u are that 02H/Ou is unequal to zero and that the n (n + 1) matrix

[Ox(t)/Ok(to), (t)] has rank n. Here is the time, H is the generalized Hamiltonian, and k is the adjoint
vector. This paper shows that under proper assumptions the field concept can be extended to the singular
case. The condition on 02H/Ou is replaced by

O d OH
-:0.

Ou dt Ou

The above matrix, whose first n columns are obtained in a uniform manner, is replaced by a matrix whose
vectors are obtained by diverse procedures. Weirstrass’ analysis is carried out in detail, using a singular
nominal extremal and its field.

1. Introduction. The Pontryagin maximum principle states that the control
that is optimal is the one for which the generalized Hamiltonian (see 2) takes on
its absolute maximum. If the graph of the Hamiltonian versus the control is a
horizontal line, then all controls qualify, and if the circumstances permit the
control to be chosen so that this line remains horizontal during a nonvanishing
interval, a singular extremal is generated [2], [8], 11. If, on the other hand, the
maximum principle determines a unique control at almost all times, the extremal
is called nonsingular. Of course some extremals are composed of both singular
and nonsingular subarcs.

When an extremal is compared to curves that have neighboring values of
both slope and position, it is a candidate to provide a weak local minimum.
When the restriction on slope is removed, the extremal is a candidate to provide
a strong local minimum. When the slope and position of the comparison curves
are unrestricted, the extremal is a candidate to provide a global minimum.

Conditions guaranteeing that a singular extremal provides a weak local
minimum can be derived from an analysis of the second variation [4], [7], [9],
[13], [16]. Of course, there is but little justification for studying the weak minimum
problem unless the strong minimum problem is considered to be intractable.
Sufficient conditions for a strong minimum have been found by methods outside
the calculus of variations, but this work is restricted to systems that are autonomous
and whose control variables are all singular and number one less than the state
variables [5, [12, [15.

The problem studied in the present paper is much more likely to occur in
practice, although it is still far from being completely general. A system of differ-
ential equations is presented in Mayer format for a state vector x, whose initial
and final values are all specified. The single control variable u appears linearly

* Received by the editors May 31, 1972, and in revised form November 16, 1972.- Research Department, Grumman Aerospace Corporation, Bethpage, New York 11714.

620



SINGULAR CONTROL PROBLEMS 621

and is constrained to lie within finite upper and lower limits. The nominal extremal
has no nonsingular subarcs. The objective is to find sufficient conditions for a
strong, local minimum for the final value of the independent time variable t.

Weierstrass found that conditions that guarantee a strong minimum for
nonsingular problems could be obtained by studying the extremal field rather than
the second variation [3, pp. 143-149]. An extremal plotted in x-space is said to be
embedded in a central Mayer field if its neighborhood (excluding Xo) is covered
simply by the extremals that begin at Xo, to (Fig. 1). The members of the field
define time contours , called wavefronts (Fig. 1). The overbar appearing in
distinguishes the time of the field from that defined in the manner described below.

tf
NOMINAL EXTRENIAL

X2 I
STRONG
VARIATION

1

X
-13

FIG. 1. A family of adjacent extremals fi)r a two state variable problem. Superimposed time contours

(waveji’onts) and a typical strong variation are shown

It is possible to derive an expression for the gradient c:/cxi at each point of the
field. When this expression is substituted into the identity t0 + (.tto (cUcxi):i dr,
the Hilbert integral is obtained. Here and are defined along the path of a com-
parison arc (strong variation) that is required only to obey the system equations
for an admissible piecewise continuous u, and to have values of x that are in some
sense close to those of the nominal extremal. The value of c:/cxi to be used is
that defined by the particular extremal the comparison arc currently intersects.
Since t- [= fto [1 -(l[/txi),i] dt, we see that in order to prove that is less
than, or equal to, the of a strong variation governed by autonomous equations,
the integrand (known as the Weierstrass excess function) must be shown to be
greater than, or equal to, zero. In the nonautonomous case, the excess function is
required to be nonnegative only when equals .

The state and adjoint vectors of a nonsingular extremal with a scalar control
obey

H OH
(1 a) 2i ’i i (Xi

n
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(lb) au 0,

with H k. . If the Weierstrass condition is satisfied in strong form, so that
corners are excluded, the derivatives of fix and 6k are given by the equations of
variation of (1 a). Provided

32H
(2) c3u2

=/= 0,

6u may be obtained from the equation of variation of (lb). The fix(t) defined by a
neighboring extremal that begins at Xo may then be obtained by employing the
initial conditions fiX(to) 0 with 6k(to) linearly independent of k(t0). The nominal
extremal will be embedded in a central Mayer field if an arbitrary Ax determines
a unique adjacent extremal and wavefront. Thus if a field exists, there must be a
set of (nonunique) parameters 6ki(to), 1, ..., n 1, such that the matrix

(3) [X 1, X 1,,]
has rank n, i.e., its vectors span n-dimensions, during to < __< ty.

The present paper will find the conditions under which the field concept can
be extended to singular extremals and it thus has the same general motivation as
Caratheodory’s thesis on broken extremals. A singular extremal for a two state
variable problem is shown in Fig. 2. The branches are generated by jumping u
from its singular value to either limit. We see that, although this family of arcs
has a very different structure from that of Fig. 1, the property of simple covering
appears here also, so that the general features of Weierstrass’ argument can be
applied. Note, however, that since the arcs of Fig. 2 are not generated by varying
6k(to), a new parameter must be found. Although the field approach could easily
handle singular problems with n 2 and would extend the earlier work to the

t-4 IL
sINGULAR

_Xf
EXTREMAL

\BRANCHEt2. .I
S

il G
-\ VAR ATI ON

X-o - X1
FIG. 2. Singular extremal with branches for a two state variable problem. Superimposed time contours

(wavejionts) and a typical strong variation are shown
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nonautonomous case, a detailed discussion will not be presented because it differs
in certain respects from that for problems with n > 2.

Therefore, we proceed directly to three state variable problems in 2-7.
Sections 2-4 develop four conditions and show that they ensure that a unique
singular extremal begins at x0 and that one, and only one, adjacent extremal
passes through each point in its neighborhood. Sections 5 and 6 show that this
"singular field," with no additional assumptions, guarantees that the nominal
extremal provides a strong minimum. Section 7 investigates whether the conditions
are satisfied for a sample problem. Section 8 outlines the modifications required
for problems with n > 3. Section 9 touches briefly on the two state variable
problem and indicates directions for further research. In view of the length and
complexity of this paper, a complete listing of symbol definitions is given in 10.

2. Singular extremals. We consider a Mayer control problem whose three
dimensional state vector x obeys the following differential equations,

(4)

and terminal constraints

( X(to) Xo, x(t) x.
The initial time to is given while the final time s is to be minimized. The scalar
control variable u is constrained by the finite constants Umin and Uma according to

(6) Umi U U x.

Assumption 2.1. All elements of the vectors A and B are of class C in all their
arguments.

We have seen that for nonsingular problems the expressions for are required
merely to be of class C2. The vector k of adjoint variables obeys

H
(7) /i 1,2, 3,

(]Xi

where the generalized Hamiltonian H is defined as the scalar product of

(8) H(x,t,u,k) .k A.L + B.ku.

The switch function H, B. k and its time derivative are formally independent
of u and both vanish along a singular subarc,

(9) H, B. k 0,

1:-1, .
(o)

tB (B A
Aj + ct cxj Bj ,i =_C.k=0.

Assumption 2.2. The vectors B(to) and C(t0) are linearly independent.
The special case with B and C collinear has been excluded merely to conserve

space. Although this assumption can be retained for problems with n > 3, it has
to be replaced for two state variable problems. For three dimensional problems,
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Assumption 2.2 implies that (9) and (10) determine two diametrically opposite
directions for k(t0). Setting the next derivative of the switch function to zero
yields equations of the form

(11) H,=f+gu 0, u= -fig.

Assumption 2.3. The control variable appears explicitly in , (i.e., g - 0) and
the singular control is interior to the admissible region (i.e., Umin < U < Umax) for
to < <_ ty.

Note that u has the same value for both of the directions for X mentioned
above. Thus, if the complete family of extremals that issue from Xo were to be
generated by varying ko, the singular curve would be found to be associated with
two diametrically opposite k directions. This phenomenon cannot occur for
nonsingular extremals since it requires the graph of H versus u to be horizontal
at all times.

Remark. Of the two possible directions for k, the one that will be used through-
out the rest of the paper makes

(12) g H > 0.
8u dt 2 8u

It will be shown that this , together with the maximum principle, yields a
singular field. Had the minimum principle convention been adopted, it would
have been necessary to select the other k. Assumption 2.3 and inequality (12)
require the plot of/-/, versus u to have the form of Fig. 3 so that /Qu(b/min) < 0 and
Jru(Umax) > 0.

Assumptions 2.1, 2.2, and 2.3 establish the existence of a unique singular
extremal with initial point Xo. Given that this curve passes through xy, we seek
the conditions that guarantee that it provides a strong local minimum for I.

rUmin
max

FIG. 3. Second derivative of switch function versus control variable

3. Branch manifolds and the singular manifold. At each point of a singular
subarc, the control u can be jumped to either its upper or lower limit without
violating the maximum principle. Subarcs that branch off from the singular
subarc are then generated, and if they cover simply a two dimensional surface,
that surface will be called the branch manifold. The branch manifold associated
with the nominal extremal will be called the nominal branch manifold (Fig. 4).
It can be seen that the nominal branch manifold will exist, provided Umin < U
< Uma and [B, ] has rank two. The former condition was included in Assumption
2.3 and the latter condition will be included in Assumption 4.1 of the next section.
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O BRANCHES

X2 A

FIG. 4. Extremal flow on the nominal branch man![old

If .(to) does not satisfy both (9) and (10), the optimal u will be uniquely
determined by the maximum principle at almost all times, and the extremal
initially proceeds along either OA or OB (Fig. 4 or 5). If (9) and (10) should sub-
sequently happen to be simultaneously satisfied, it would become possible to
initiate a singular regime.

B S NGULAR EXTREMAL

S NGULAR
0 SUBARCS

A
X2

FIG. 5. Extremal flow on the singular mani[old

THEOREM 3.1. If a singular extremal satisfies Assumptions 2.1, 2.2, and 2.3,
it is possible to increment its .(to) so that a unique singular subarc can be entered at
any given point of OA or OB in the neighborhood of 0 (Fig. 5).

Proof. When the k(t0) of the singular extremal is incremented, (9) and (10)
indicate that

(13a) H,(to, X +
(13b) /:/,(to,
These equations are exact because k appears linearly in (9) and (10). If the latter
equations hold at time to + dt, then

(14a) H,(to + dr, k + 6k)= B. 6k + I:I, dt B. 6Z O,

(14b) II,(to + dr, k + 6k) C. 6k + //, dt 0

if higher order terms such as /:/, dt C. 6Z dt are (temporarily) neglected. The
argument of H, is either Umi or b/ma as appropriate. It is well known that all
adjoint vectors in a given direction are associated with the same extremal. Thus,
there is no loss in generality if the k + 6Z vector is fixed by requiring 6Z to be
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normal to k,

(14c) k. 6k 0.

Equations (14) determine a unique 6k(t0) for any choice of dt and a branch OA
or OB (Fig. 5), provided that the matrix [B, C, k] is nonsingular. But this property
is implied by Assumption 2.2 and the discussion in the paragraph that follows it,
so that the theorem has been proved.

Since the sign of the switch function on the initial subarc is not determined
by the first order approximation (14a), before proceeding we should establish
that it is in accord with the value of u used in (14b). Inserting (13) and (14b) into a
second order expansion for the incremented switch function shows that the
following relation holds at the corner point"

H,(to + dt, k + 6k)= H,(to, k + 6k) + /:/,(to, k + 6k)dt + 1/2,(t 0, k + 6k)dt2

B. 6k + C. 6k dt + 1/2[-:I, dt 2

(153
B. 6k [:I dt2 + 1/2[2I dt2

B. 6, 1/2i:I, dt 2 O.

Thus, if, for example, Umax is being used, B, is positive (Fig. 3) and (15) makes the
initial value of the switch function positive, so that there is no conflict. If, however,
the diametrically opposite k (which 2 demonstrated to be also associated with
the singular extremal) were to be used in B, together with Umax, , and the switch
function would be negative and the maximum principle would be contradicted.

The time history of the 6x(t) determined by the nominal singular extremal
and the second subarc of one of the broken extremals of Fig. 5 is determined by
the equations of variation of (4), (7), and (11).

To solve (18) for 6u, g (see (12)) must be nonzero. But this has already been
stipulated by Assumption 2.3. Recall that at the corresponding point of the
nonsingular analysis, it was necessary to assume 2H/cu2 =/= O.

If U Umax on the initial infinitesimal subarc, then the values of 6x and 6k
at the start of the singular subarc are

(19) 6x(t0 + dto)= B(t0)(Umax- us)dto,

2H
(20) 62i(to + dto) 62i(to) CXiCu(Umax- U) dto, i= 1,2, 3.

Here 6k(to) is determined by (14) with u Umax. If the singular subarc succeeds
an infinitesimal subarc with u Umin, Umi. replaces Uma in (19), (20), and (14).
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The time histories of 6x and 6k have the form shown in Fig. 6. Consequently,
when fiX(to + dto) and 6k(t0 + dto) as given by (19) and (20) are used as initial
conditions for the integration of (16)-(18) with initial time to rather than to + dto,
the resulting errors are infinitesimals of higher order than fix(t) and 6k(t) that can,
therefore, be neglected.

X

It +0t
0 0 0

FIG. 6. Time histories fi)r 6x and 62 determined by an adjacent extremal that enters a singular
regime at time + dt

We have, thus, constructed a one-parameter family of neighboring broken
extremals whose second subarc is singular. The two dimensional surface swept
out by these subarcs will be called the singular manifold (Fig. 5). In view of Assump-
tion 2.1 and the strong form of the inequalities appearing in Assumption 2.3, these
inequalities and the linear independence of B and s (see the beginning of this
section) apply to the adjacent singular subarcs as well as to the nominal extremal.
Therefore, each adjacent subarc will possess its own branch manifold.
The next theorem will determine whether the maximum principle or the minimum

principle is satisfied on the branches. This information will be required when we
decide whether the nominal extremal provides a maximum or a minimum.

THEOREM 3.2. Let a singular subarc obey inequality (12) and Assumptions 2.1
and 2.3, and let a branch be generated at any point of the subarc by holding the
control at either limit for a small interval; then the strong form of the maximum
principle is satisfied on the branch.

Proof Expanding the switch function about the junction (as in (15) but with
6L 0) yields

(21) H,(t + dt) H,(t) + I:I,(t) dt + 1/2,(t) dt2 + 1/2ffI, dt2 +....

Since H,(umn) < 0 and H,(uma) > 0 (Fig. 3), (21) shows that the switch function
is positive on a branch with u Um and negative on a branch with u Um
as required by the maximum principle.

4. Singular analog of the Mayer field. The parameter 6po will now be intro-
duced into (19) and (20) so that these equations become

(22) x(t0 + dto)- Bpo,

(23) 62i(to +dto) 62i(to) 6po,
XiU

Thus, for Po negative, Um is used, and for Po positive, Um is used in (19) and (20).
It is not difficult to show that the x(t)that lie in the singular manifold vary directly
with Po. That is, the ratio x(t)/po is independent of the magnitude of Po and

i= 1,2,3.
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can be written c3x/C3po =-- Xpo. To illustrate, two 6x’s determined by two equal and
opposite 6po’s will be compared. If

(24) 6po1) --fpo2),

then

(25) (b/max b/s) dt(o1) --(b/rain b/s) d/(o2).

The latter equation is multiplied by g; (f+ gus)dtto) 0 (see (11))is added to the
left; and (f + gus)dto2) 0 is subtracted from the right.

