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INVERSE PROBLEM OF LINEAR OPTIMAL CONTROL*

ANTONY JAMESON anp ELIEZER KREINDLERT

Abstract. Necessary and sufficient conditions are derived such that a multi-input, time-varying,
linear state-feedback system minimizes a quadratic performance index (the inverse linear optimal

control problem). A procedure for determining all such equivalent performance indices that yield the
same feedback matrix is indicated.

1. Introduction. Consider a linear system given by

(1.1) Xx = Ax + Bu, X(to) = Xg,
(1.2) u = Dx,

and a performance index

1 '
(1.3) I= ExT(tl)Fx(tl) + %J (xTOx + uTRu) dt,
to

where x is the n-dimensional state, u the m-dimensional control, ¢, is a fixed
terminal time, and the superscript T denotes matrix transpose. The matrices A4, B,
D, Q and R may be time-varying, and are assumed to be uniformly bounded and
continuous on [, t,].

The inverse problem of linear optimal control is to find necessary and suffi-
cient conditions on the system matrices A, B and D so that some performance
index of the type (1.3) is minimized, and to determine all such R, Q and F.

The direct problem and its solution are of course well known. The feedback
matrix D such that the system (1.1), (1.2) minimizes (1.3) is given by

(1.4) D= —-R'B'P,
where P is the solution of the matrix Riccati equation
(1.5) —P=PA+ AP — PBR'B'P + Q, P(t,) = F.

For the existence of a unique minimizing u it is assumed that R is positive definite
(denoted by R > 0), and as a sufficient condition for the existence of a solution
P(t) of (1.5) it is usually assumed that Q and F are nonnegative definite

(Q = 0,F = 0). The minimal value I, of I is then nonnegative for all x, and ¢,
and since

(16) I* = %x(T)P(to)Xo,

P is nonnegative definite. The case where t; — oo is of particular interest when A
and B are constant, because the performance index

1.7) I= %f (x"Ox + uTRu)dt,
0
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with Q and R constant, results in a constant feedback matrix D. If (1.1) is com-
pletely controllable and Q = C”C is such that [4, C] is completely observable,
then the matrix P in (1.4) is the asymptotically stable equilibrium point of the
Riccati equation

(1.8) P=PA+ AP — PBR™'BP + Q, P(0)= P, = P} 20,
i.e. it is the positive definite solution of the matrix equation
1.9) 0=PA+ AP — PBR"'B"P + Q.

The present paper solves the general time-varying case with the performance
index given by (1.3), as well as the time-invariant case with the performance index
(1.7). The plan of attack is as follows.

In § 2 we determine necessary conditions for the existence of real symmetric
matrices R > 0 and P (also for P = 0 and P > 0), such that (1.4) is satisfied ; the
most restrictive of these is that DB have real eigenvalues. The sufficiency of these
conditions is demonstrated in § 3 by producing general formulas for such R and
P. In §4 we give complete sets of necessary and sufficient conditions for solutions
P = 0 and P > 0; in view of (1.6), these conditions are necessary and suflicient
for I, to be nonnegative and positive for all x, and all t, < t;, and they are neces-
sary for construction of Q = 0—hence their importance.

The solutions of (1.4) for R and P are pointwise in time, but P can be con-
structed to be differentiable, so that we have P. Then F = P(t,), and Q is given by

(1.10) Q= —P—PA— ATP + DTRD.

We remark that Q so determined may not be nonnegative definite even if P is
positive definite; this is true also in the time-invariant case. We now have the
entire class of matrices { R, Q, F, P} that satisfy (1.4) and (1.5), and we show in § 5
that each member of this class of performance indices is actually minimized by
the given control law (1.2), thus solving the inverse problem (Theorem 5.1).

The inverse problem was first posed and partly solved by Kalman [1] who
considered the time-invariant single-input case where R reduces to a scalar. He
showed that the satisfaction of a particular inequality, the sensitivity inequality,
implies that there exists a performance index (1.7) with a nonnegative definite Q
and R = 1 which is minimized. This result was generalized by Anderson [2] to the
multi-input, time-invariant case. Our approach and results, which do not neces-
sarily produce a nonnegative definite Q, are different. Results for the case where
Q is nonnegative definite, and relations with the Kalman—Anderson results, will
be presented in a sequel to this paper.

The generality of the characterization of R and P (Theorems 3.1-3.4) gives
them independent value; they provide new insight into the already extensively
researched linear optimal control problem and are bound to find many applica-
tions, particularly in the area of equivalent loss functions [3]. We note that the
results of this paper are important for the local treatment of the general nonlinear
inverse problem. The fact that our results do not require Q = 0 is then significant;
this requirement, usually natural for the direct linear optimal problem, is unduly
restrictive for the nonlinear case (where Q is replaced by H,,, the second partial
of the Hamiltonian).
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We remark in conclusion that the conditions for optimality of (1.1),(1.2)
derived here are in general no longer necessary when a cross-product term u”Sx
is added in the integrand of (1.3) or (1.7). In fact, it is shown in [4] that every system
(1.1), (1.2) minimizes a performance index (1.3) with a cross-product term, and that
there are many ways such a performance index can be constructed. If the per-
formance index is further generalized to include derivatives of the control, dynamic
feedback and feedforward controllers can be included, and thus every linear,
finite-dimensional dynamic feedback system minimizes some sufficiently general
quadratic performance index [4].