(26) (f q- gUmax)dtto) -(f -k- gUmin)dtto2).

Thus, (11) implies that

(27) /ru(b/max) d o1) -/Qu(b/min) d o2
Therefore, the 8,(1)(to) and 3L(z)(to) obtained from (14) are equal and opposite.
That 6x()(t) -3x(Z)(t) now follows easily from (22), (23), (18), (16), and (17).

Extremals that branch away from a singular subarc at the time > o define
in the neighborhood of the branch point

(28) 6x(t -+- dr)= B(t)(Umi us)dt

and

(29) 6x(t + dt)= B(t)(Um,x- u,)dr.

The parameter 6p, will be introduced in the same way as 6po. Equations (28) and
(29) can then be combined, and if only first order terms are retained, we have

x(t)
(30) fix(t) a(t)fpt -Pt Pt =- xpt tPt.

DEFINITION 4.1. A singular extremal will be said to be embedded in a
singularfield if for o < < I it possesses a branch manifold on each side of which
open neighborhoods are simply covered by singular subarcs and their branches
(see Fig. 7). For the purpose of this definition, a singular subarc is counted only
once despite its channel character.

Extremal families can fail to provide a field for various reasons. Should the
state variable differential equations include a holonomic constraint, the extremals
will fill only a subspace. Should the nominal extremal contact an envelope, the
adjacent extremals cover one side doubly and the other side not-at all. Envelope

SINGULAR1BRANCH

MANIFOLD JMANIFOLDS

EXTREMAL
FIG. 7. Trace of singular.field in wavej?ont
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contacts are associated either with the Jacobi condition or with H passing through
zero. In the former case, one covering is supplied by saddle point arcs and the
other by either minimizing or maximizing arcs. In the latter case, the double
covering consists of minimum and maximum time arcs, and the difficulty is not
intrinsic in that it is (usually) possible to project the extremal family onto (xl, x2, t)-
space and obtain simple covering by extremals that either minimize or maximize

x3. The present discussion will be limited to deriving the conditions that ensure
simple covering in (xl, x2, x3)-space of the neighborhood of the nominal extremal.

Assumption 4.1. The determinant

det [P(t)] det [Xpo, Xp,,
(31)

det [Xpo, B, A + Bu,] det [Xvo, B, A]

has well-behaved elements and is nonzero for to < __< ty.
We will show that this provision excludes all the pathological situations

mentioned above. The relationship between det P and the value of H will be
taken up explicitly in Theorem 5.2. The matrix of (31) is the singular counterpart
of the matrix (3).

THEOREM 4.1. A singular extremal is embedded in a singular field if Assumptions
2.1, 2.2, 2.3, and 4.1 are satisfied.

Proof. Assumption 4.1 implies that B and is are nonnull vectors that are
linearly independent. These properties, together with the inequalities mentioned
in Assumption 2.3, imply the existence of a two-dimensional nominal branch
manifold (Fig. 4). Theorem 3.1 states that there are adjacent singular subarcs
branching away from the subarcs OA and OB of this manifold (Fig. 5). In accord-
ance with the discussion preceding Theorem 3.2, each of these subarcs possesses
its own branch manifold. Assumption 4.1 indicates that the vectors Xpo and B
are linearly independent as shown in Fig. 7 so that, the singular subarcs straddle
the nominal branch manifold. The implicit function theorem permits the matrix
equation

(32) Ax [x,o, B, [6po, @,, dt r

to be inverted to

() [po, ap,, dt [Xo, B,- Ax.

Thus an arbitrary Ax is associated with a unique adjacent singular subarc, branch,
and wavefront.

Figure 7 indicates that if Xpo and B should become collinear (with B. B > 0),
an adjacent singular subarc would cross the nominal branch manifold. Assumption
4.1 has ruled out the possibility of such an intersection. It would be clearly analogous
to a Jacobi conjugate point, which is defined for nonsingular problems as the
point at which neighboring extremals (with 6X(to) 0) meet at a common time
[3, pp. 105-124].

5. The Hilbert invariant integral. Before the existence of an invariant integral
can be established, the properties of k and H must be investigated. In the non-
singular case it is well known that k is normal to the wavefront [3, p. 216]. This
property is easily extended to the singular case.



630 H. GARDNER MOYER

THEOREM 5.1. The vector k associated with a singular extremal that obeys
Assumptions 2.1, 2.2, 2.3, and 4.1 is normal to the wavefront.

Proof. If fix is in the nominal branch manifold, (9) indicates that

(34) k. fix k. Bbpt HubPt O.

Recall that B is not a null vector by virtue of Assumption 4.1. If fix is in the singular
manifold,

d
(35) d-(. x) k. x + . 0

by virtue of (7), (16), and (9). Thus, k. 6x const, and the constant is zero because
at to + dto, k. 6x k. B 6p0 0. In the general case, fix can be decomposed
into a linear combination of B 6pt and Xpo 6po.

THEOREM 5.2. The Hamiltonian H k. rk never vanishes during to <= <= ty
on a singular extremal that obeys Assumptions 2.1, 2.2, 2.3, and 4.1.

Proof. The coefficients c3(A + Biu)/c3xJ, i,j 1,2, 3, of 2 in (7) (after sub-
stitution from (8)) are required by Assumption 2.1 to be bounded. It follows from
this and the homogeneity of k in (7), that if k were null at one point of the extremal,
it would be null at all points. If (the other vector appearing in the definition of H)
were to be null, Assumption 4.1 would be violated. This proviso also implies that
the vectors Xpo, B, and span three dimensions. Since Theorem 5.1 demonstrated
that k is normal to Xpo and B, this vector must have a component in the direction.
Thus H -- 0 on the nominal singular extremal. In view of the strong form of the
latter inequality and the continuity properties assumed for A and B, there must be
an open neighborhood about the nominal extremal in which the singular field
defines H to be nonzero.

DEFINITION 5.1. Let the path of the nominal singular extremal be denoted by
(t) and that of a comparison arc that obeys (4) and (6) by x(t). Assume that at each
point x(t), the quantity (x(t) x()). (x(t) ,(t))is a second order infinitesimal
or smaller for at least one value of s([). Then the comparison arc is called a
strong variation. The adjective "strong" connotes that u and k on the varied arc
are not required to be close to the corresponding quantities on the nominal
extremal and may in fact have a finite number ofjump discontinuities.

THEOREM 5.3. Let Assumptions 2.1, 2.2, 2.3, and 4.1 be satisfied. Let L, L fi, and
H k. k(x, L fi) be defined in the neighborhood of the nominal singular extremal by
the singularfield. Let t, u, and H =_ k k(x, t, u) be defined by a strong variation whose
initial and final points coincide with those of the nominal singular extremal. Then
the integral

(36) (H/H) dt

taken along the path of the variation is independent of the path and the interval

tf o

Proof. Theorem 5.1 established

(37) k. fix 0
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for any 6x that lies in the wavefront tangent plane. Taking the scalar product of
k and
(38) Ax --- 6x + k(x, , ) d
and using (37)and (8), we obtain

(39)

Note that although fi in (38) is triple-valued whenever the comparison arc is on
the singular manifold, H in (39) is always unique. The latter equation implies

3 /i
1,2, 3.(40) cx H’

Recall that H was shown to be nonzero at the conclusion of the proof of Theorem
5.2. Therefore, along the line integral of the variation,

2i dt )idt dt(41) y- [0 X/mxi Xi
The last member is (36) while the first is a function of the field only.

Although it has been helpful to think of a strong variation when proving this
theorem, it can be seen that plays a dummy role and that the varied arc is required
to obey neither (6) nor even (4). Note that Hilbert’s invariant integral for non-
singular Mayer control problems is formally identical to (36).

6. Sutticient conditions for a strong local minimum. An adequate background
is now available for the proof of the following fundamental sufficiency theorem.

THEOREM 6.1. Let o and f be defined by a nominal singular extremal that obeys
inequality (12) and Assumptions 2.1, 2.2, 2.3, and 4.1 let be defined in its neigh-
borhood by the singularfield implied by Theorem 4.1 let H be defined between o and

t.r by a strong variation whose initial and .final points coincide with those of the
nominal extrernal. Then :f <_ tf if H > 0 and f >= ty if H < O.

Proof. Since the assumptions of Theorem 4.1 have been postulated, the
singular extremal is embedded in a singular field and (41) can be applied.

H
(t o) -( o) t .H

(42) H dt

The integrand is the Weierstrass excess function for a Mayer problem. To be
definite, H (the denominator of the integrand) will be assumed positive. By
Theorem 3.2 the numerator is positive or zero whenever . Since these times
are equal initially, cannot be less than when is small. Depending upon the
definition of H, it may be possible to have H > H when > so that d/dt H/
> (see (41)) and the comparison arc reduces the gap with the wavefront. The
difference could never become zero, however, since this would imply H > q
att .

7. Example. The system governed by the following equations has been pre-
viously studied for a variable final point problem in [61, [13], and [141.

(43) k A + Bu,

(44) AT Ex2 0, 2
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(45) Br [0, 1,0],

(46) -2 =<u =< 2.

The initial conditions are

(47) to =0, x= [0,1,0].

The problem is to minimize the time to a fixed final point xy. The location of xy
will be left unspecified except that it lies on the singular extremal described below.
The adjoint variables obey

(48) kT-’- [Xl/3,--21 X2/3, 0.
The switch function and its derivative both vanish on a singular extremal (see
(9) and (10)).

(49) H B. , ,2 0, /2/u C. k -21 x223 0.

The vector B was given by (45) and C is

(50) Cr [- 1,0, -x2].

The singular control is obtained from

(51) H --(X -t" U)/], 3 0, U --X

A vector k(to) perpendicular to the linearly independent vectors B(to) and C(to)
is

(52) kr(0) Ix2(0), 0, 1 [1,0, 1.
This vector, rather than its opposite, will be employed because it makes c,/cu > 0
and is therefore associated with a singular field when the maximum principle
convention is adopted. The equations for the singular extremal are

(53) xr(t) [sin t, cos t, 1/4 sin 2t].

The equations of variation of (43) and (51) are

(54) c551r [5X2,6U, X 2 6X 2 X 6X1]

(55) 6u -axe.
The solution to (54) and (55) with fix(0) B(0) (see the discussion following (20)) is

(56) xr [sin cos 1/2sinPo

Using (44), (45), (56), and (53) to evaluate (31) yields

(57) det P det Xpo, B, A] -1/2 sin t.

Therefore the sufficiency conditions 2.1, 2.2, 2.3, and 4.1 are satisfied for 0 < < 7,

and during this interval the singular extremal provides a strong local minimum
because H(t) 1/2 > 0. At rc the vectors Xpo and B (Fig. 7) are collinear, and
the singular subarc of the adjacent broken extremal (Fig. 5) intersects the nominal
branch manifold. The character of the nominal arc after this time is beyond the
scope of the present paper.
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Note that the sufficiency established above does not contradict the assertion
that the extremal is nonoptimal for ty < rc when the final point is variable [6], [13].
Both conclusions can be correct if the point conjugate to the final point always
precedes the focal point. This has been proved for the nonsingular case [1, p. 175]
and also presumably holds for singular problems.

8. More than three state variables. In this section x will be defined as a
general n-vector (n _>_ 3) although u will still be scalar. We have seen that when
n 3, Assumption 2.2 imposes two conditions on ((9) and (10)) so that (provided
Assumption 2.3 is satisfied) a unique singular extremal originates at a given Xo.
When n > 3 an (n- 3)-parameter family of singular extremals begins at the
initial point. The members of this family satisfy (12) and Assumption 2.3 because
of the strong form of these conditions. Each member adjacent to a given nominal
member Xs(t) defines a fix(t) that obeys (16)-(18) with fiX(to) 0. The initial values
of the + 6), 1, ..., n 3, must of course satisfy (9) and (10),

(58) B. (S -t" i) B. 1i 0, C. (s -- i) C. i 0

i= 1,...,n-3,

and if the 6x are to be linearly independent, the rank of [k, 6ki,..., 6k,-31 must
equal n 2. These relations are unchanged if each 6ki(to)is scaled to have unit
magnitude. We can then regard the 6xi(t) as partial derivatives and designate them
asxpi, i= 1,.-.,n- 3.

A gi)(to) to be used to generate an extremal that enters a singular regime at a
given point of OA or OB (Fig. 5) must satisfy only (14). Thus an (n 3)-parameter
family of singular subarcs begins at each of these points. When the latter point is
regarded as an additional parameter, there is altogether an (n- 2)-parameter
family of neighboring broken extremals. To obtain an Xpo(t in the simplest way,
integrate (16)-(18) with 6x(t0)= B(t0), (i(tO)--O, i= 4,..., n, and 6/1, 622,
and 623 chosen to satisfy (14).

Thus Theorem 6.1 holds for n > 3 provided Assumption 4.1 is replaced by
the following.

Assumption 8.1. The determinant

(59) det P det [Xpo, xpl Xpn 3’ B, A]

has well-behaved elements and is nonzero during to < =< tz. As discussed
above, the xp,, 1,..., n 3, are defined by adjacent members of the (n 3)-
parameter family of curves that are singular for => to, and Xpo is defined by any
member of the (n- 2)-parameter family of adjacent broken extremals whose
second subarc is singular.

9. Concluding remarks. When Assumptions 2.1, 2.2, and 2.3 are satisfied
for a problem with a linear, scalar control variable, an (n 3)-parameter family
of singular extremals issues from the initial point. After introducing the three
additional parameters 6Po, 6P, and dr, the n x n matrix P can be formed. If
Assumption 8.1 is also satisfied, the neighborhood in x-space of the nominal arc
is covered simply by a "singular extremal field." That the nominal arc takes less
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time than any strong variation joining Xo and xs can then be proved by an analysis
identical to that used by Weierstrass for the nonsingular case.

It can be shown that the set of four assumptions mentioned above still
guarantees optimality when the problem is changed to allow x,s to vary while

ts is fixed. If 2,s is positive, x, is a maximum and if 2, is negative, x, is a minimum.
As mentioned at the end of 7, these assumptions are no longer sufficient if two
or more of the n + variables xy, ty are not fixed or if any of the initial values can
vary.

On comparing the assumptions mentioned above with those for the non-
singular case, we see that the derivatives of the expressions for that are now
required are of higher order, the condition c[-:I,/cu 0 replaces (2), and the matrix
of (59) replaces the matrix (3). The remaining condition--that excluding the
special case with B and C collinear--was inserted merely to save space and thus
corresponds to the exclusion of broken and singular extremals from Weierstrass’
original theory.

As in the studies of a weak minimum in singular problems, one of these
conditions contains a matrix. However, the elements of the matrices found in
[4], [7], [9], [133, and [16] were obtained in a uniform manner from a single set of
either linear or Riccati differential equations. The matrix of (59), on the contrary,
reflects the nonuniform character of the singular field. The vector Xpo is obtained
from the differential equations (16)-(18) with 6x(t0)= B(to). The vectors x

pi

i= 1,..., n- 3, are obtained from the same equations but with 6xi(to)= 0
and with constraints on the 6ki(to) that are of a different form. Finally, the vectors
B and A of P are taken directly from the nominal singular extremal. On the other
hand, in the nonsingular case identical matrices can be used to analyze the second
variation and to establish the existence of a field.
The existence and optimality of a singular extremal with two state variables

can also be established by four conditions. Assumptions 2.1 and 2.3 can be taken
over without change, but the stipulation that B and C are collinear should replace
Assumption 2.2 and Xpo should be deleted from the matrix appearing in Assumption
4.1. These conditions can be applied more generally than those of [5], [123, and
15] because the system differential equations are not required to be autonomous.

It can be shown that for the latter special case, the present analysis is equivalent
to the earlier work.