2. Compatibility conditions. First we note that only the symmetric parts of
R, Q and F appear in (1.4) and in the Riccati equation (1.5). Thus, the existence of
symmetric P, R, Q and F satisfying (1.4) and (1.5) is a necessary condition for a
closed-loop system (1.1), (1.2) to be optimal with respect to (1.3).

From (1.4),

(2.1) BTP = —RD,

and our objective is to solve this equation for all real, symmetric and positive
definite R, R = RT > 0, and all real and symmetric P. In this section we derive
several necessary conditions for the existence of such solutions; in the next section
we show constructively that these are also sufficient. We recall that B is n x m,
D is m x n, and they do not necessarily have full rank. We have the following
lemma.

LEMMA 2.1. Necessary conditions for (2.1) to have real symmetric solutions P,
and real, symmetric and positive definite solutions R, are:
(i) for any P, R must be such that the compatibility condition holds

(2.2) BTB'"RD = RD,

where B* is any matrix (e.g., the Penrose generalized inverse BY) such that BB*B = B;
(i) for P to be symmetric, the symmetry condition must hold :

2.3) RDB = BTD'R;
(ii)) for R to be positive definite, a rank condition on BD must hold:
(2.4 rank BD = rank D.

Proof. (i) Premultiplying (2.1) by BTB*" and using the identity B*B*"BT = BT,
we have

BTB**BTP = BTP = —RD = —BTB!"RD.
(i1) Postmultiplying (2.1) by B we have
(2.5) BTPB = —RDB,

whence the symmetry of RDB is necessary for the symmetry of P.
(iii) From (2.1),

PBD = —D"RD.
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We first observe that since R is positive definite,
(2.6) rank D"RD = rank D
because for every p such that D"RDp = 0 we have
p'D"RDp = (Dp)"R(Dp) = 0,
whence Dp must be zero. Thus, by (2.6),
rank BD = rank PBD = rank D'RD = rank D.

But since rank BD > rank D is impossible, (2.4) follows. Q.E.D.

That RDB must be symmetric with a real, symmetric and positive definite R,
leads to the next lemma.

LEMMA 2.2. A real R = R" > 0 such that RDB is symmetric exists only if the
m x m matrix DB satisfies the eigenvector condition:

2.7 DB has m linearly independent real eigenvectors.

Proof. Let L"L = R > 0 be such that RDB is symmetric. Then (L~ ')TRDBL™!
= LDBL™! is symmetric, and it therefore has m linearly independent real eigen-
vectors. But since DB is similar to LDBL™?, (2.7) follows. Q.E.D.

The conditions (2.4) and (2.7) are necessary for the desired solution of (2.1),
and it is shown constructively by Theorems 3.1, 3.2 and 3.3 in the next section that
they are also sufficient. We can therefore state the following theorem.

THEOREM 2.1. Equation (2.1) has solutions R = RT > 0 and P = PT if and only
if the rank condition (2.4) on BD and the eigenvector condition (2.7) on DB hold.

We now proceed to derive conditions for symmetric P to be nonnegative
definite and positive definite. We have the following lemma.

LEMMA 2.3. For (2.1) with R = RT > 0 to have solutions P = P! 2 0 it is
necessary that

(2.8) rank DB = rank D,
and that all eigenvalues A of DB be nonpositive :

(2.9) A=0, i=1,2,---,m;
for solutions P = PT > 0, it is necessary that

(2.10) rank DB = rank D = rank B.

Proof. From (2.1), since R is nonsingular,
rank D = rank RD = rank BTP = rank PB,
and from (2.5),
rank DB = rank RDB = rank B"PB.
Thus (2.8) is equivalent to
(2.11) rank BTPB = rank PB.

Since P = 0, we may write P = ZTZ, Z real. We observe, as in the proof of (2.6),
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that

rank (ZB)"ZB = rank ZB.
Thus

rank B'PB = rank (ZB)"ZB = rank ZB = rank Z"ZB = rank PB.

But since rank BTPB > rank PB is impossible, (2.8) follows. If P = 0 or P > 0,
then from (2.5),

(2.12) RDB < 0.

Writing R = LTL, (L ')"RDBL~! = LDBL™! is also nonpositive definite, real,
and symmetric, and therefore has nonpositive real eigenvalues. Since DB is similar
to LDBL™1, (2.9) is established. If P > 0, then since R is nonsingular, (2.1) shows
that

(2.13) rank D = rank B,

whence (2.10) must hold. Q.E.D.

LeEMMA 2.4. The rank condition (2.8) on DB together with the symmetry condi-
tion (2.3) on RD B imply that the compatibility condition (2.2) and the rank condition
(2.4) on BD are satisfied.

Proof. From (2.2), using the symmetry of RDB and the identity BB*B = B, we
have

BTB*"RDB = BTBY"BTDTR = B"DTR = RDB,
or
(2.14) (B"TB*"R — R)DB = 0.

But since rank DB = rank D, if M is a nonzero matrix such that MDB = 0, then
also MD = 0. Thus, (2.14) implies (2.2). From (2.3),

(2.15) RDBD = BTDTRD.

Let p be any vector such that Dp # 0. Then in view of (2.6), D"RDp # 0, and by
(2.8), BTD"RDp # 0, whence by (2.15), RDBDp # 0. Thus BDp # 0 if Dp # 0,
implying (2.4). Q.E.D.