Opportunities for further research are obtained when the assumptions of
the present paper are weakened. Thus, investigations can be conducted into the
conditions that arise when B(to) is collinear with C(to), when the first explicit
appearance of u occurs in a time derivative of H higher than the second, when
B(t) becomes null at an intermediate point, when H(t) has a varying sign, and when
the nominal extremal has both singular and nonsingular subarcs. More general
problem formulations can also be explored. These include problems with more
than one singular control variable and variable endpoint problems.
The ultimate goal of a set of conditions for a strong minimum that are both

necessary and sufficient remains to be achieved. The necessity of the condition
cH,, cu > 0 (the weak form of inequality (12)) in conjunction with the maximum
principle has already been established I10], [11], but not the necessity of the new
analog of the Jacobi condition obtained for the first time in this paper. The latter
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requires the matrix obtained by deleting the last column of the matrix appearing
in (59),
(60) [Xpo, , xp._ 3, B],

(thereby retaining only the partial derivatives with time fixed) to have rank n

(whenever B. B > 0 during to < < ts) irrespective of the boundary conditions
and performance index. Note that when n 2, all the columns of this matrix
are undefined except the last. It follows that the concept of conjugate points is
then inapplicable.

10. Notation.
A, B n-vectors appearing in (4).
C n-vector appearing in (10).

f,g see (11) and (12).
H generalized Hamiltonian; see (8).
H, switch function; see (9).
n number of state variables, equals 3 in 2-7 and is > 3 in 8 and 9.
P matrix defined by (31) for n 3 and (59) for n > 3.

@o either [Umax- us(to)]dtor[Umi,,- us(to)]dto. The6x(to + dto)defined
by the nominal extremal and an extremal that lies in the singular
manifold equals B(to)@o at the time the singular subarc of the neigh-
boring extremal begins (Fig. 5). The singular manifold can be swept
out by varying @o and t.

6Pt either [Uma us(t)] dt or [Umi us(t)] dt. The 6x(t + dt) defined by
the nominal extremal and an extremal that branched away from it at
time (Fig. 4) is equal to B(t)@,. The nominal branch manifold can be
swept out by varying 6pt and t.

time, the independent variable.
u scalar control variable.

Umax, Umin upper and lower limits, respectively, of the admissible values of u.
x n-vector of state variables.

Xpo cx(t)/@o (Fig. 7). See the definition of 6po.
x, cx(t)/cp, B(t) (Fig. 7). See the definition of 6pt.
xvi cx(t)/cpi, where the pi, 1, ..., n 3, are any set of parameters

that can be used to describe the (n 3)-parameter family of singular
extremals that issue from Xo.

k n-vector of adjoint variables associated with x.
)o initial value.
)s final value.
)s value on the nominal singular extremal.
) transpose of a matrix.

6( variation with time fixed.
A( variation with time not fixed.
(’) derivative with respect to time.
(-) when a variable is defined both by a comparison arc and the extremals

of the field, the latter variable has an overbar.
(). scalar product of two vectors.

)( )i summation over the appropriate range with as the running variable.
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A DESCENT NUMERICAL METHOD FOR OPTIMIZATION PROBLEMS
WITH NONDIFFERENTIABLE COST FUNCTIONALS*

DIMITRI P. BERTSEKAS- AYD SANJOY K. MITTER:

Abstract. In this paper we consider the numerical solution of convex optimization problems with
nondifferentiable cost functionals. We propose a new algorithm, the e,-subradient method, a large step,
double iterative algorithm which converges rapidly under very general assumptions. We discuss the
application of the algorithm in some problems of nonlinear programming and optimal control and we

show that the r,-subgradient method contains as a special case a minimax algorithm due to Pshenichnyi
[5].

I. General remarks. One of the most common approaches toward the
numerical solution of optimization problems with or without constraints is the
use of descent algorithms such as the steepest descent, conjugate gradient, quasi-
Newton methods, methods of feasible directions, etc. These decent methods have
enjoyed a great deal of popularity due to their reliability, simplicity, and good
convergence properties. In their usual form all these algorithms require the exis-
tence of the gradient of the function to be minimized both for explicit use in the
calculations and as a guarantee of their convergence to a local minimum. In many
optimization problems, however, often arising in an economics framework, the
natural cost functional of the problem turns out to be nondifferentiable. Such
problems have received considerable attention recently and are the subject of this
paper.

Early work on optimization problems with nondifferentiable cost functionals
can be traced to the early sixties with the research of Dubovitskii and Milyutin 1,
2] which apparently served as a starting point for subsequent work of Soviet
scientists [,3]-[6]. At about the same time the theory of subdifferentiability ofconvex
functions was developed by Moreau [7, [8, Rockafellar [-9], 10, and Brondsted
and Rockafellar 11]. The notion of the subdifferential of a convex function (set of
all supporting hyperplanes to the graph of the function) provided an efficient
generalization of the notion of the ordinary gradient and formed the basis for the
development of generalized necessary and sufficient conditions for optimality (see
e.g. 10]). Necessary conditions which generalize the Pontryagin maximum
principle of optimal control in very elegant form have been given by Neustadt 12],
Heins and Mitter [13, and Rockafellar 14]. The latter reference contains also
some generalizations of known results in the calculus of variations.
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Further necessary conditions for optimal control problems with nondif-
ferentiable cost functionals were given by Luenberger 15]. Some additional
results along the same lines can be found in the thesis by Ghanem 16]. Luenberger’s
results were somewhat generalized for the case of discrete-time systems using
subdifferential theory by the authors 17]. Questions related to stochastic op-
timization problems with nondifferentiable cost functionals have been examined
in 35, [36]. Such problems occur often in stochastic programming. A method for
approximating a nondifferentiable convex function by a smooth function was
also given in reference I35]. Necessary conditions for optimality for nonlinear,
nonconvex programming problems without differentiability were obtained by
Bazaraa, Goode and Shetty 18], 19] and for minimax problems by Danskin,
Dem’yanov and Pschenichyni I20], I21], [5]. Among existing nonlinear pro-
gramming algorithms, the convex cutting plane algorithm 25], 37] can be used
for the solution of convex nondifferentiable optimization problems.

In the area of descent numerical methods a minimization algorithm has been
reported by Ermol’ev 223, 23 and credited to Shor 24]. This algorithm is
applicable to unconstrained convex programming problems with nondifferen-
tiable cost. It reportedly has slow convergence properties 333 although computa-
tional examples using the algorithm are not available in the English literature. A
similar algorithm has been proposed by Polyak 33]. Decent algorithms for the
solution of minimax problems have been given by Dem’yanov [21], Pshenichnyi
[5], Birzak and Pshenichnyi I26, and Levitin 34]. It should be noted that many
optimization problems with nondifferentiable cost functionals can be converted
into minimax problems. The generalization of the steepest descent method
for the numerical solution of optimization problems with nondifferentiable cost
functions was given by Luenberger [15]; however, a proof of convergence of this
algorithm is not presently available. The problem appears to be that the algo-
rithmic map in this algorithm is not closed (using Zangwill’s terminology [25]).
The e-subgradient method, first presented in 17], circumvents this closure problem
as will be seen in what follows. Other papers related to optimization problems with
nondifferentiable cost functionals include those of Polyak 38], Minch [39],
Auslender 40], I41], and Butz I42].

In this paper we present a new descent algorithm for constrained or uncon-
strained minimization problems where the cost function is convex but not neces-
sarily differentiable. This algorithm, the e-subgradient method, is a large step,
double iterative algorithm that converges rapidly under very general assumptions.
The algorithm was first presented in [17 and is based on the notion of the -subgradient of a convex function. In 2 we describe the algorithm and we prove
its convergence. In 3 we consider some practical aspects of the algorithm and we
demonstrate by means of examples its application. Finally, in 4 we delineate
some classes of problems for which the e-subgradient method compares favorably
with existing algorithms. In addition we show that the e-subgradient method
contains as a special case a minimax algorithm due to Pshenichnyi I5].

2. The -subgradient method. In this section we describe a descent algorithm
for the minimization of a convex function subject to convex constraints. Rather
than considering explicitly the constraints, however, we shall allow the function to
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be minimized to take the value + o. Thus the problem of finding the minimum of
a function g(. over a set X is equivalent to finding the minimum of the extended
real-valued function f(x) g(x) + 6(xlX), where (. IX) is the indicator function
of X, i.e., 6(xlX) 0 for x X, 6(x[X) for x q X. Stating the problem formally:

Find inf f(x) where f:R" (- o, + o1 is a convex function which is lower
semicontinuous with infx f(x) > and f(x) < + for at least one x

With the above assumptions, the function f is a closed proper convex function
as defined in 10]. A detailed discussion of closed proper convex functions can be
found in the same reference. A basic concept for the algorithm that we shall present
is the notion of e-subgradient. This notion was introduced in [_9], 11] in connection
with investigations related to the existence and characterization of subgradients of
convex functions.

Let x be a point such that f(x) < oe and e > 0 any positive scalar. A vector
x* R" is said to be an e-subgradient of f at x if

(1) f(z) >=f(x)- e + z- x,x*) for allzR",

where (.,.) denotes the usual inner product in R". The set cf(x) of all e-sub-
gradients at x will be called the e-subdifferentiol of f at x. This set is nonempty,
closed and convex. It is evident that for 0 < e < ;2 we have

f(x) c ,f(x) c f(x).

A useful characterization of the set c3f(x) is given by the equation I10, p. 220]

(2)

where

(3)

cf(x) {x*lf*(x*) + f(x) <x,x*5 e},

f*(x*) sup{{x,x*) f(x)}

is the conjugate convex function off [10]. The support function of cf(x) is given
by the following useful equation [10, p. 220’

f(x + 2y)- f(x) + e
(4) r[y cf(x)] sup (y, x*) inf

x*eOf(x) 2 0

The set cf(x) has some interesting properties from the algorithmic point of view
as shown by the following two propositions.

PROPOSITION 1. Let x be a vector such that f(x) < o. Then

0 <= f(x)- inff(z) < e 0 e cf(x).

Proof. By the definition (1),

O ef(x) f(z) >= f(x) e for allzeR",

which is equivalent to the desired relations. Q.E.D.
PROPOSITION 2. Let x be a point such that f(x) < o and 0 q c3f(x). Let y be

any vector such that

(5) sup (y,x*) < 0.
x*eOf(x)
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Then we have

(6) f(x) inf f(x + 2y)>
2_>0

Proof Assume the contrary, i.e., infz>=of(x + 2y) -f(x) + > O. Then we
have

f(x + &)- f(x) + for all 2 > 0.

This implies by using (4)

l(x + &)- f(x) +
sup (x*,y) inf" >_ 0.

x*eOf(x) 2 0

Since c.f(x) is closed this implies that 0e #f(x) which contradicts the hypo-
thesis. Q.E.D.

In the case where 0 q #f(x), a possible method for finding a vector p(x)e R"
such that SUpx,ex) (x*, p(x)) < 0 is the following. Let be the usual Euclidean
norm in R" and let if* be the unique vector of minimum norm in c?f(x). Then the
vector

(7) y(x)-

satisfies sup,x)(.(x), x*) Ilff*ll < 0.
Propositions and 2 form the basis for the algorithm that we shall present.

The former provides a termination criterion for the algorithm. The latter states
that whenever the value f(x) exceeds the optimal value by more than e, then by a
descent along a vector y satisfying (5) we can decrease the value of the cost by at
least e. Consider the following algorithm.

t3-SUBGRADIENT METHOD.

Step 1. Select a vector Xo such that f(xo) < m, a scalar Co > 0 and a scalar
a, 0<a< 1.

Step 2. Given x, and e, > 0, set e,+l ake,, where k is the smallest non-
negative integer such that 0

Step 3. Find a vector y, such that

(8) sup (y., x*) < O.
x*eOe lf(xn)

Step 4. Set x,+ Xn -t- 2,y,, where 2, > 0 is such that

f(x,,) f(x,+ 1) > re’n+ 1"

Return to Step 2.
It should be mentioned that if x, is not a minimizing point of f there always

exists a nonnegative integer k such that 0 q ca.f(x,), since by Proposition 1 we
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have

0 d cak.f(x,),--, f(x,)- inff(x)>

Also by Proposition 2 there exists a scalar 2, such that

(9) f(Xn) f(Xn -+- I[nXn) n+ 1,

thus showing that Step 4 can always be carried out. In fact, one can show that the
set of all scalars 2, satisfying (9) is an open bounded interval or an open half-line.
One way of finding a scalar 2, satisfying (9) is by means of the one-dimensional
minimization

f(x, + 2,y,)= minf(x, +
,l>0

assuming the minimum is attained. This in turn can be guaranteed whenever the
set of minimizing points of J’ is nonempty and compact, since in this case all the
level sets offare compact [.10, Cor. 8.7.1. We note also that Steps 2 and 3 can
be carried out by means of an auxiliary minimization problem as will be discussed
in detail in the next section.

We now prove the convergence of the :-subgradient method.
PROPOSITION 3. Consider the vectors x, generated by the :-subgradient method.

Then either f(x,,) minxf(x for some m >= 0 or the generated infinite sequence
{x,} satisfies

(a) lim,_ f(x,) infx f(x).
I.]; in addition, the set M {fflf(X) minf(x)} is nonempty and bounded, then"

(b) Every convergent subsequence of {x,} has its limit in M, and at least one
such subsequence exists.

(c) For every ; > 0 there exists an m >_ 0 such that x, M + eB jbr all n >= m,
whereB {xl[Ix _<_ is the unit ball in

(d)/f the minimum of f is attained at a single point

Proof. By Proposition 2 we have

f(x,)-f(x,+l) > e,+l for alln__>0

and hence,

f(xo)- ) e,i>f(x,)>inff(x) for alln=> 1.
i=1

Since ei > 0 the above inequality implies {ei} - 0. This implies that ei+ < e for
an infinite number of integers i. In view of Step 2 of the algorithm we have for
those integers: 0 < f(xi) inf,,f(x) _<_ :i. Since {f(x,)} is a decreasing sequence,
it follows that lim,_ .[’(x,) inf f(x), and (a) is proved. To prove (b) notice that
x, e Fo, where F0 {x[f(x) <__ f(x0) and since m is nonempty and bounded, Fo is
compact (see [10, Cot. 8.7.1]). Therefore the sequence {x,} has at least one con-
vergent subsequence. The fact that the limits of all convergent subsequences
belong to M follows from (a) and Cot. 27.2.1 in [10]. Part (c) follows from (a) and
Thm. 27.2 in [10]. Part (d) follows from (a) and Cot. 27.2.2 in [10]. Q.E.D.

The above proposition establishes that the e-subgradient method has attrac-
tive convergence properties. In fact, it converges to the optimal value even if an
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optimal solution does not exist. A further attractive feature of the method is that
it guarantees substantial progress at every iteration (Step 4) and that the progress
of the computation is monitored constantly via the parameter t (Step 2). The price
for this substantial progress is the computations necessary to find the direction of
descent in Steps 2 and 3. In the next section we shall describe some practical
aspects of the algorithm and demonstrate by means of examples its application.

3. Practical aspects of the -subgradient method. A cursory examination of
the t-subgradient method reveals that in fact the most difficult step in a single
iteration is finding the direction of descent y,. However, contrary to most descent
algorithms, the chosen direction of descent in the t-subgradient method can lead
to guaranteed substantial reduction of the value of the cost functional in a single
iteration. To demonstrate this fact consider the following lemma.

LEMMA. Assume that the scalars to and a in the t-subgradient method are such
that

(10) f(xo)- inf/(x) <= to, 1/2 =< a < 1.