From Lemmas 2.2, 2.3 and 2.4 we see that conditions (2.7), (2.8) and (2.9)
emerge as the major ones necessary for P = 0, and in §4 we show that they are
indeed sufficient. We can therefore state the following theorem.

THEOREM 2.2. Equation (2.1) has solutions R = RT > 0 and P = PT = 0 if and
only if DB has m linearly independent real eigenvectors, its rank equals that of D,
and its eigenvalues are all nonpositive (conditions (2.7), (2.8) and (2.9), respectively);
for P = PT > 0, the rank of DB must also be equal to that of B (condition (2.10)).

We close this section with the remark that the rank condition rank BD
= rank D can be seen as a direct consequence of optimality. There is no loss of
generality (see Appendix) in assuming that B is in canonical form and u is parti-
tioned accordingly:

oo L]
(2.16) B = , u= .
(U u,
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Since u, does not affect x(t), it must minimize at all times the quadratic form u” Ru:
T T
u; uy]| R R u
4 2][ ITI 12:|[ 1:] = ul Ry u; + 2uiR Uy + uzRpsu,,
Riy Ry dlu,
whence the minimizing u, is given by
Uy = — Ry Ry,u,,

i.e., u, is proportional to u,. Thus, if we partition D as DT = [DT D1], then D,
must satisfy
(2.17) Dl = KDz,

or, rank D = rank D,. But

welo - 1o)

whence rank BD = rank D, = rank D.

3. General representations of R and P. We first construct R = RT > 0so that
RDB is symmetric. By Lemma 2.2 we must assume that the eigenvectors of DB,
and hence of BTD, are real and linearly independent. Thus the matrix V whose
columns are the eigenvectors v of BTD” is real and nonsingular. We may write the

set of equations BTDTv, = Jv;, i = 1,2,---, m, as

(3.1) BTDTV = VA,

where A is the diagonal matrix of eigenvalues A of BTD”. Then for any real, non-
singular matrix IT that commutes with A we have

(3.2) BTDTVII = VAII = VIIA,

whence the columns of VII are seen as a new, linearly independent set of real
eigenvectors; in fact, all such sets of eigenvectors are generated by all such II.
(If all eigenvalues A are distinct, then IT must be diagonal and it simply scales the
eigenvectors v; if A; = A;, then any linear combination of v; and v; is also an eigen-
vector and all such combinations are generated by the now permissible off-diagonal
elements 7;; and 7;; of I1.) We have the following theorem.

THEOREM 3.1. Let the necessary eigenvector condition (2.7) hold. Then every
given real R = RT > 0 such that RDB is symmetric, is necessarily given by

(3.3) R=VVT,

where the columns v of V are suitably chosen eigenvectors of BTD™. Let V be any
such given matrix, and let I' be a real matrix such that

(34 F=I">0 and TA=ATl,

where A is defined by (3.1). Then all real R = R" > 0 such that RDB is symmetric
are generated by all real T in

(3.5) R=VrVvT,
where T satisfies (3.4).
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Proof. Let R = MMT. Then, since BTDTR is symmetric,
M~ YBTDTR)M 1T = M~'BTDTM

is a symmetric matrix whose eigenvalues are those of BTDT. There exists therefore
an orthogonal matrix H such that

H™M'B"DTMH = A, HH" =1,

whence the columns of MH are seen to be eigenvectors of BTD”. If we define
V = MH, then

VVT = MHH™MT™ = MMT = R,
as claimed in (3.3). Conversely, for any V in (3.3), RDB is symmetric:
VVTDB = VAVT = BTDTV VT,

Recalling the comment that follows (3.2), we let IITIT = T", whence (3.5) follows

from (3.3). Q.E.D.
Not every R = RT > 0 that satisfies the symmetry condition (2.3) auto-
matically satisfies also the compatibility condition (2.2). For example, let

B=|:0 0], D=[1 O]’ R=[r“ "12]
0 1 1 0 Fi2 T2
[O O] [O O]
BD = . DB= ,
1 0 0 0

whence rank BD = rank D and RDB is symmetric for any R. But since

ryy + 0 - 0 0
RD=[“ "2 ] and BTB! RDz[ ]
Fi2 + 1y O Fia+7, 0

Then

the compatibility condition holds only if r; ; + r,, = 0. Nevertheless, the following
theorem holds.

THEOREM 3.2. If the rank condition (2.4) on BD and the eigenvector condition
(2.7) hold, there exist R = RT > 0 such that both the compatibility condition (2.2)
and the symmetry condition (2.3) on RDB are satisfied, and all such R can be con-
structed by suitably choosing T in (3.5).

Proof. This is shown in the Appendix, where B is first transformed to canonical
form (2.16). For a set of eigenvectors of BTDT, all T in (3.5) are found such that the
compatibility condition is satisfied.