Then for all n >= 1,

(11) f(x,) inf/(x) < ((1 a)/a)t, <= (1

Proof. We have f(xo) infx f(x) < to implying that 0 e C3o(Xo). Hence in Step
2 we have e 4: eo. This in turn implies that 0 c,/,f(xo), or equivalently,

f(xo)- inff(x) =<
On the other hand,

f(xo) f(x l) >

Combining the last two inequalities we have

f(xl)- inff(x) < ((1 a)/a)t,

proving (11) for n 1. Since 1/2 < a < 1, the last inequality implies that
f(xl) infx f(x) < tl and the same argument as above can be used to prove (11)
for n 2 and every n. Q.E.D.

It is evident now from (11) that a substantial reduction of the value of the cost
functional is possible by choosing the value of the parameter a high enough. On
the other hand, a value of the parameter a close to unity leads to an increased
number of iterations in order to find the scalar e,+ from t, in Step 2 of the algo-
rithm. Thus, in practice, one must settle on a compromise value for the parameter a
depending on how difficult it is to carry out a single check 0 e C3ak,f(x,) in Step 2.
Another possibility is to modify the algorithm so that the value of the parameter
a is adjusted during the iterations in Step 2 on the basis of information already
obtained. A number of convergent schemes are possible. We do not discuss these
schemes since they are not theoretically interesting but rather relate to the in-
telligent programming of the method.

We now turn to the important question ofhow the calculation of the direction
of descent is to be carried out once the value of the parameter a is selected. As
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mentioned in the previous section it is possible to carry out Steps 2 and 3 of the
algorithm by solving the following minimization problem"

(12) min x*]
x*eO,,..f(x.,)

Now clearly we have 0 e cak.f(x,, if and only if problem (12) has a zero optimal
value and therefore Step 2 of the algorithm can be carried out by solving problem
(12) successively for k 0, 1, .... There exists an integer k for which problem (12)
has a nonzero optimal value. Let if* be the optimal solution of problem (12) for
the first such integer k. Then a suitable direction of descent y, satisfying (8) in
Step 3 of the algorithm is given by

(13)

One efficient method for solving the minimization problem (12) is to solve
successively the unconstrained problem

(14) min ]x* 2 + pk(x,)}
X*

where Pk(.) is a (moderate) penalty function

P,(x*) > 0 for all x*
(15)

P(x*) 0 if and only if x*

It is clear that problem (14) has a zero optimal value if and only if problem (12)
has a zero optimal value. Furthermore, when k is such that problem (12) has a
nonzero value, problem (14) yields an approximate solution 2" to problem (12).
In this case one can either increase the penalty and obtain a more accurate solution
or obtain an approximate direction of descent )7, from

The approximate direction /7, is considered acceptable if it yields a point
satisfying f(x,) f(x,,+ 1) > e,+ in Step 4. If 37, is not acceptable we increase the
penalty in problem (14) and resolve the problem in order to obtain a more accurate
direction of descent.

The preceding discussion clearly demonstrates that the application of the
e-subgradient method to a specific problem requires the solution of minimization
problems of the form

(16) min IIx*
x*eOf(x)

At first sight it would therefore appear that the -subgradient method can be
applied only to the limited class of functions for which the e-subdifferential
cf(x) has a convenient characterization. We shall demonstrate in what follows in
this section that this is not the case and, in fact, the method can be applied to most
functions likely to be encountered in practice. This is due to the fact that problem
(16) can be cast into the usual nonlinear programming framework even if a con-
venient closed form characterization of the set Of(x) is not available.
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By making use of the characterization (2) of the e-subdifferential f(x) in
terms of the conjugate convex function f*, problem (16) can be written as

(17) minimize x*

subject to

f*(x*) + f(x)- (x,x*) __< .
Now there is a class of simple functions f for which the conjugate

f*(x*) sup {(x, x*) f(x)}

has a convenient closed form. Such functions include"
(a) Positively homogeneous closed convex functions, i.e., support functions of

given sets [10, 13]. Thus if

f(x) er(xiX) sup (x, x*),
x*eX

then

0 ifx*X,
f*(x*) a(x*lX)=

oo if x* q X,
where X is the closure of the convex hull of X. This class includes all norms and
seminorms in R" as well as linear functions. In addition, the conjugates of powers
greater than one of norms and seminorms in R" (including quadratic forms) are
given in [10, 15].

(b) Exponentials and logarithms of coordinates of x (see [10, 121).
(c) Indicator functions of affine sets (linear manifolds), convex cones and unit

balls with respect to a norm or a seminorm [10, 13].
(d) Indicator functions of sets with known support functions, [10, 13]. If X

is a closed convex set and

f(x) a(x x),
then

f*(x*) er(x* X) sup (x, x*>.
xeX

We note that constraint sets which are characterized by their support function are
encountered, for example, in some optimal control problems as will be discussed
in some detail in 4.

Now from this class of simple functions one can build more complicated func-
tions by means of various operations such as summation, affine transformation,
maximization, etc. The conjugates of such functions are characterized by the
following well-known relations:

(18) (fl+f2+... +f,)*(x*)= min {f.*,(x.*,) (V10, Thm. 16.4),
x7 x*

i=

where f, 1,..., m, are closed proper convex functions with a common point
in the relative interior of their effective domain, and the function fl + + f,, is
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defined by

(fl + f2 + + f)Ix) L(x) + f:(x) + + f(x),

(1.9) (f. A)*(x*) min f*(y*),
A’y* x*

wheref: R" - R is a closed proper convex function, A is a linear transformation
from R" to Rm, A* denotes its adjoint, the function f. A is the composition of f
and A, and, in addition, the range of A contains a point in the relative interior of
the effective domain of f.

(20) (max {fl,’’" ,fm})*(X*) min 2,f(x.*,) ([10, Thm. 16.5;),
x*= ,t;x i=

=>

where ,1, i= 1, ..., m, are convex real-alued functions and the function
max L, J} is defined by

(max {L, ,j})(x) max {L(x)," ,L(x)},

(21) g*(x*) f*(x*) + {c, x*),

where g(x) f(x c), f R" --, (-o, + is a closed proper convex function
and c R" is a given vector.

The equations (18)-(21) can be used in order to put the minimization problem
(17) in the standard nonlinear programming framework for a wide variety of
functions. As an illustration, consider the case where the function f to be minimized
by means of the c-subgradient method has the form

f(x) fl(x) + f(x) + + f,.(x).

By using (18) the optimization problem (17) can be written as

minimize x*
subject to

min f (x.*, + f(x) (x*, x) <= c.
x.*, x*

It can be easily seen that the above problem is equivalent to

subject to

minimize

Y r*(x*i, + f(x) (x/ x) < e,
i=1 i=1

This latter problem is in the standard nonlinear programming framework when-
ever the functions f belong to the class of simple functions mentioned earlier. As
another example consider the case where the function f has the form

f(x) max {f(Ax),-..
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where A1,..., A,, are linear transformations and f,... ,fro are real-valued
convex functions. By using (19), (20), the optimization problem (17) for this function
can be written as

subject to

min
x*=

2i>0

or equivalently,

subject to

minimize Ix*

min f?(y?)} + f(x) (x*, x) <
A y* x*

minimize Z /iAY
i=l

i=1 i=1

/i O, 2 /i-- 1.
i=1

Similarly, one can write the optimization problem (17) in standard form whenever
the function to be minimized involves simultaneously sums, compositions with
linear transformations and maxima of the basic simple functions referred to
earlier. Thus the e-subgradient method can be applied for the minimization of a
wide class of functions. This class of functions can be further enlarged by making
use of the following technique to eliminate some of the constraints of the mini-
mization problem.

Consider the convex programming problem

(22) minimize fo(x)

subject to

xeX, fi(x)<0= i= 1,...,m,

where fo,fl, "’", frn are real-valued convex functions and X is a closed convex
set. Let ff be an optimal solution of this problem and assume that there exists a
point 2eX such that f(2)< 0, i= 1, .-., m. Then there exist nonnegative
Lagrange multipliers, 21, "’, 2,,, corresponding to ff [25], [37] such that ff
minimizes

fo(X) "- Z ifi(X)
i=1

subject to x e X. Furthermore, it is known [15] that if k is a scalar such that

(23) k > max {/1, "’",
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then ff is an optimal solution to the problem

(24) minimize fo(x) + k max [0, f(x)]
i=1

subject to x e X.
Conversely, every optimal solution of problem (24) is an optimal solution of

problem (22) so that the two problems are equivalent and either one of the two
can be solved in place of the other. Concerning the selection of the scalar k, it can
be easily proved that if is a strict lower bound for the optimal value of problem
(22), then

k= max{f(Yc)-t f(2)- Iz}_f() _fm(C)

satisfies (23), where is a vector such that 2 X and f/() < O, 1, 2, m.
We shall close this section by showing explicitly the form of the auxiliary

minimization problem (17) for a specific problem.
Example. Consider the problem

minimize{ maX.>o (x,y)+ max [0,1/2x’Qx+ (c,x)]}
subject to x e X {x xi >= O, 1,... m}.

In the above problem, x, y are vectors in R", denotes the Euclidean norm
in R", Q is a positive definite matrix and c is a given vector. By defining

fl(x) max (x, y),
yi>--O

fz(x) (1/2)x’Qx + c, x),

0 ifxeX,
L(x) (xlX)=

o if xC X,

the problem is written

minimize f(x) f(x) + max [0, f2(x)] + f3(x).

The auxiliary optimization problem to be solved in Steps 2 and 3 of the -sub-
gradient method is

minimize Ix*

subject to f*(x*) + f(x) (x*, x) <= a%. By using (18) and (20) and the fact that
the conjugate of the zero function is the function

J 0 if x, 0,
(0)*(x*)

o ifx*

the above problem is equivalent to

(25) minimize x + ).x + x 2
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subject to

f(x) + /f2(x2) -1
I-- f3(x3)@ f(X)- (X "-1

I- 2X -J" X,X> < (-lkg,

We have

0<2<1.

0 ifx >0, x < 1,
f ((x()

c otherwise,

-(X2 c)’Q l(x c),j’(x) ._.1 *

’, 0 ifx* < 0
j3(X3)

m otherwise,

where the inequalities xT >= 0, x =< 0 are interpreted to be componentwise. Hence
problem (25) takes the form

minimize xT + 2x + x 2

subject to

(2/2)(x c)’Q-’(x c) + f(x) (x’ + 2x’. + x’, x5 <

0=<_x’, [Ix -<_, x_<_0, 0_<_2_<_,

a nonlinear program with linear and quadratic constraints. If (ff, ff, , ,) is an
optimal solution of the above problem then if* ]’ + ,ff + ff is an optimal
solution of the auxiliary optimization problem of Steps 2 and 3 of the e-subgradient
method.

4. Applications. In this section we attempt to delineate some classes of
problems for which the :-subgradient method compares favorably with existing
methods. It is well known that many optimization problems with nondifferentiable
cost functionals can be converted into nonlinear programming problems where all
functions involved are differentiable. For example consider the problem

(26) minimize max f,(x), f,,(x)

where the functions. are convex and differentiable. This problem is equivalent to
the problem

(27) minimize y

subject to
.(x) < y, i= 1,... m

where y is a scalar auxiliary variable. This latter problem can be solved by any of
the existing algorithms for differentiable functions such as, for instance, the e-

perturbation feasible direction method [25]. Also problem (26) can be solved by
using Dem’yanov’s minimax algorithm [21] which is closely related to the feasible
direction method mentioned above. It appears that either one ofthe two algorithms
is preferable to the ;-subgradient method for the solution of problem (26). This is
due to the considerable computation necessary in order to find the direction of
descent in the c-subgradient method. More generally, one can say that if the op-
timization problem can be converted to a nonlinear program where all functions
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involved are differentiable, standard methods should, in most cases, be preferable
over the e-subgradient method.

The e-subgradient method, however, should be considered advantageous when
applied to problems which cannot be converted to nonlinear programming
problems involving differentiable functions since it has the advantage of fast
convergence. One class of such problems is characterized by the presence of terms
of the form maxyy (x, y) either in the cost function or the constraints. The first
known algorithm involving functions of the form maxyy (x, y) is the one of
Pshenichnyi [5] who considered the problem

(28) minimize max (x, y)
yeY

subject to

where Y is a convex compact set and A is a given hyperplane. When the e-sub-
gradient method is applied to problem (26), the direction of descent is determined
by solving the auxiliary optimization problem

subject to

minimize x + x
x’eY, max(x,y)- (x,x) <__ e,

xj e A -,
where A +/- is the one-dimensional subspace orthogonal to the hyperplane A. This is
exactly the same optimization problem by means of which the direction of descent
is determined in Pshenichnyi’s method and thus the e-subgradient method and
Pshenichnyi’s method are identical when applied to problem (28). The e-sub-
gradient method, however, can be applied to much more general problems
involving terms of the form maxy x, y). One such example was given in the
previous section. For such problems the e-subgradient method compares favorably
with, for example, Dem’yanov’s minimax algorithm which involves comparable
computations for finding the direction of descent but does not converge as fast as
the e-subgradient method.

The e-subgradient method can also be used effectively for problems where some
of the constraint sets are not given explicitly but instead can be specified from their
support function. For such problems methods of feasible directions, for example,
are not applicable. As an example, consider the following optimal control problem
where some of the constraint sets are characterized as reachable sets of a dif-
ferential system.

Consider the linear system

(29) (t) A(t)x(t) + B(t)u(t)

over the time interval [to, T] which is controllable from to to T and where A(t) is a
Lebesgue integrable n x n matrix, and B(t) is a continuous n x m matrix function
on [to, T], The m-vector-valued function u(t) is assumed to be measurable in
[to, T] and such that

(30) u(t) e U almost everywhere in [to, T],
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where U is a nonempty compact subset of R". Assume further that the initial con-
dition is constrained to lie in X0, a convex compact subset of

(31) X(to) Xo.

(32)

Consider the problem of minimizing

Jx(to), u] Fx(T)3,

where F is a closed proper convex function in R" subject to the constraints (29)-(31).
Then under our assumptions, for every pair (X(to), u) satisfying (30) and (31),

there exists a unique absolutely continuous solution of (29). The set X(T) of
reachable states x(T) at time T corresponding to the constraints (30), (31) is con-
vex and compact by a theorem of Neustadt 30, and its support function is given
by ([31], [32])

T

aEx*lX(T)] aEO’(to, T)x*lXo] + aEB’(t)O’(t, T)x*l U] dt,

where (I)(t, r) is the unique absolutely continuous transition matrix corresponding
to the matrix A(t).

The problem can now be recast as one of minimizing the extended real-valued
convex function

fix(T)] FIx(T)] + 6[x(T)IX(T)]

and the e-subgradient method can be used for its solution. The direction of descent
is determined by solving the optimization problem

subject to

minimize x]’ + x

F*(x) + axlX(T)] + Fx(T)] (x + x,x(T)> < .
For the problem that we consider there is some difficulty associated with the

one-dimensional line search in Step 4 of the e-subgradient method since it is not
easy to check feasibility of any given terminal state. This difficulty can be circum-
vented by finding a point along the direction of descent such that the value of the
function F has decreased by e or a little less. It can be easily seen that such a point
is feasible and that the algorithm will still be convergent.

5. Conclusions. The :-subgradient method is a descent algorithm which can
solve efficiently some convex minimization problems with nondifferentiable cost
functionals which cannot be solved by standard nonlinear programming methods.
It converges fast under very general assumptions but requires the solution of an
auxiliary optimization problem in order to determine the direction of descent at
each iteration. Presently, we do not have any computational experience with the
method. It is hoped that such computational experience will be gained in the near
future.
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NECESSARY CONDITIONS FOR MULTIPLE CONSTRAINT
OPTIMIZATION PROBLEMS*

M. L. J. HAUTUS’

Abstract. In this paper a necessary condition is given for a real-valued function f to attain a

maximum at a point b subject to the condition x S, where S is given as an intersection ofa finite number
of sets in an n-dimensional Euclidean space. It is shown that well-known necessary conditions in
mathematical programming, like the Lagrange multipliers theorem and results of F. John, Mangasarian
and Fromovitz, are immediate consequences of this general condition. The result is also used to derive a
general necessary condition for discrete-time optimal control problems, which contains the results of
Halkin (discrete maximum principle), Jordan and Polak, and Canon, Cullum and Polak as special cases.
As a final application of the necessary condition a simple proof of the Pontryagin maximum principle
for continuous-time control problems is given.