Remark 3.1. The rule for structuring R in (3.3), or (3.5), so as to satisfy the
compatibility condition (see (A.12)+(A.15) in the Appendix) rarely need be invoked
because the compatibility condition always holds in the most common case when
rank B = m (see § 6). The compatibility condition also always holds if rank DB
= rank D, as needed for the usual case P = 0 (see Lemmas 2.3 and 2.4). Thus,
in most cases of interest, the formula (3.5) for R provides all the requisite matrices
R of the inverse problem.
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Given a real R = RT > 0 satisfying the compatibility condition (2.2) and the
symmetry condition (2.3) on RDB, we next solve (2.1) for a real symmetric P. Let
U be any real n x m matrix such that

(3.6) BTUTRD = RD;

in view of (2.2), one such matrix is U = B*. By inspection of (3.6), —UTRD is a
solution of (2.1) for P, which, however, is not necessarily symmetric. To obtain a
symmetric solution set

(3.7 Py = —UTRD — D"RU + UTRDBU.
Now by (3.6) and the symmetry of RDB,

B™P, = —RD — BTD"RU + RDBU = —RD.
Further, if P is any real symmetric solution of (2.1), then

BT(P — P)) =0,

whence the general solution of (2.1) for a real symmetric P is
(3.8) P= —UTRD — D'TRU + UTRDBU + Y,
where Y is any real matrix such that
(3.9 BTY =0, Y=YT.

In summary, we have the following theorem.

THEOREM 3.3. Let R be a real, symmetric and positive definite matrix satisfying
the compatibility condition (2.2) and the symmetry condition (2.3). Then a real
symmetric P satisfying (2.1) exists, and all such P are represented by (3.8), where U
is any real matrix satisfying (3.6) and Y is any real matrix satisfying (3.9).

Theorems 3.1, 3.2 and 3.3 provide the sufficiency part of Theorem 2.1.

Under the rank condition (2.8) on DB, additional representations of P are
available. Furthermore, by Lemma 2.4, the compatibility condition (2.2) is then
redundant. We then have the following.

THEOREM 3.4. Let R be a real, symmetric and positive definite matrix such that
RDB is symmetric. If

(3.10) rank DB = rank D,

then all real symmetric P satisfying (2.1) are represented in terms of the given R by
(3.11) P = —DTR(RDB)'RD + Y,

where ' denotes the Penrose generalized inverse; in terms of the eigenvectors of
BTDT, P is given by

(3.12) P = —D"VILA'WTD + Y,

where Y are all real matrices that satisfy (3.9), V and A are defined by (3.1), and T’
is defined by (3.4).
Proof. Consider (3.6) and (3.7), and let

(3.13) U = (RDB)'RD.
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If DB is nonsingular, this U satisfies (3.6). Consider the case where DB is singular.
By the identity XXX = X,

(3.14) [B'TDTR(RDB)'R — R]DB = 0.
We note that (3.10) implies that MDB = 0 only if MD = 0. Hence (3.14) gives
BTDTR(RDB)'RD = RD.

Thus U given by (3.13) is seen to satisfy (3.6). Substituting U into the last term of
(3.7), we have

UTRDBU = DTR(RDB)'RDB(RDB)' RD
= D'R(RDB)'RD = D'RU,

so that (3.8) yields (3.11). To prove (3.12), we note that A’ is a diagonal matrix
with elements 1/4; if A; # 0, and 0 if Aj = 0. Thus AT = AT, and (3.12) is seen to
be symmetric. Also, (3.10) implies that all eigenvectors v of BTD” that correspond
to zero eigenvalues are such that DTv = 0. Considering all such eigenvectors we
have that

DTV = DTVA'A,
whence P given by (3.12) is seen to satisfy (2.1):

B'™P = —B"D"VITA'"W'D = —VATA'V'D = —VIV'D = —RD.
Q.E.D.
The rank condition (3.10) is, by Lemma 2.3, necessary for P = 0 and P > 0.
Formulas (3.11) and (3.12) are therefore useful for, but by no means restricted to,
these cases. A general representation of P, equivalent to (3.8), or under the rank
condition (3.10) equivalent to (3.12), and based on transformation of B to canonical
form (2.16), is given in the Appendix (see (A.17)~A.19)).
Remark 3.2. We used the generalized inverse in the sense of Moore-Penrose
because it is unique and perhaps best known of the various pseudoinverses.
However, of the identities

XX'x =X, X'Xxx'=x' (xxHh=xx', (Xtx)7=Xx'X,

defining the Penrose inverse, we need only the first two. We may define X* by
XX?X =X and X*XX?* = X*, a pseudoinverse that is no longer unique.
Let (RDB)* be

(3.15) (RDB)* = (VTAVT)* & yTIA#T -1y~

this is a symmetric matrix that satisfies the two identities for #. Then, replacing *
in (3.11) by #, using (3.15), and A* = A" and A'T" = T'At, (3.11) reduces to (3.12).
We remark that in passing from one general representation for P to another, the
matrix Y in the second representation, while still satisfying BY = 0, may not be
the same as in the first representation.

Since the symmetry of RDB and the compatibility condition (2.2) are necessary,
R given by Theorems 3.1 and 3.2 is the general, real, symmetric, positive definite
solution of (2.1). Given R, Theorem 3.3 provides the general, real, symmetric
solution P. We thus have all solutions R = RT > 0 and P = PT of (2.1); in
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the next section we obtain all such solutions where in addition P is nonnegative
definite and positive definite.

4. Conditions for P > 0 and for P > 0. In view of (1.6), conditions for
P = 0 (for P > 0) are necessary and sufficient for I, to be nonnegative (positive)
for all x, and all t, < t,. They are important also for the solution of the inverse
problem with positiveness conditions on Q in (1.3), as will be discussed in the
sequel to this paper.