Introduction. In optimization problems the constraint set S often is an
intersection of a finite number of sets $1, "", Sk, each of which is of a fairly simple
nature, whereas the intersection is very complicated. It is therefore desirable in
those cases to give necessary conditions for optimality in terms of $1,"’, Sk.

In this paper the concept of derived cone will be used to express such a
necessary condition. A derived cone is a kind of first order approximation of the
constraint set in the neighborhood of an optimal point. It is a simple matter to give
a necessary condition for optimality if a derived cone of the set S is given. We are,
however, interested in the situation, where only derived cones for the sets S 1, , Sk
are available. This will often be the case if the sets S 1, "’", Sk have a simple character
and S is of a complicated nature.

In we introduce some notation, we give the definition of a derived cone
and we state our main result, Theorem 1.5. This result will be proved in 2. In order
to utilize the theorem, one must know derived cones for certain sets. For convex
sets and sets given by a single equality or inequality relation, such a derived cone is
easily found. This will be shown in 3. In the same section we introduce substitution
rules, which facilitate the use of the main theorem, in particular to situations where
constraint sets occur given by multiple equalities and inequalities. In 4 the theory
is applied to discrete-time optimal control problems. A general type of necessary
condition is shown to be an easy consequence of Theorem 1.5. This necessary
condition in its turn contains well-known necessary conditions (discrete maximum
principle [4, [3, 4.31, conditions by Jordan and Polak [10], Canon, Cullum and
Polak [2]) as special cases. In 5 we give a simple proof of Pontryagin’s maximum
principle with a general type of initial and final constraint. In Appendix B a
generalization of Theorem 1.5 is given.

1. Statement of the main result. We introduce some notations. The n-dimen-
sional Euclidean space of column (row) vectors is denoted R" (R,). The set of
vectors z Rk, satisfying z 0, 1, ..., k (notation z >= 0), will be denoted by
Rk+. The interior of a set S is denoted int S, the relative interior of a convex set S
by ri S. Various properties of the relative interior given in 18, pp. 43-50] will be

* Received by the editors May 31, 1972.
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used without further mentioning. The transpose of a vector b R" is denoted by b’
(hence b’eR,). If bl,..., bk are vectors in R", then (b 1;’." bk) "= (b’l,’", b,)’.
Note that this is an element of R"k. Furthermore, if S, T

___
R", b e R", and A is a

linear map, we define S + T’= {x + y]x eS, ye T}, S + b "= {x +_ blxe S},
AS "= {Ax[x S}. If S

_
R", the closed convex cone generated by S is denoted by

cc(S). Also, we write cc(yl,..., Yk) for cc({yl,-.., Yk}), where Y 1,’", Yk are
vectors in R". If S c__ R", then S’= {r/e R,[rlx <= 0 for all x e S} is called the
polar cone of S. Obviously, So is a closed convex cone in R,. If C1, "", Ck are
convex closed cones, then

(.) (C + + C) C C.
If, in addition, (ri C1) f"l f"l (ri C) 4= 3, then (see [18, p. 146)

(1.2) (C r) r ck)0 ct --i- + ck.
We say that f’S R" (where S

___
R") is cg, (or a cg, map) in S iff is contin-

uously differentiable in S. The function f will be called cg, at a point/ R" iffis
cg, in a neighborhood of b. The notation U (sometimes provided with an index
f, U2) will be used for a (usually unspecified) neighborhood of the origin in
some space R". A statement like" "There exists a cg, mapf’ R 1’’ should be
read" "There exists a neighborhood of the origin and a cg, map f’4: R 1’’.
We often will consider q’ maps defined on a set of the form f3 R. Differ-
entiability and derivatives on the boundary of this set (particularly in 0) are to be
understood in the obvious sense.

We are now in the position to define the concept derived cone.
DEFINITION 1.3. If b S

_
R", a closed convex cone C is called a derived cone

of S at b if for any collection of vectors P l, "’", Pk in ri C, there exists a cg, map
"#" R+ S satisfying

(1.4) () b -t- 2 "ciPi + o(’c), "c -- O.
i=1

We will say that is a map corresponding to the vectors pl, "’", Pk. Note that
the linearization (r)"= b + Y’,= TiPi maps n+ onto b + cc (P l, "’", Pk). In that
sense a derived cone is a linearization of the set S in the neighborhood of b.

The following theorem is the main result of this paper.
THEOREM 1.5. Let $1, ..., S be sets in R", b S "= $1 0 VI S and let C

be a derived cone of Si at b for 1,..., k. If a function f’R" --. R is cg, at b
and iff attains a maximum at b subject to the condition x S (that is, f(x) <= f(b)
jbr all x S), then there exist p > O, i e C, 1, k, such that

(1.6) (P, 01,’", Ok)4 0,

(1.7) pVf(b) 1 + + Ok.
Note that we consider Vf(b) a row vector. The condition (1.6) will be called

the nontriviality condition. The vectors 1,"’, 0k are called polar vectors and
formula (1.7) will be referred to as the polar rule.

2. Proof of Theorem 1.5. The major step in the proof is the following lemma,
the proof of which is postponed to Appendix A.
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LFMMA 2.1. Let S a, $2 be sets in R", b S CI S2 and Ca, C2 derived cones of
S a, $2 respectively, at b. If C and C2 are not separated (that is, if there does not exist
a nonzero vector R, such that bx 0 <__ Oy for all x C 1, Y C2), then Ca f’l C2
is a derived cone of $1 CI $2 at b.

DEFINITION 2.2. A system (Ca,’", Ck) of closed convex cones is called
separated if there exist vectors 1, "", ’k satisfying ,ieC, i= 1, ..., k,

+ + 0, (,, ..., ) 0.
It is easily seen that this definition coincides with the well-known concept of

separation in the case k 2.
We have the following extension of Lemma 2.1.
LEMMA 2.3. If (Ca,"’, Ck) is a nonseparated system of derived cones of

the sets S a,..., S at b, then ri Ca 0 ri Ck :/: and Ca CI CI C is a
derived cone of S CI (’l Sk.

Proof. We use induction. Since (Ca,’-’, Ck_ a) is not separated we have"
riC1 CI.-. ClriCk_a 4- and <2"= Ca CI-.. CICk_a is a derived cone of

"= S CI CI Sk_ 1. Also (2 and Ck are not separated, since 2 implies
O + + ’k-a with ’i e C, 1,..-, k (see (1.2)). It follows that

ri t2 CI ri Ck ri C -.. CI ri C # and by Lemma 2.1, CI C C CI...
CI Ckisaderivedconeoff-)Sk=S1CI.-.CISk. Q.E.D.

LFMMA 2.4. If C is a derived cone of S at b and i[f" R" R is c, at b and
attains a maximum at b subject to the condition x S, then Vf(b)e C.

Proof. If p e ri C, there exists a function ’[0, e) --, S for some e > 0, satisfying
(z) b + pz + o(), 0. Then f(b) >=/(()) f(b) + Vf(b)pr + o(), --, O,
implies Vf(b)p <= O. By the continuity of the inner product we have Vf(b)p <= 0 for
all p e C, hence Vf(b) e C. Q.E.D.

Proof of Theorem 1.5. If (Ca,’", Ck) is not separated, then Ca CI
is a derived cone of S CI Sk and ri C1 ["1 ri Ck -# . By (1.2) and
Lemma 2.4 we have Vf(b)e(C1 ["1 Ck)= Cl + + C2, say Vf(b)

’a + + 0k, with ’ie C). If (Ca,’", Ck) is separated, then there exist
vectors ’i e Ci, not all zero, such that 1 + + ’k 0. Then (1.7) is satisfied
with p 0. Q.E.D.

Whenever one of the constraint sets Si is itself given as an intersection Si
CI CI Sir, with derived cones C1, "., Cr, then the polar vector Oi correspond-
ing to the constraint set Si is to be replaced with qia + + qoir in the polar rule
and with qOil, "’", (Pr in the nontriviality condition. Here (pije C, j 1,..., r.
We call this operation a substitution rule. The validity of the substitution rule is
immediately clear from Theorem 1.5. We give another argument, however, which
is also applicable in more general situations" If Cia,"", Cr are not separated,
then Cil CI CI Cir is a derived cone of Si and riCia CI riCir :/:
Hence Oie(Ca CI CI Cr) Ca + + Cr. If Cia,’", Cr are separated,
there exist (Pa, "’", qir, with (Pij e C, qia + + q)r 0. Then we may set p
and every other polar vector zero, and the nontriviality condition and the polar
rule will be satisfied.

3. Derived cones of some simple sets and applications to mathematical
programming. In order to apply Theorem 1.5, we have to find derived cones for
simple sets. We give three examples of sets where derived cones are easily given.
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LEMMA 3.1. (i) If S "= {x R"lg(x) _-< 0}, where g’R" R is qY’ at b, then
C R" is a derived cone of S at b if g(b) < 0 and C {p Vg(b)p =< 0} is a derived
cone if g(b) 0, Vg(b) - 0.

The corresponding polar cones are {0} and {/tVg(b)l/t => 0} respectively. In either
case, {Vg(b)[ 0, g(b) 0} is the polar of a derived cone.

(ii) U S’= {xR"r(x)= 0}, where r’R"R is ’ at b, r(b)=0 and
Vr(b) 0, then C {piVr(b)p 0} is a derived cone. The corresponding polar cone
is {2Vr(b) 2 6 R}.

(iii). [ S is convex, b S, then C cc(S b) is a derived cone of S at b.
Proof (i) If g(b)< 0, then the map ()"= b + ripi corresponds to

p,..., p, since b eint S. If g(b) 0, and p,..., pe ri C, that is Vg(b)p < 0,
then again () "= b + rPi corresponds to pa, p, since g((r)) riVg(b)pi
+ o(r) N 0 for sufficiently small r e R.

(ii) Without loss of generality we assume b 0. Consider the function
h(p,o) "= r + o(Vr(0))’) for pR", o eR 1. Since h(0,0)= 0, (h/o)(0,0)

Vr(0)[] 2 0, there exists (by the implicit function theorem) a ’ function
o ) such that r(p + O(p)(Vr(0))’) 0 for p e . Furthermore, (h/p)(O, O)p

Vr(0)p 0 and hence, Vo(0)p 0 for p e C. Therefore the map q defined by

corresponds to p, ..., p.
(iii) Again we assume b 0. Furthermore, it is no loss of generality to assume

that dim S n, so that ri S int S. If p e ri cc (S), then there exists e > 0, such that
ep e S. Otherwise, the ray {2p12 0} would be separated from S and hence from
cc(S) in contradiction to p e ricc(S)= int cc(S). It follows, that if p,.-., p
are in ricc (S), then cc (p, p) S for some 2 Therefore () iPi
is a map corresponding to p,..., p. Q.E.D.

Lemma 3.1 gives rise to some other substitution rules" (i) If one of the con-
straint sets S in Theorem 1.5 is given by S "= {x e R"lg(x) N 0} with g’R" R,

’ at b, then we may replace the corresponding polar vector in the polar rule by
gVg(b), with the conditions g 0, g(b) 0, and in the nontriviality condition
by .

Indeed, if g(b) < 0, then {0} is the polar cone of a derived cone and we must
have O 0. If g(b) 0, Vg(b) 0, then the polar vectors are of the form 0

Vg(b), according to Lemma 3.1.
Finally, if g(b) 0, Vg(b) 0, then we may simply set g 1, and p and the

remaining polar vectors equal to zero. Then the polar rule is trivially satisfied.
Similarly we have"

(ii) If one of the constraint sets Si is equal to {xeR"r(x)= 0}, where
r’R" R is ’ at b, then we may replace 0 with 2Vr(b) in the polar rule and with
2 in the nontriviality condition.

DEFINITION 3.2. A constraint set S is called of the type EI if it is of the form

(3.3) S {x R"lri(x O, 1, ..., 1,gj(x) 0,j 1,..., m},
where r’R" R, gj’R" R are ’. If 0 we say that S is of the type I, if
m 0, S is called of the type E.

A set of the type EI is an intersection of sets of the types given in (i) and (ii).
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Therefore, combining the substitution rules of this section and 2, we obtain the
El-substitution rule" If some S is of the form (3.3), then we may replace the corre-
sponding polar vector Ov in the polar rule by

(3.4) )iVri(b) -+- /jVgj(b)
with 2i real, tj >= 0,/jgj(b) 0, 1, .-., l’j 1, ..., m, and in the nontriviality
condition by 21, ".’, 21, tl, ...,

A general type of mathematical programming problem is to determine the
maximum of a function f(x) subject to x e S, where S is of the type EI. Theorem 1.5
and the El-substitution rule yield immediately the following necessary condition.

THEOREM 3.5 (Mangasarian and Fromovitz [1.3]). Let f :R" R be ’ at b
and maximal at b subject to the condition x S, where S is given by (3.3). Then there
exist numbers p >= O, 2ie R 1, 1, 1, lj > O, j 1,... m, with jgj(b) 0,
such that

(3.6) (P,/, "’", /l, , "’", /-t,n) - 0,

(3.7) pVf(b) 2 )iVri(b) + Z ]2jVgj(b).

In [12, p. 168] the problem is considered of maximizing f(x) subject to
x e Sx f-I S2, where S is of the type EI and S2 is convex. Using Lemma 3.1 (iii) and
the EI-substitution rule we find immediately from Theorem 1.5, the following.

THEOREM 3.8. Letf" R" R be cg, at b and maximal at b subject to x S f"l $2,
where SI is given by (3.3) and $2 is convex. Then there exist numbers p >= O, 2 R,
tj >= 0 with #jgj(b) 0, satisfying (3.6) and (pV/C(b) 2iVri(b) #jVgi(b))(x b)
<= 0 for all x $2.

Proof. Note that r/ (cc ($2 b)) implies r/(x b) < 0 for all x $2. Q.E.D.
If in Theorem 3.5, m 0, then we have the Lagrange multiplier theorem.

If 0, the result is F. John’s necessary condition.

4. Discrete-time optimal control problems. We give a parameter-free formula-
tion of the discrete-time optimal control problem.

Problem 4.1. Given a positive integer N, sets X
_

R", k 0,.-., N, set-
valued maps Vk(. ), k 0, N 1, (that is, V(x)

_
R for every x R") and a

function h’R" ---, R , determine a sequence x, k 0,... N, such that h(xN) is
maximized subject to the constraints x X, k 0,..., N, xk+l V(x),
k--O,...,N- 1.

In order to give necessary conditions for the solution of Problem 4.1 we need
an extension of the concept derived cone.

DEFINITION 4.2. If V(. is a set-valued function for x S
_
R"1, such that

V(x) R"2, x S, and if s is a selection of V, that is, s(x) V(x) for x S, then a
set-valued function D(. is called a family of derived cones of V at b S (with respect
to the selection s), if D(x) is a closed convex cone for x S and if for every collection
p,..., p
satisfying (x, 77) V(x) and

(4.3) (x, 77) s(x) -1- 77iPi "-t- 0(77, X b), 77 -, 0, x --, b,
i=1
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where o(z, x b), z 0, x -+ b, stands for a function of the form (1111 + IIx bll)
e(r, x b), with e(r, y) 0, r 0, y 0.

We say that { is a family of maps corresponding to P l, "’", Pk. It follows from
Definition 4.2, that s(x) is (g’ if there exists a family of derived cones.

The following lemma will be used in the proof of Theorem 4.5 (i and ii) and in
the next section, (iii).

LEMMA 4.4. (i) If b S G R"’ and C is a derived cone of Si at bi, 1, k,
then C x x C is a derived cone of S x x Sk at (b;-.. bk). The
corresponding polar cone is Cl x x C.

(ii) If b S c_ R", C is a derived cone of S at b, V is a set-valued function with
selection s and a family of derived cones D at b, then

E "= {(p; q)lP e C, q Vs(b)p D(b)}
is a derived cone of T "= {(x; y)lx e S, y e V(x)} at (b; s(b)). The polar cone is given
by

E {(q 0Vs(b), 0)lq e C, 0 e D(b)}
(iii) If b, S, C, V, s, and D are as in (ii), then F "= D(b) + Vs(b)C is a derived

cone of U ,,s V(x) at b.
Here Vs(b) denotes the functional matrix (&i/c3xj) at the point b.
Proof (i) If p (Pa;’’’;Pkj), J 1,...,m, are vectors in ri(C x... x

riC1 x x riCk and {i corresponds to Pil,’",Pi,, for i= 1,...,k, then
(r) ( I(Z); k(r)) corresponds to pl, p,,.

(ii) Let (Pi;q) be in ri E for i= 1,..., k. Then p, ..-, Pk ri C, r "---qi

Vs(b)pi ri D(b). If (r) corresponds to p, Pk and r/(x, z) is a family of maps
corresponding to r, rk, then (z) (((r); r/((z), z)) is a map corresponding to
(Pl q), "’", (Pk"

(iii) Ifp, ..., Pk are in ri (D(b) + Vs(b)C), say Pi ri + Vs(b)q with rie ri D(b),
q s ri C, then there exists a map (z) corresponding to q l, ..., qk and a family
r/(x, r)corresponding to r, ..., rk. It is easily seen that (()"= r/((z), )corre-
sponds top,...,pk. Q.E.D.

The following theorem gives general necessary conditions for the solution
of Problem 4.1.

THEOREM 4.5. Let k be a solution of Problem 4.1. Let sk(x) be a selection of
Vk(x), satisfying k + Sk(k) for k O, N 1, and Dk(x) a family of derived
cones of V(x) at k. Finally, let Ck be a derived cone of Xk. Then there exist a
number p >= 0 and row vectors Ok, q)k, k O, ..., N, satisfying

(4.6) (P,’o,’", 0, qo,’", o) 4= 0,

%eC, k 0,...,N,
0(4.7) //k+ Dk(xk), k 0,..., N 1,

(4.8) 0k k+lVSk(k) q)k, k 0,..., N 1,

(4.9) o 0, N pVh(ffN)-

Proof. We introduce the (N + 1) n-dimensional vector x "= (Xo; xv).
The optimal control problem is to maximize f(x) h(xu) subject to the constraints
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xeTo I"l I"1TN,whereT "= {xlxkeXk,xk+ 1 V(xk)},k O, ..., N 1, and
TN {x xN Xu}. Hence,

Tk=R" x x T x x

where T "= {(x;y)lxeXk, ye Vk(X)}, k 0, N 1, and Tu Xu. In order
to apply Theorem 1.5, we compute derived cones of T at "= (0; "u).
According to Lemma 4.4 (ii), E is a derived cone of T at 2k, where

Ek {(P q)IP e Ck, q VSk(Xk)p e Dk(Xk)}, ],; 0,’’’, N 1,

and Es Cs. The polar cones are"

EgO {(q VSk(k), ’)]q Ck, Dk0(k)I, k 0,..., N 1,

and Es CON. Because of Lemma 4.4 (i),

E R x x J’k X X R

is a derived cone of T at and the corresponding polar cone is E {0 x... {0}.
Now we are in the position to apply Theorem 1.5. We find that there exist

# > 0, k e E, k 0, N, not all zero, such that

(4.10) pVf(X) tp0 + + tpv.

We have

7f(,) (0, ..., 0,

(Dk (0, O, (Pk k +lVSk(k), I]lk +1, O, 0), k O, ..., N 1,

(N (0, 0, (RN)’
0with qk C, k+ Dk(xk). Now (4.10) implies (4.7), (4.8), (4.9). Q.E.D.

Remark 4.11. The nontriviality condition (4.6) may be replaced with
(p, , pN) 4= 0, since it follows from (4.8) and (4.9) that (p, 1, "’", u) 0
implies (p, 0, "", N, Po, "’", qu) 0. We have given the seemingly weaker
nontriviality condition (4.6) in order to make the application of the substitution
rule easier. Indeed, very often the constraint sets Xk are of the type El, E or I.
In those cases the El-substitution rule for the polar vectors cpk is easily seen to
apply.

If it is known that Vh(ffu)q C, we may replace the nontriviality condition
with (1, "’",) 0 (see (4.9)).

Remark 4.12. We could of course have reduced Problem 4.1 to a problem
without state constraints by defining ’k(X) Vk(X X +1, k 0, ..., N 1.
However, it might be difficult to find a family of derived cones for Vk.

Usually the sets Vk(X) in (4.1) are given in parameter form, that is Vk(X)
fk(X, Uk)"= {fk(X, U)[U Uk}, where U is a set and fk’R" x Uk R". Then

selections are easily given. For example, for every Uo Uk, s(x)"= fk(X, UO) is a
selection of Vk(X). We give a parameter formulation of the discrete-time control
problem.

Problem 4.13. Given a positive integer N, sets Xk R", k O, ..., N,
set U, k 0,..., N- 1, functions fk’R X U ---* R", such that fk(’, U) is ’
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for every u e Uk, and a cg, function h’R" --+ R determine sequences uk k 0,...
N 1" x, k 0,..., N, such that h(Xu) is maximal subject to the constraints

(4.14) x+ f(x, uk), k 0, N 1,

(4.15) ueUk, k=0,.-.,N- 1,

(4.16) xkeXk, k 0,...,N.

Necessary conditions for the solution of this problem can be derived from
Theorem 4.5 if one knows derived cones Ck for the sets X and families of derived
cones D(x) for the sets Vk(x) := fk(x, U). In Theorem 4.18 and in Theorem 4.25
we postulate the existence of Ck (see also Remark 4.11, but we construct families
D(x). First, we give a lemma.

LEMMA 4.17. lff :R" x U --+ R" and f(., u) is cg, for u e U, V(x) := f(x, U) is
convex for every x e R", and s(x) := f(x, uo) for some Uo e U, then O(x) := cc (V(x)

s(x)) is a family of derived cones of V(x) with respect to s(x) at each point b
Proof. Let P l, "’", Pk e ri D(b). Then there exist positive numbers 21 ..-,

such that pie 2i(V(b)- s(b)), say Pi 2i(f(b, vi)- s(b)) with vie U (compare
Lemma 3.1 (iii)). It follows that

(x, "r)"= s(x) + 2i’ri(f(x )i)- S(X,))

is a family of maps corresponding to P l, "’", Pk. Indeed, since V(x) is convex and
f(x, vi) e V(x), s(x) e V(x) we have that (x, 7) e V(x) for 0 < 2i < 1, 1, k.
Furthermore, is ’ and

(x, 7) s(x) + pir + 0(7, x b), O, x --+ b. Q.E.D.

THEOREM 4.18 (Discrete maximum principle). In Problem 4.13 let V(x)
f(x, Uk) be convex Jbr every x e R", k O, N 1. Let k, be a solution

of the problem and Ck a derived cone of X at k, k O, N. Then there exist a

number p >= O, and row vectors ’k, qk, k O, N, satisfying

(4.19) ’ 0k+lVxJ(k, k)- Pk, k 0,..., N 1,

qe C,
g’k + f(Xk, ilk) max ’k +1L(Xk, v),

veUk

(p,o,’", ,o,", ) o.

(4.20)

(4.21)

(4.22)

(4.23)

Proof. This result follows from Lemma 4.17 and Theorem 4.5, where we can
take sk(x) f(x, ilk). Note that /’k+ e {cc (Vk(k) Sk(k))} implies (4.21). Q.E.D.

Theorem 4.18 was given in [4] by Halkin for the case where X0, XN are of the
type E and Xk R" for k 1, ..., N 1. In [3, (4.2)] the more general situation is
treated where Xo, XN are of the type E1 and Xk of the type I for k 1, -., N 1.

Remark 4.24. In the case where h(x) := -xl (where xl is the first coordinate
of x) and fk(x, u) does not depend on x l, the convexity condition can be weakened
as observed in [9]. Indeed, introducing the vector e := (1, 0, --., 0)’, one can show
that the necessary condition given in Theorem 4.18 remains valid if only the set



MULTIPLE CONSTRAINT OPTIMIZATION PROBLEMS 661

Wk(X) "= {fk(X,U) + UoelUe U, Uo >= 0} is convex. (In this case, the set Vk(x)
fk(x, U) is called directionally convex.) This is most easily seen by making the

following substitutions in control problem(4.13)’U "= {u (Uo; u)]u0 => 0,u e U},
fk(x, u) "= fk(x, u) + uoe, where u (Uo u), so that fk’R" U R", and observing
that uk "= (0; k), ffk is an optimal control of Problem 4.13 with U, f replaced by
U, f (see also 7, III.l]). The situation mentioned above often occurs if Problem
4.13 is obtained by adding one state coordinate in-an optimal control problem

N-1with a sum of the form k= fok(Xk, Uk) as performance index.
As a second application of Theorem 4.5 we mention the following result.
THEOREM 4.25. Let k, k 0,..., N 1, k, k 0,..., N, be a solution of

Problem 4.13. Suppose that U R and fk" R" x Uk R" is a ’ map. If E is a
derived cone of U at ffl and C is a derived cone of Xk at k, then there exist p >__ O,
Ok, tPk e R,, k O, N, such that

(4.26)

(4.27)

(4.28)

(4.29)

(4.30)

The proof of this result is an immediate application of Theorem 4.5 and the
following lemma.

LEMMA 4.31. If Uo U
_

R’, E is a derived cone of U at Uo, f R" x R R"
is cg,, then D(x) := Vxf(X, uo)E is a family of derived cones of V(x) := f(x, U) at

every b R" with respect to the selection s(x) f(x, Uo).
Proof. Let P l, "", Pk be in riD(b), say Pi Vxf(b, uo)vi with viriE.

Let () be a map corresponding to v 1,"-, v,,. Then (x, z):= f(x, co(z)) is a
family of maps corresponding to P1,"’, Pk. Q.E.D.

Theorem 4.25 was given in a less general form in a number of papers. In all
cases the state constraint sets were of the type E1 in a more or less restricted form.
In [3, 4.1], [2], the situation was considered where the sets U are of abstract
character and necessary conditions, in particular of the form (4.28), were also
expressed in terms of approximating cones. In [2] it was assumed that the cone
(the radial cone) was a linearization of the first kind. This condition is rather
restrictive, since it excludes the case where Uk is given by nonlinear equalities.
In [3] a less restrictive situation is considered. However, the proof is not complete,
since a result similar to Lemma 4.4(i) is used without proof and unlike Lemma
4.4(i) the result is not obvious, because of an independence condition occurring in
the definition of the approximating cone.

5. Continuous-time optimal control problems. We consider the following
continuous-time optimal control problem.

Problem 5.1. Given a number T > 0, a set U
_

R", a continuous function

f: R U --. Rn, such that f(., u) is cg, for every u 6 U, a c, function h:R" R
and sets X0, X1 in R", determine a point be Xo and a piecewise continuous
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function u’[0, T] U such that the solution x of the differential equation

(5.2) (t) f(x(t), u(t)),

with initial condition x(0) b, exists on [0, T], satisfies x(T) X1 and such that
h(x(T)) is maximal.

In Appendix B we discuss optimal control problems with measurable instead
of piecewise continuous controls.

The results of 2, 3 are not immediately applicable, since the control function
is not an element of a finite-dimensional vector space. However, we can restate the
problem, using the following notations" Let f "= {u]u’[0, T]--, U, piecewise
continuous} be the set of admissible controls and x,(.,b) the solution of (5.2)
corresponding to the control u f and b R". For every b R" we define

(5.3) W(b) "= {x,(T, b)lu f and x,(t, b) exists for 0 < < T},
(5.4) W’= O W(b).

beXo

W is called the reachable set. With these notations Problem 5.1 is equivalent to
the following problem.

Problem 5.5. Given T, U,f, h, Xo, X as in (5.1), determine max h(x) subject
to the condition x W X .

Thus we have a finite-dimensional optimization problem with two constraint
sets. We can apply Theorem 1.5 if we are able to find derived cones for W and X.
We postulate a derived cone of X (and so we do for Xo) and we construct a
derived cone of W. For that aim, we define the perturbation cone already present
in [16, Chap. II].

Let b R", fi f and let 2(t) xa(t, b) exist on [0, T]. Then we define

(5.6) A(t) Vxf(2,(t), fi(t)).

Furthermore, for every s, t--- (t, s) is defined to be the solution of the matrix
differential equation I7(t)= A(t)Y(t), >= s, satisfying the initial condition
Y(s) I. First, we consider an elementary perturbation rc of fi, given by rc := (to, v),
where to e (0, T) is a point of continuity of fi and v e U. Then, for sufficiently small
: > 0, the control function

v, o--: < t__< o
(5.7) u(t, ) "=

fi(t) elsewhere in [0, T],

will be in f and will yield a trajectory xu=(t) :x(t, ), which exists on [0, T].
This is a result of the theory of ordinary differential equations. As in [10], [11,
Chap. 4] it is easily seen that

(5.8) x(r, e)= 2(r) + ep + o(), - O,

where

(5.9) Pc := (T, to){f(2(to), v) f(2c(to), fi(to))}.

This estimate is locally uniform with respect to b, that is, uniform with respect to
b for b in a sufficiently small neighborhood of a fixed value/.
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A combined perturbation is a system.n "= (71, 7k) where ni (ti, Vi),
with vi e U and where the numbers ti e (0, T) are distinct and such that fi is con-
tinuous at ti. The corresponding perturbed control is defined by

(5.10) u(t, )
ft(t)

ti- ’f’i < ti, i= 1,..., k,

elsewhere on [0, T],

where (1, "’", ak). For small => 0, the control u is well-defined in f and the
corresponding trajectory x exists on [0, T] and satisfies

(5.11) x=(t, )= 2(T) + zips, + o(), O.
i=1

Again this result is locally uniform with respect to b. Furthermore, x(T, ) is a
(’ function of b and , and x(T, )e W(b) for small _>_ 0.

DEFINITION 5.12. The perturbation cone of Problem 5.1 corresponding to the
control fi e f and b e R" is denoted Pa(b) and defined as the closed convex cone
generated by the vectors p.

LEMMA 5.13. Let gt e f, De R" be given such that xa(t, [) exists on [0, T].
Then Pa(b) is a family of derived cones of W(b) at D, with respect to the selection
xa( T, b).

Proof. Let q l, ..., q e ri Pa(). Then we may assume that the vectors qi are
of the form

(5.14)
j=l

with ij > 0, nj (tj, v), the numbers tje (0, T) distinct and vj e U.
To see this, we remark that, according to Lemma A.1, there exist vectors

q’,..., q* eri Pa(b) such that dimcc(q’,..-, q*)= dimPa(b) and q,..., q
e ri cc (q, ..., q). It follows that the vectors q are of the form

q
j=l

where (t, v), j > 0. Changing, if necessary, the numbers t slightly, we
obtain numbers j, which are distinct and such that, with ffj (j, v) and

El pa()q =p, we still have , ..., qe ri and q, ..., qe ricc(O, ...,
). Hence, there exist 2 > O, s 1, ..., k;i 1, ..., r, such that

q siOi Z sii
i= i,j

which is a sum of the form (5.14) written as a double sum.
We define ’( + ) x ( R) R" by

(b, z) x,=(.,)(T, b),

where n "= (n, ..-, 7Cl) 8: := (81r’ "’"’ S/r) and ej Y’,i= J’ci’J 1,..., I.
It follows from (5.11) that (b, r) xa(T, b) + qi’ci -+- O(’C, b b), z --. O, b --. [,
so that (b, r) is a family of maps corresponding to q, ..., q. Q.E.D.
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Now we state and prove a version of Pontryagin’s maximum principle with
a general type of initial and final state constraint.