Recalling Lemma 2.3, we use the representations (3.11) and (3.12) for P, and
seek conditions on Y for P to be nonnegative definite and positive definite. We have
the following theorem.

THEOREM 4.1. A real symmetric P given by (3.11) or (3.12) satisfies (2.1) with
R = R" > 0 and is nonnegative definite if and only if the following conditions hold:

4.1) rank DB = rank D,

the eigenvalues A of DB (which by (2.7) must be real) are nonpositive :

4.2) <0, i=1,2--,m,
and in (3.11) and (3.12),
(4.3) Y=Y"2>0;

P is positive definite if and only if

4.9) rank DB = rank D = rank B,
(4.2) holds, and Y is of the form

(4.5) Y=WwrT,

where W has n — rg linearly independent columns (rg = rank B) and
(4.6) BTW = 0.

Proof. The necessity of (4.1), (4.2) and (4.4) is established in Lemma 2.3 and

we now show the necessity of the conditions on Y. Consider formula (3.11) for
P. Let

4.7) x = (I — B(RDB)'RD),

where # is any nonzero vector. Then

43) xTPx = —n"(I — DTR(RDB)'B")D"R(RDB)'RD(I — B(RDB)'RD)y
+n"Yn =n"Yn,

whence (4.3) is seen to be necessary. To prove the necessity of (4.5), assume that
the columns of W do not span B*, the (n — rp)-dimensional orthogonal complement
of the range space of B. There is then a nonzero  in B* such that 7Yy = 0, and x
given by (4.7) is nonzero (being the sum of a vector in B* and a vector in the range
space of B). Then (4.8) shows that xTPx = 0, x # 0, proving the necessity of (4.5).
To establish sufficiency, we first note that as in the proof of Lemma 2.3, (4.2)
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implies that RDB < 0; whence (RDB)" £ 0 (since RDB is symmetric, RDB
= HQHT,HH" = I, and (RDB)" = HQ'H", where Q = diag (w;) and w, are eigen-
values of RDB). Thus the first term in (3.11) is nonnegative and P = 0 under (4.3).

For the case P > 0, let x = n + Bp, where 5 is in the orthogonal complement B*
of the range space of B. Then

x"Px = —x"DTR(RDB)'RDx + nTWwTy,

where the first term is nonnegative and the second is, under (4.5), positive for all

nonzero 1. Thus x"Px > 0 for n # 0. If y = 0, then x = Bp, and for x = Bp # 0
we have

xTPx = —p"B"DTR(RDB)'RDBp = — p"RDBp.

Since —RDB is nonnegative, —RDB = ZTZ for some real Z and then DBp
= —R7'Z"Zp. But since Bp # 0, then under (4.4), DBp # 0 and ZTZp # 0.
Thus x"Px = —pTRDBp = pTZ"Zp > 0. Hence P > 0. For the representation
(3.12) of P we can proceed in a similar manner, or simply note that (3.12) follows
from (3.11) if we replace the Penrose inverse ' by the pseudoinverse * defined in
Remark 3.2. Q.E.D.
Theorem 4.1 together with the theorems of § 3 establish the sufficiency part
of Theorem 2.2. The equivalent of Theorem 4.1, for a partitioned P that results
when B is in canonical form (2.16), is given in the Appendix (see (A.21)—(A.25)).
Since (3.10) is necessary for P = 0, it is clear that (3.11) or (3.12), together with
the conditions (4.3) and (4.5) on Y, are the general, real, symmetric solutions P = 0

and P > 0 of (2.1). We thus have all the desired solutions R and P of (2.1), needed
for solving the inverse problem.

5. The inverse problem. If matrices B and D of (1.1), (1.2) satisfy the condi-
tions of Theorem 2.1, we can construct an R = RT > 0 as in Theorems 3.1 and
3.2,anda P = PTasin Theorem 3.3, so that (1.4)is satisfied. To construct a bounded
Q from (1.10) we require that P be differentiable. We therefore make the following
assumption.

AssUMPTION 5.1. In (1.1), (1.2), B(t) and D(t) are differentiable on [¢,, ;] and
are of constant rank.

The latter part prevents an apparent discontinuity in P due to a change in the
rank of Y = WWT, mandated by Theorem 4.1 for P > 0, at the instant B changes
rank. However, since the direct problem does not require Assumption 5.1, and
our representations for P are general, it is clear that the assumption is for con-
venience only.

We now show that a performance index (1.3) with the weighting matrices
R, Q and F = P(t,) constructed in §§ 3 and 4 is minimized by the control (1.2).

LEMMA 5.1. Consider a closed-loop linear system (1.1), (1.2). Let R > 0, Q, P,
and F = P(t,) be arbitrary uniformly bounded symmetric matrices satisfying (1.4)
and the Riccati equation (1.5). Then the performance index (1.3) attains its absolute
minimum 1, given by (1.6), over all square-integrable controls, for alt x, and all
to < t; £ 0. The optimal control is uniquely given by (1.2).

Proof. Substituting (1.4) into (1.5) we have

(5.1) —P=PA+ AP — D'RD + Q.
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Multiplying both sides by x and using Ax = x — Bu, we have

d
(5.2 ——&(xTPx) = —(u — Dx)"R(u — Dx) + x"Qx + u"Ru.