THEOREM 5.15 (Maximum principle). Let b, fi be a solution of Problem 5.1
and let (t) "= x(t, b) be the corresponding trajectory. If Eo is a derived cone of
Xo at b (0) and E is a derived cone of X at (T), then there exist a function
’0, T] R,, a vector q R,, and a number p >= 0 satisfying

(5.16) (p, 0(T), p) 4: 0,

(5.17) (t) O(t)Vxf(ff(t), O(t)),

(5.18) O(t)f(ff(t), 0(t)) max O(t)f(ff(t), v)
vU

for all (0, T) at which 0 is continuous,

(5.19) q(0) E, q E,
(5.20) (T) pVh(X(T))- q.

Proof. It follows from Lemma 4.4(iii) and Lemma 5.12, that P(b)+
(T, b)Eo is a derived cone of W at if(T). According to a well-known result in the
theory of ordinary differential equations, we have Vx(T, b) (T, 0), where
is as defined before, with b b, i u. Applying Theorem 1.5 to Problem 5.5,
we find that there exist a number p >= 0 and vectors q, q2 in R, such that

(P, q,, q2): 0, pVh ff r q + (D 2 (491 Ex
o2 (P() + (T, 0)E) po() ((T, 0)Eo) (see (1.1)).

We define q’[0, T] R, to be the solution of (5.17) with (T)= q2, hence
(t) q2(T, t).

From q2 ((T, 0)Eo) it follows that q2(T, 0)p =< 0 for all pc Eo, hence
(0) q2(T, 0) E. Furthermore, it follows from q2 Pa(b) that q2P _-< 0 for
all , that is, (to){f((to),V -f((to),fi(t)) <= 0 for all v U and all toe(0, T)
at which fi is continuous. This yields (5.18). Finally we define q "= p. Q.E.D.

Remark 5.21. It is easily seen that the nontriviality condition can be replaced
with (p, (0)) 4:0 or (p, (T)) 4: 0. If it is known that Vh(ff(T))q E, then we may
even write q(T)g: 0 or (0)4: 0. Again we have written condition (5.16) in
Theorem 5.15 in order to facilitate the use of the substitution rules. Usually, the
sets X0 and X1 are of the type E. In [171 the situation is considered where X0 and

X are of the type El.
Remark 5.22. Naturally, other types of optimal control problems, for example,

problems with integral criteria, integral constraints, nonautonomous systems,
equations with parameters (that have to be chosen in an optimal way), coupled
initial and final constraints and optimization criteria depending on initial and final
value of x(t), can be transformed into (5.1) by addition of state variables. Problems,
where the final time is not fixed, can be transformed into fixed-time problems by the
substitution T, so that becomes the new time variable in the fixed interval
[0, 1] and T is a parameter. Another way to deal with free end time problems is to
prove a slight generalization of Lemma 5.13, namely, that the set-valued function
(b; T) P(b T) is a family of derived cones of W(b T)" {x,(T, b)lu }.
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In this way one can also obtain necessary conditions if T is the constraint in some
interval [To, T1]. Free initial time problems can be treated similarly.

Appendix A. This section is devoted to the proof of the basic Lemma 2.1.
We need some preliminary results.

LEMMA A.1. If x 1,’", xk are contained in ri C, where C is a closed convex
cone, then there exist vectors Y 1,’", Ym in ri C, such that dim cc (Y 1,"", Ym)

dim C and x 1,’", xke ricc(yl,..., Y,,).
Proof. Let Xk+l,’", x,, be vectors in ri C, such that dimcc(xl,..-, x,,)

dim C. Define b "= (xl + + x,,)/m and Yi "= xi + e(xi b), 1, m.
For sufficiently small e > 0, we have Yi e ri C. Also, (Yl + + Ym)/m b and
hence xi ,j= ijYj, where 2ij e/(m(1 + e)) if - j and 2ii (m + e)/(m(1 + )).
Hence xi ri cc (Y l, Y,,). Q.E.D.

LEMMA A.2. If f’l VI R R" is (g’, then there exists a (g’ extension
F.dV R"off.

Proof. Let ; "= {xeR"lx (Xl, ..., x)’ and (Ix ,..., Ixl)e,/Vx}. We
extend f stepwise. Define Sk’= {xeAnx__>0 for i=k+ 1,...,n}. Then
/V VIR_ =So cS1 c cS,= dg. Furthermore, define fo’=f, so that
fo’So--’ Rm. Suppose that k e {0, 1,..., n- 1} and that fk’Sk Rm has been
defined. Then we construct fk / 1" Sk / --* R" as follows"

(A.3) f +l(x) f(x), x Sk
A +l(X) fk +l(X1, Xk,’’’, Xn) 4fk(x1,’’’, Xk-1, 1/2Xk, Xk +1, Xn)

3fk(xl, Xk-1, Xk, Xk +1, Xn)

for x e Sk + \Sk. It is easily seen that the partial derivatives of fk + exist and are
continuous in Sk+l. Hence ./k+l is g’. In this way fl, ,f, can be constructed
successively. Finally we define F "= f,. Q.E.D.

Proof of Lemma 2.1. Without loss of generality we assume b 0. Suppose
that C1 and C2 are not separated. Let xl, "", xk be vectors in ri(C1 f-I C2)

ri C1 f-) ri C2. According to Lemma A.1, there exist vectors Y l, "’", Ym ri C1
and vectors zl, ..., Zl ri C2 such that, if Y "= [Yl, "’", Ym] (that is, Yis the matrix
formed by the columnsyl, "’", Y,,) and Z "= [zl, ..., Zl], then rank Y dim C1,
rank Z dim C2 and

(A.4) X YM ZN,

where X [x l, "", xk] and M and N are matrices all entries of which are positive.
Formula (A.4) expresses the fact, that Xl, "’", xk e ri cc (yl, "’", Y,,) VI ri cc
(z 1, "", zt). Because the cones C and C2 are not separated, they are not contained

in a common hyperplane. Hence,

(A.5) rank [Y, Z] n.

If necessary, we renumber the columns of Y and Z so as to obtain that Y and Z
have the form

(A.6) Y= [Y,Y2, Z= [Z1,Z23,
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where Y1 is an n m matrix, Z is an n 11 matrix, with m + 11 n and such
that the n n-matrix [Y1, ZI is nonsingular.

The matrices M and N are partitioned accordingly:

(A.7) M= N=
M N

and it follows from (A.4) that

(A.8) Y,M ZN, Z2N2 Y2M2.
There exist c, maps’ R S1 and (’ R $2 satisfying

(A.9) (z)= Yz + oU), z O ((a)=Za+o(a), a O.

It follows from Lemma A.2 that these maps can be extended to g’ maps defined
in a neighborhood of the origin. These extensions will also be denoted and (
and (A.9) is still valid. According to the partitioning of Y and Z we write

2 2

Then (A.9) reads

t/(l, Z’2) Y171 - Y2"u2 -%- o(’u), z - 09
(A.10) ff(al, a2) Zla + Z2a2 + o(a), a 0.

Consider now the equation

(A.11) f(z, al,z2, a2)"= q(z)- (a)= 0.

Since f(zl, al,Z2, a2)= Yz Zla + Yzz2 Zza2 + o(z, a)and Y,-Zx] is
nonsingular, it follows from the implicit function theorem, that there exist ’functions and of (2, a2) in a neighborhood of (0, 0) such that

(a.12) /((2, a2), (z2, a2), 2, a2) 0.

If(z2, a2)= Ar 2 + Ba2 + o(T2, az)and O(r2, a2)= CT2 + Da2 + o(T 2, az),then
substitution in (A.12) yields

(A.13) Y1A Z,C + Y2 O,

(A.14) YB- ZD- Z2 O.

Multiplying (A.13) from the right with M2 and (A.14).with N2 and adding, we obtain
Y(AM2 + BN2)- Z(CM2 + DN2)= Z2N2 Y2M2. From (A.8) and the
regularity of the matrix Y, -Z] it follows that

(A.15) AM2 + BN2 M, CM2 + DN N.
We define (z2, a2) "= q((zz, a2), zz) (((2, a2), a2) and (p) (Mzp, N2p)
for p in some ,’ Rk. Then a short calculation yields (p) Xp + o(p), p O.

We show that there exists a neighborhood ," of 0, such that (," R)
Sx $2. It follows from (A.15), that (M2p, N2p) Mp + o(p) 0 for small

p 0. Also, M2p 0 for p 0. Hence (p)= q((M2p, N2p),M2p)S for
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small p > 0. Similarly (p) S2 for small p => 0. This completes the proof of
Lemma 2.1. Q.E.D.

Appendix B. A generalization. If in 5 we define f to be the set of measurable
functions u :0, T] --, U and try to find the optimal control in this class, then the
concept derived cone as defined thus far turns out to be too restrictive because of
the differentiability condition occurring in the definition. Therefore we introduce
two more general concepts.

DEFINITION B.1. If b S
___

R", a closed convex cone C is called a generalized
derived cone of S at b, if for any collection of vectors P l, "’", Pk in ri C there exists
a continuous map " g" f-] R+ - S satisfying

(B.2) (z) b + Pk:k + O(:), Z 0.

C is called a weak derived cone ifcorresponding to pl, ..., pk inri C a(not necessarily
continuous) map can be found satisfying (B.2). Instead of Lemma 2.1 we now have
the following result.

LEMMA B.3. Let $1, $2 be sets in R", b eS S2 and C1, C2 generalized
derived cones of St, $2 respectively. If C1 and C2 are not separated, then C 0 C2
is a weak derived cone of St (’1 $2 at b.

The proof of this lemma is completely the same as the proof of Lemma 2.1,
except, that instead of the implicit function theorem, one uses the following
property.

LEMMA B.4. If f: x 2 - R" is a continuous function, where A/_
_

R",
.A/z c_ R" are neighborhoods of the origin, and if

f(x, y)= Ax + ,y + g(x,

where A and B are linear maps, B is not singular, and g(x, y) x + lyl)e(x, y), with
:(x, y)---> O, x, y O, then there exists a Jhnction rl ".A# R", where V" R" is a
neighborhood of the origin, such that

(B.6) f(x, rl(x)) O,

(B.7) rl(x B- Ax + o(x), X--O.

Proof. We consider the map Fx defined by Fx(y) "= -B-Ax B-g(x, y).
For small Ixl and ]Yl, say Ixl, lyl =< :, we have ]B-l;(x, y)] < 1/2. Then for Ixl <
"= ;/(1 + 2 B-A ), we have IFx(y) <= IB-Ax + 1/2(Ix + ly)_-< . Since F is
continuous, it follows by Brouwer’s fixed-point theorem, that for Ixl < c5, there
exists y q(x) such that q(x)= F(rl(x)), hence f(x, r/(x))= 0. Let us show that
(B.7) is satisfied" Ir/(x) IB-Ax B-g(x, r/(x))l <-_ [B- Ax + 1/2(Ix + Iq(x) and
hence ]r/(x) =< M x for some M > 0. Consequently, Irl(x) + B- Ax __< (M + 1)lxt
e(x, rl(x)) o(x), x --, O. Q.E.D.

Using Lemmas B.3 and 2.1 the following generalization of Theorem 1.5 is
easily obtained.

THEOREM B.8. Let So, S be sets in R", b S "= So f’l (’1 S and let Co
be a generalized derived cone of So at b and C derived cones ofS at b for 1, .., k.
Ira function f" R" R is c, at b and i[f attains a maximum at b subject to x S,
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then there exist p >= 0, i C/, 0, ..., k, such that

(B.9) (P, qo, "’", 6)# 0,

(B.10) pVf(b) o + + .
Instead of one constraint set with a generalized derived cone and an arbitrary

number of sets with derived cones, we can also derive the polar rule for the case
that there are two constraint sets with generalized derived cones and no other
constraints. However, contrary to Lemma 2.1, Lemma B.3 cannot be used
repeatedly, so that we cannot derive necessary conditions in the case where more
sets with generalized derived cones occur.

In 2], Canon, Cullum and Polak consider the following problem: Minimize
f(z) subject to the constraints z 1, r(z) 0, where f:R" R and r:R"
are cg, functions and fl

_
R" is an arbitrary set. Applying Theorem B.8 to this

problem, we obtain the necessary condition given in [2]. In [2], this result is applied
to a number of mathematical programming problems and discrete-time optimal
control problems. In all these problems, Theorem 1.5 can be applied in a simpler
and more direct way, as we have seen in 3 and 4. The result of [2] is extended to
infinite-dimensional spaces in order to derive the maximum principle (see [3,
Appendix B]).

A slightly more general result is obtained in [8, Chap. 4, Thm. 3.2], where also
inequality constraints are given. Both results are easily obtained from Theorem
B.8. For example, if the problem is to minimizer(z) subject to the constraints
r(z) O, z 1, where fl is an arbitrary set, and r:f- Rm, then the following
equivalent finite-dimensional problem is obtained by considering the map
F:fl R"+1, defined by F(z) := (f(z);r(z)): maximize Yo, subject to
y (yo, ..., y)’ F(f), y y 0."

It should be remarked, that it is usually simpler to apply the finite-dimensional
result directly to the problem essentially making the same substitution, as is done
in 5. A similar method is used in [1] to derive the continuous maximum principle
from the results in [2].

The results of H. Halkin and L. W. Neustadt [53, [61, [14], [15] are of a more
general scope than Theorem B.8.

Acknowledgment. The author wishes to thank J. L. de Jong for many
stimulating discussions about the paper.

REFERENCES

[1] E. J. BALDER, A short proofofthe Pontryagin maximum principleforfixed time continuous optimal
control problems using a fundamental theorem of Canon, Cullum and Polak, Tech. Note,
Department of Mathematics, Technological University Eindhoven, Eindhoven, The
Netherlands.

[2] M. CANON, C. CULLUM AND E. POLAK, Constrained minimization problems in finite dimensional
spaces, this Journal, 4 (1966), pp. 528-547.

[3] ----, Theory of Optimal Control and Mathematical Programming, McGraw-Hill, New York,
1970.

[4] H. HALKIN, A maximum principle of the Pontryagin type for systems described by nonlinear

difference equations, this Journal, 4 (1966), pp. 90-111.



MULTIPLE CONSTRAINT OPTIMIZATION PROBLEMS 669

I5] -----, A satisfactory treatment of equality and operator constraints in the Dubovitskii-Milyutin
optimization formalism, J. Optimization Theory Appl., 6 (1970), pp. 138-149.

[6] H. HALKIY AND L. W. NEUSTADT, General necessary conditions for optimization problems, Proc.
Nat. Acad. Sci. U.S.A., 56 (1966), pp. 1066-1071.

[7] M. L. J. HAUTUS, Optimal control ofdifferential systems with discontinuous right-handside, Doctoral
thesis, Technological University Eindhoven, Eindhoven, The Netherlands, 1970.

I8] M. R. HESTENES, Calculus of Variations and Optimal Control Theory, John Wiley, New York,
1966.

I9] H. HOLTZMAN, On a maximum principle for nonlinear discrete-time systems, IEEE Trans. Auto-
matic Control, AC 11 (1966), pp. 30-35.

[10] B. W. JORDAN AND E. POIAK, Theory of a class of discrete optimal control systems, J. Electron.
Contr., 17 (1964), pp. 697-713.

[11] E. B. LEE AYD L. MARKUS, Foundations of Optimal Control Theory, John Wiley, New York,
1967.