By integrating (5.2), setting P(t,) = F, and multiplying by %, we have

31

1 1
~XEP(to)xo +

_ — T —
5 2 ). (u — Dx)"R(u — Dx)dt

(5.3)

ty

1
= —x(t)TFx(t,) + 3
to

3 (x"QOx + uRu)dt.
The right side of (5.3) is the performance index I of (1.3). Since R > 0, the integral
on the left side is nonnegative. Thus I attains its absolute minimum if and only if
u = Dx, as stated. Q.E.D.

When t; = oo in (1.3), the lemma is valid even if the closed-loop system
(1.1), (1.2) is not asymptotically stable, since the integral on the left side of (5.3)
must approach + oo if it is not finite. The time-invariant case, however, must be
treated distinctly. We then arrive at (5.3) by starting with the constant quadratic
matrix equation (1.9) rather than with the matrix Riccati equation (1.5), and since
the performance index (1.7) does not have the terminal term 4x”(¢,)Fx(t,), (5.3) is,
for u = Dx, replaced by

2xT(0)P(0)x(0) — 3x"(00)P(c0)x(c0) = I.

The term 1xT(c0)P(c0)x(o0) can be positive and finite, raising the possibility,
pointed out to us by B. P. Molinari, of an optimal control law that is unstable.
Thus, to draw conclusions from (5.3), we restrict consideration to stabilizing
controls, 1.e., such that x(t,) - 0 as t; » o0. We have the following lemma.

LEMMA 5.2. Consider a time-invariant asymptotically stable system (1.1), (1.2),
and symmetric constant matrices R > 0, P, and Q satisfying (1.4) and the quadratic
matrix equation (1.9). Then the performance index (1.7) attains its absolute minimum
over all square-integrable stabilizing controls for all x,, (1.2) is the unique minimizing
control, and P is the unique asymptotically stable equilibrium point of the Riccati
equation (1.8).

Proof. Only the last assertion remains to be proved. To prove it, we shift
the origin of the Riccati equation (1.8) to P, by considering

(5.4) P(t) = P(t) — P,,.

We find that

(5.5) P=PA,+ AP — PBR™'B"P,
where

(5.6) A.= A+ BD.

Since Re {4;} < 0 for any eigenvalue A; of 4., we have

(5.7) Re {4 + 4;) <0, allij.
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By (5.7), the linear part of (5.5) is asymptotically stable and hence, by Lyapunov’s
first method, P,, = 0 is a locally asymptotically stable equilibrium point of (5.5);
the same holds for P, with respect to the Riccati equation (1.8). It remains to show
that P, is the only asymptotically stable equilibrium point of (1.8). First we
rewrite (1.9) as

(5.8) PA, + ATP = —DTRD — Q.

For given A4, B, D, R and Q, this is a linear matrix equation in P, and it has a unique
solution P, because by (5.7), 4; + 4; # 0 for all i, j. Thus any other solution of
(1.9), say P, , must yield D":

D'= —R'B"P, # D= —R 'B'P,.
Now suppose P, is an asymptotically stable equilibrium point of (1.8). Then, by
reversing the previous arguments,
A, = A+ BD’

is asymptotically stable, and u = D’x provides the minimizing control for. I.
Hence

I, =

T _ 1. Tpr
% XoPyXo = 7XoPXo, all xg,

=

whence P, = P, and D' = D.

Remark 5.1. Lemma 5.2 extends, to the case where Q is not necessarily non-
negative definite, the well-known facts (for Q = 0) (i) that there is a one-to-one
relation between the stability of the Riccati equation and that of the corresponding
closed-loop optimal system, and (ii) that the Riccati equation (1.8) has at most one
asymptotically stable equilibrium point. In contrast with the case Q = 0, however,
the equilibrium point P, may not be positive definite and its domain of attraction
is not generally known. See also recent results in [6] and [7].

We now have all the elements needed for solution of the inverse problem.
Theorems 2.1, 2.2, 3.1, 3.2, 3.4, 3.5 and 4.1, and Lemmas 5.1 and 5.2, together imply
the next theorem.

THEOREM 5.1. Consider a closed-loop linear system (1.1), (1.2) satisfying
Assumption 5.1. It is possible to construct a performance index (1.3) with

(5.9) F=FT, 9Q=0T, R=R">0,

that attains its absolute minimum I, over all square-integrable controls, for all x,
and all ty < t, < oo, if and onlyif for all t,t, < t < t,, the following conditions hold

(5.10) DB has m linearly independent real eigenvectors
and
(5.11) rank BD = rank D.

The minimal value I, can be negative. An index (1.3) such that 1,, = 0 for all x, and

all ty < t; £ oo can be constructed if and only if in addition to (5.10), for all t,
to St =<ty

(5.12) all eigenvalues of DB are nonpositive,
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and (5.11) is strengthened to
(5.13) rank DB = rank D.

An index (1.3), such that 1, > 0 for all xo and all t, < t, < o0, can be constructed
if and only if, in addition to (5.10) and (5.12), the rank condition (5.13) is strengthened to

(5.14) rank DB = rank D = rank B.

If the system (1.1), (1.2) is constant and asymptotically stable, then it is possible to
construct a performance index (1.7) with constant symmetric Q and R > 0, that
attains its absolute minimum I, over all square-integrable stabilizing controls, for
all xq, if and only if the above conditions hold. All performance indices corresponding
to these conditions can be constructed by the general formulas of § 3.

We observe that all conditions for the inverse problem are on the system
matrices B and D, while A is arbitrary (aside from stability in the constant case).
This is so because the inverse problem obviates the stability and existence problems
of the direct problem. Conditions on A, as well as on B and D emerge when
Q = 0is desired (see [1], [2], and the sequel to this paper); the conditions on B,
D, BD, and DB discovered here remain of course necessary properties of a linear
optimal system.

6. Consequences of B having full rank. Normally the n x m system matrix B
has full rank and m < n; in particular, this is so in a single-input system. It is
therefore of interest to record the resulting simplifications in our previous results.

Case 1. rank B = m, m < n. We observe that the rank condition (5.11) always
holds, because by Sylvester’s inequality,

rank BD = rank B + rank D — m = rank D,

which implies (5.11). Further, the compatibility condition (2.2), which somewhat
complicates the construction of R (see Theorem 3.2 and Remark 3.1), is always
satisfied because now a B* such that BTB" = | always exists (e.g., B} = B!
= (BTB)"'BT).

If DB is nonsingular, then formula (3.11) for P reduces to
(6.1) P = —DT(BTDT)"'RD + Y,
the rank conditions (5.13) and (5.14) always hold, and the eigenvalue condition
(5.12) becomes simply
6.2) DB < 0.

Case 2. rank B = m = 1. Here R reduces to a scalar r > 0, B to a column
vector b, and D to a row vector dT. All the conditions of Lemma 2.1 are now

satisfied and P can always be represented by (3.8), where now U is a row vector, say,
U = b" = bT/bTb. In particular, if b is in canonical form, then since

10 r |0 |44 ~y_ | Y 0
o e R Pl S

we find that (3.8) becomes

_ Yll —'rdl
(6.3) pP= [_rd{ _rdz].
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For any b, rank DB = rank D reduces to

(6.4) d™ #0;

then (6.1) becomes

(6.5) P = —(r/d"bh)dd" + Y,
and (6.2) reduces to

(6.6) d™h < 0.

Since r can be any positive scalar and P can always be constructed as in (3.8)
or (6.3), we have a corollary.

COROLLARY 6.1. Every single-input linear feedback system (1.1), (1.2), such
that Assumption 5.1 holds, minimizes a performance index of the type (1.3). A
performance index (1.3) such that I, >0 for all xq and all t, < t, exists if and only
ifforallt,to <t <t,,d™h < 0 holds.

Case 3. rank B = m = n. The case where B is nonsingular is rather trivial:
P is simply — BT 'RD and rank conditions (2.4) and (2.8) are automatically
satisfied.

The case of m > n is unusual, but will be discussed for completeness.

Case 4. rank B = n < m. In contrast with the case of m < n, the compatibility
condition is not automatically satisfied, nor is the rank condition (5.11). However,
(5.11) is implied by the symmetry condition

RDB = B™D"R

because, since BBT is now nonsingular, it yields

(BBT)"'BRDBD = D"RD,
whence, by (2.6),

rank BD = rank (BB")"'BRDBD = rank DTRD = rank D,

which implies (5.11). Also in contrast with the case m < n, the rank condition
(5.13) is now automatically satisfied as can be verified by Sylvester’s inequality.
Finally, (2.1) is now readily solvable for P, yielding

(6.7) P = —(BBT)"'BRD,

which by postmultiplying by BBT(BBT) ™! is seen to be symmetric under the sym-
metry of RDB,

P = —(BB")"!BRD = (BB")"'B(RDB)BT(BBT)"!.
Appendix: Proof of Theorem 3.2. We first reduce B to canonical form by

means of an equivalence transformation

_ 0 0
A.1) B=NBM = [o 1}

where N and M are suitable nonsingular matrices and rg is the rank of B. If we
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define
(A2) R = MTRM, P=(N"YHPN!, D=M"'DN"!,

we find that (2.1)~(2.7) remain valid in terms of the new matrices. We may therefore
assume with no loss of generality that B is initially in canonical form.

According to the hypotheses of Theorem 3.2, the rank condition (2.4) and
the eigenvector condition (2.7) hold. We have

|: 1 '
'B] |: 21 22] I: 21 22:|

(A3) D= |:KD21 KDZZ]
D21 D22

for some matrix K. Now

BTDT — 0 0 _DglKT Dgl — 0 0
0 I,|[DLK" DI, |~ | DLKT DI,|
Thus the eigenvector equation B"DTv = Av has m — ry solutions

v = o1 ], A=0,

T
| —K'v,

where the m — ry vectors v, are any set of linearly independent real (m — rg)-
vectors. The remaining ry solutions are

=1

where the v, are eigenvectors of DI, and by the eigenvector condition (2.7) they
are real and linearly independent. Thus in (3.1),

V 0 0 0
A4 V= b =
( ) [_KTVll sz]’ A [0 Az]’

where V;, is any nonsingular real matrix, and V,,, which is given by
(AS5) Dgz Var = Vaals,

is nonsingular and real. By Theorem 3.1, all R given by

(A 6) R = Vll 0 1—‘11 1_‘12 V’{l —VflK
. - KTVI 1 V22 F{Z 1—‘22 0 VgZ

satisfy the symmetry condition on RDB and we only have to satisfy the com-
patibility condition (2.2) by choice of I'. Expanding (A.6) gives
Ry = Vi TVii, Ry = =R, K+ Vi T,V5,,

A7)
Ry, = K'R K + Vy,T5,V], — Voo 'V K — KTV Ty, Ve,
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0 0
-
#=[o )

and using (A.3), (2.2) yields the conditions

Letting B* be the m x n matrix:

(A-8) (R11K + R12)D21 =0, (RuK + RlZ)DZZ =0.