[12] O. L. MANGASARIAN, Nonlinear Programming, McGraw-Hill, New.York, 1969.
[13] O. L. MANGASARIAN AND S. FROMOVITZ, The Fritz John necessary optimality conditions in the

presence of equality and inequality constraints, J. Math. Anal. Appl., 17 (1967), pp. 37-47.
[14] L. W. NEUSTADT, An abstract variational theory with applications to a broad class of optimization

problems, I General theory, H Applications, this Journal, 4 (1966), pp. 505-527, 5 (1967),
pp. 90-137.

I15] --, A general theory ofextremals, J. Comput. System Sci., 3 (1969), pp. 57--92.
[16 L. S. PONTRYAGIN, V. G. BOLTYANSKII, R. V. GAMKRELIDZE AND E. F. MISHCHENKO, The Mathe-

matical Theory of Optimal Processes, Interscience, New York, 1962.
[17] R. PAIIU DE BARRIERE, On the cost ofconstraints in dynamical optimization, Mathematical Theory

of Control, Academic Press, New York, 1967, pp. 246-250.
[18] R. T. ROCIAVIAR, Convex Analysis, Princeton University Press, Princeton, N.J., 1970.



SIAM J. CONTROL
Vol. 11, No. 4, November 1973

ON THE EQUIVALENCE OF CONTROL SYSTEMS AND THE
LINEARIZATION OF NONLINEAR SYSTEMS*

ARTHUR J. KRENERt

Abstract. Given two control systems where the control enters linearly, a necessary and sufficient
condition is derived that these systems be locally diffeomorphic, i.e., that there exist a local diffeomor-
phism between the state spaces which carries a trajectory of the first system for each control into the
trajectory of the second system for the same control. As a corollary we derive necessary and sufficient
conditions for a system to be locally diffeomorphic to a linear system.

()

and

1. Introduction. Consider the two control systems

ao(X) + Z ui(t)ai(x),
i=1

x(0) x,
.9 bo(y) + ui(t)bi(Y),

i=1
(2)

y(0) yO,
where x (x, Xm), Y (Y, "’", Y,) are vectors, ao(X),..., a(x), b0(x), .-,
b(x) are analytic vector-valued functions and u(t) (u(t), ..., u(t)) is a bounded
measurable control.

The purpose of this paper is to give necessary and sufficient conditions that
these two systems be equivalent, i.e., that there exist a local diffeomorphism from
x-space to y-space which takes the solution of (1) for each control into the solution
of (2) for the same control. As a corollary we derive necessary and sufficient condi-
tions that there exist a local diffeomorphism which carries a nonlinear system into
a linear one.

2. Preliminaries. Ifa(x), aj(x) are as above we define the Lie bracket [a, @(x),
another analytic vector-valued function, by

63aj c3a
[ai, aft(x) -x (X)a,(x) -x (X)aj(x),

where (caj/c3x)(x) is the matrix of partial derivatives at x. Suppose t, x (t)x is the
family of integral curves of ai(x), that is, (d/dt)ei(t)x ai(ei(t)x) and i(O)x x.
Then for fixed t, the map x ( t)x is a diffeomorphism from a neighborhood of
ei(t)x onto a neighborhood ofx and hence has a tangent map which we denote by
i(-t),. The derivative of the vector-valued curve -, c(-t),aj(e(t)x) at 0
is [ai, aj] (x) (Bishop and Crittenden [1, p. 17]). Since a, aj are analytic, we obtain
the Taylor series expansion ei(- t),aj(oq(t)x) o= o (th/h !)adh(ai)aj(x), where
ad(ai)aj(x) aj(x) and adh(ai)aj(x) [ai, adh- (ai)a] (x).
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Following Haynes and Hermes [2] we define D(A) to be a set of functions
{a,’i 0,..., k} and DJ(A) DJ-I(A) (J {[ai, c]’i 0,.-., k, ceDJ-I(A)}, for
j _< 1. The completed system of A is D(A)= [..Ij>=o DJ(A), and we define D(A),

{c(x)’c D(A)}
_

[Rm. The rank r of D(A) at x is just the dimension of the span
D(A).

THEOREM (Nagano [4]). Let the completed system of (1) have rank r at x.
Then there exists a submanifold M of dimension r through x, which carries (1).
That is, if u(t) is any bounded measurable control and x(t) is the corresponding solution
of (1), then for some e > 0, x(t) e M for Itl < e.

For generalizations of this result see Krener [3].

3. Equivalent systems.
THEOREM 1. Consider the systems (1) and (2). Let M and N be submanifolds

which carry (1) and (2) at x and yo respectively. There exists a linear map
l" span D(A)xo - span D(B)yo such that l(ai(x)) bi(y) for 0, k and

l([ai,,’" [ai ,, aih] "3 (x))= [bi,,"" Ibis_ ,, bih] .3 (yO)

for h < 2 and < ij <= k if and only if there exist neighborhoods U and V of x
and yO in M and N and an analytic map 2"U V such that 2 carries (1) into (2).
That is, if x(t) and y(t) are the solutions of(l) and (2)for the same control u(t) and
x(t)e U for It] < e, then y(t)= 2(x(t))e V for It[ < e. Furthermore is a linear
isomorphism if and only if 2 is a local diffeomorphism.

Proof. We start by assuming exists and constructing 2. Since the theorem is
local in nature, we can assume that M [m and N R", then span D(A)xo [m

and span D(B)yo [". Let cl(x), Ch(X) be a maximal linearly independent
subset of D(A)x Let d(y),..., dh(y) be the corresponding elements of D(B),
that is, if ci(x) aj(x) then di(y bj(y). We choose ch+ l(X), c,,(x) from D(A)
so that Cl(X), Cm(X) forms a basis for R". Let dh + I(Y),"", din(Y) be the cor-
responding elements of D(B), that is, if ci(x [aj,,...[aj,_,, aj,]...](x), then
di(y [bj,, [bj,_ ,, bj,] ...](y). Let t, x z(t)x, be the family of integral curves
of ci(x) for 1,..., m. That is (d/dt)ai(t)x ci(i(t)x) and ai(O)x x. Similarly
t, y fl(t)y, is defined by (d/dt)fl(t)y d(fli(t)y and fli(O)y y, for 1, ..., m.
Let s (s 1, ..., sin) and define maps gl"s-- x and g2"s-- y by g(s)= m(Sm)

a2(Sz)CZl(Sl)X and gz(s)= fl,,(s,,).., flz(Sz)fl(s)y. Then (gl/?si)(0)= ci(x),
so g has an inverse g i-l"x-, s defined for x in some neighborhood U of x.
Let 2"x---, y be defined on U by . g2 (D g- 1.

We must now show that if x(t) and y(t) are the solutions of (1) and (2) re-
spectively for the same control u(t), then 2(x(t)) y(t). Since 2(x(0)) 2(x) y0

y(0)it suffices to show that (d/dt)2(x(t)) (d/dt)y(t) or 2,(2(t)) .P(t), where 2,
is the tangent map to 2 at x(t). This is true if 2,(a(x)) b(2(x)), 1, .--, k, for all
x e U, which in turn would follow if 2,(ci(x))= di(2(x)), i= 1,..., m, for all
xeU.

To show this we let x g(s), x gl(sl, "", s,0, ..., 0), for 1, ..., m,
y 2(x) g2(s) and yi g2(sl,"" si, O, 0), for 1,... m. Then x" x
and for 1,..., m, the map i(-sg)(’) takes x into xi-1 and is a local diffeo-
morphism with tangent at x denoted by i(-si),. Similarly y" y, and the map
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fli(si)(" takes yi-1 into yi and is a local diffeomorphism with tangent at yi-1
denoted by fli(si),.

We now show that 2, fl,,,(sm), ill(S1), 1o1(-sl), o,,,(-s,,,),. Since
c3gl(s)/c3s forms a basis for W", it suffices to show that the right side applied
to c3gl(s)/Ss yields ,(cgl(s)/c3si) which equals 892(s)/Ssi. But 8gl(s)/c3s

o,,,(s,,,), oi(si),ci(xi- 1) and 8g2(s)/c3s tim(S,,,), fii(si),di(Yi- 1) so

tim(Sin), fl (S ),l(l(--Sl), (m(--Sm),
gl(S)

m(Sm)* fll(Sl),II(__S1), Oi_ l(__Si_ 1),Ci(xi-1)

(x)

(yO)

This implies that

Notice that 2,(cg(x)) d(y) so 2, at x. It follows by the inverse function
theorem that if is a linear isomorphism then 2 is a local diffeomorphism.

As for the converse, if 2 exists and 2(x(t)) y(t) where x(t) and y(t) are the solu-
tions of(l) and (2) for the same control u(t), then clearly 2,(ai(x)) bi(2(x)). It is a
standard result of differential geometry (Bishop and Crittenden [1, p. 14]) that if
2,(ci(x)) dg(2(x)), 1,2, then 2,([c1,c2](x)) [dl,dz](2(x)), and so 2, at
x satisfies the required condition. Q.E.D.

Remark. Since gl(s) covers a neighborhood of x in M, the map 2 is uniquely
determined in that neighborhood by the condition that it take system (1) into
system (2). Furthermore if M is connected and simply connected, then 2 can be
extended uniquely to a map defined on all M by standard arguments. See Example
3 below.

Example 1. Consider the two systems

32 U" t, 2
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Since the right-hand side of the first system depends on t, we introduce a new
variable Xo t.

ao(x) ao,al](x)

bo(y)
Yl

and all other brackets are zero.

01,
X0

[bo, bl](y)

0

For initial points x (x, x, x2), yO (yO, y2O), let 1.[3
_

[2 be given by the
matrix

(0 )yO oo

The hypotheses of Theorem are satisfied and 2 can be constructed as in the
theorem. Let a 1, 2 and 3 be the families ofintegral curves of ao, a and [ao, a 1] and
/1, /2 and/3 be the families of integral curves ofbo, bl and [bo, bl]. Then

g1(S1,$2,$3)--03($3)0(,2($2)01(S1)X0 (X) -[- S1, xO1 -[- $2,X02 -Jr" (xO0 -[- S1)S 2 "n
t- $3),

g2(S1,$2,$3)-- 3($3)2($2)1(s1)Y0 --(yO + s2,Y -k Sly01 $3),

and

(X) g2(g-I(X)) (Yl0 + X1 X10, y + (X0 0 0 X10)).x0)Y (X 2 X20) -- X0(X

Notice that M 3, N 2 and 2 is defined for all x e 3 and is onto Re. In
fact, if we introduce a time coordinate Yo into the second system, then N R3

and 2 becomes a diffeomorphism from 3 onto 3:

(x) (yo + Xo x, y + x x, yo + (Xo Xo)yl -(x. x)

+ Xo(X x)).
Example 2. Suppose we replace the second system of Example with one

similar to that of Haynes and Hermes [2].

po 1, 0 0

Pl 1, bo(Y) 0 bl(y 1 and [b o, bl](y 0

P2 u" yo" Y2, 0 Yo" Y2 Y2

and all other brackets are identically zero. The rank of D(B) is 3 except at points
where Yz 0, where it is 2. The system splits 3 into three disjoint manifolds

N+ {y:y2 > 0}, No {y:y2 0} and N_ {y:y2 < 0}. A trajectory of this
system must lie wholly within one of these manifolds.

For initial points x and yO we define by

1 0 0

0O (y Xo)y y
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and construct 2 as before:

2(x) (y + Xo x, yO + x, x, y exp ((y x)(x, x) + xz x2)).
Notice if yO eN+(N_), then 2 is a diffeomorphism 2:N3 N+(N_). If yO eNo,
then 2:Na No is onto.

Example 3. Consider the systems

2 UXI

a b =(1),
X1

and of course there are no nontrivial brackets. If x (1, 0) and yO 0, then

M= {(x,x2)’x +x 1} and N= R. Sol= )satisfiesTheoreml and2

is defined in a neighborhood of(l, 0) on M by 2(x, x2) arc tan (x2/xa). It is clear
that 2 cannot be extended to a map on all of M.

4. The learization of nonlear systems. Consider the linear control system

() F(t)y(t) + 6(t)u(t) + h(t),

where F and G are matrices, y and h are vectors and u is the control vector. As
before we introduce time as a coordinate, Yo t. It is well known that there exists
a change of the y coordinates which carries (3) into

(4) bo + uibi(yo),
i=1

where

0

and where * denotes some real-valued function of Y0 alone.
The question we now answer is when does there exist a transformation

2"x y which carries a nonlinear system (1) into a linear system (4).
THEOREM 2. Consider the system (1). Let n rank of D(A)xo and let M be the

n-dimensional manijbld which carries (1). There exists a linear system (4), a neigh-
borhood U of x in M, a neighborhood V of yO 0 in [" and a diffeomorphism
2"U -, V carrying (1) into (4)/f and only if jbr all 1 <= i, j <= k and for all h >_ O,
[ai, adh(ao)a.i](x) O.

Proof Suppose the system (4) and 2 exist. Then 2., the tangent to 2 at 0, is
one-to-one and

2*([ai, adh(ao)aj](x)) [bi, adh(bo)bj](O).
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Then by induction for h >= O,

adh(bo)bj

and

0...0 0 0...0 0

and it follows that [ai, adh(ao)aj] O.
On the other hand if [ai, adh(ao)aj](x) 0, we construct (4) as follows. Let

s, x o(S)X be the family of integral curves of ao. Define the system (4) by setting

and bj(yo) ao(-Yo),aj(ao(Yo)X), j 1,..., k.

The Taylor series expansion of bj(yo) =o ((yo)h/h !)adh(ao)aj(x) and it follows
that

d
adh(b)bj(O)

ody---ffbj(O) adh(a)ai(x) for j= 1, k and h >= 0.

Also by hypothesis [ai, adh(ao)aj](x) 0 and we showed above for systems
of type (4), [bi, adh(bo)bj](O) 0. Therefore the hypotheses of Theorem 1 are satis-
fied with identity map, and so we can construct 2. Q.E.D.

Example 4. Consider the nonlinear system

21 + u. x3,

Y3 X3,

( 1 121ao x a

\X3 0

[ao, all 2x1x2x3 X

0

and [al[ao,a]] 2x2x 4xx3
0
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Therefore the system is not linearizable in general. However if x3 0, then
the system is carried by M {x’x3 0} and on this submanifold

iad2(ao)a 2x

0

[a 1, adZ(ao)all

[a,[ao,al]]

( tada(ao)a -2

0

All higher brackets are zero, so the system is linearizable. We do not have to com-
pute 2 to describe the equivalent linear system. For example if x (0, 0, 0) we
define

0

i Yhadh(a)al(x)=bo= bl(yo)=
=0

0

Since Yo and the yz-coordinate is superfluous, this becomes

.,1)1 u(1 --t3/3), y,(0) 0.
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ERRATUM" AN EXISTENCE THEOREM FOR LAGRANGE
PROBLEMS WITH UNBOUNDED CONTROLS AND A SLENDER

SET OF EXCEPTIONAL POINTS*

L. CESARI,f J. R. LA PALM: AND D. A. SANCHEZ

On page 601 we reported from other papers [lc, (7.i) ld, (6.5)] the statement
of criterion (5.3). This criterion is not correct as stated. For a correct version and
proof see [le]. This criterion (5.3) was used on page 602 (line 7 f.t.b), to prove that
an existence theorem for free problems (Theorem 6.3) can be derived from our
existence theorems for Lagrange problems. For this derivation we do not need
(5.3). Indeed, for free problems, that is, when m n,f u, U E,, condition (e)
is trivial, and property (X) reduces to seminormality. In the proof of (6.3) we
proved fo to be normal at (f, ), hence seminormal at the same point, and the
easier criterion (5.2) of page 600 can be applied, instead of (5.3).

This Journal, 9 (1971), pp. 590-605. Received by the editors October 2, 1972.
f Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48104.
Department of Mathematics, Wayne State University, Detroit, Michigan 48202.
Department of Mathematics, University of California, Los Angeles, California 90024.
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