From the expression for R, in (A.7), R,;K + R,, = V;;I'|,V3,, and (A.8)
becomes

(A-9) V11F12V52D21 =0, V11F12V52D22 =0.

In view of (A.S) and the nonsingularity of V;, and V,,, these conditions reduce to

(A.10) I*12V§2D21 =0
and
(All) Flez =0,

both of which are satisfied by the choice I';, = 0.

Thus, all R = R" > 0 such that both the symmetry and compatibility conditions
hold, are given by all T in (A.6) such that T = T'T > 0, TA = AT and T",, satisfies
(A.10) and (A.11). One such T'y, is Ty, = 0 which is also necessary when D,, (or
equivalently A,) is nonsingular.

This proves Theorem 3.2. The rule for I' can be broken down further:
I',, is any real rg X rp matrix such that

(A.12) [ =T3>0, [y = ATy
Iy, = I'}, is any real (m — rp) x ry matrix such that

(A.13) r,,Vi,D, =0, T,A, =0;
I',, is any real (m — rg) X (m — rp) matrix such that

(A.14) I, =0T >T,05, TTh.

Analysis of (A.13) shows that

(A.15) rank I';, < rank B — rank D.

We conclude this Appendix by deriving a general formula for P when B is in
canonical form (A.1). Using B given by (A.1), D given by (A.3), and U = B',
(3.7) yields

0 DY (K"R;, + R
(A.16) PO - _ |: r 21{( 12 22):| ,
(Ri2K + R2)Dy; (R12K + R;5)Ds;

and (3.9) yields

A.17 y |l O
(A.17) =10 ol
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where Y;, is any real symmetric matrix. From the expression for R, in (A.7),
K = =R{'Ry; + R{'Vi T1,V5.

Postmultiplying K by D, and D,,, and using (A.9) gives

KD,, = “R1_11R12D21, KD,, = R1_11R12D22«
Thus (A.16) becomes
P - _ |: 0 Dgl(RZZ - R{2R1_11R12):|
° (Ry; = RR{{R12)Dy; (Ry; — RLR{{R2)D,
By defining R, as

(A.13) Ro = Ry, — szRﬁlRu’

the general solution P = P, + Y, with Y given by (A.17), is
Py, “D§1Ro]

A1 [—RoDu —RyD»;

where P;, is any real symmetric matrix. The term — R,D,, in (A.19) is symmetric
(as expected), because we find that

(A.20) R, = sz(rzz - rfzrﬁlrw)ng,
whence, using (A.13), we have
RyD,, = szrszgzDzz = V22F22A2V2Tz-

The conditions for P = 0 and P > 0 can be obtained in terms of the par-
titioned blocks of P, from Theorem 4.1 or directly from (A.19) by the results in [5].
Corresponding to conditions (4.1), (4.2) and (4.3), we find that P given by (A.19)
is nonnegative definite if and only if

(A.21) rank [D,; D,,] = rank D,,,
(A.22) all eigenvalues of D,, are nonpositive,
and

(A.23) P,y = —Dj,R,D¥,D,,,

where D%, is any matrix such that D,,D},D,, = D,, and D¥,D,,D¥, = D%,.
For P > 0 it is necessary and sufficient that:

(A.24) all eigenvalues of D,, are negative,

and

(A.25) Pll > _D2T1R0D2_21D21.
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OPEN-LOOP APPROXIMATION OF DIFFERENTIAL GAMES*

RONALD J. STERNf¥

Abstract. A linear differential game of fixed duration where the players are restricted to compact
control sets is approximated in value by a game in which the players may choose any square-integrable
functions as admissible controls. This is done by appending penalty terms to the payoff. The general
approximation result leads to a computational method of estimating the value of a certain class of
games in which the approximating games have open-loop solutions.

1. Introduction. The approach to differential game theory employed in this
paper is that of A. Friedman [2]. The purpose is to give a procedure for computing
the value of a certain class of linear differential games of fixed duration.

Consider the following system of differential equations:

(1.1) X = A()x(t) + B(t)y(t) + C(1)z(t), to =t =T,
with initial condition
(1.2) x(to) = Xq.

Here y(t), which is the control of the player y, is a measurable function valued
almost everywhere in Y, a given compact subset of the Euclidean space R®. Similarly,
z(t), the control of the player z, is a measurable function valued almost everywhere
in Z, a given compact subset of the Euclidean space R

We shall require the following assumptions on the dynamics (1.1), (1.2):

(D) A(t), B(t) and C(t) are continuous m X m, m x s and m X ¢ matrices,
respectively, on the real line.

Condition (D) implies that the system (1.1), (1.2) has a unique solution for
each pair of controls (y(t), z(t)).

The following payoff is now introduced:

To

P(.2) = ofx(Ty)? + f POI(D) — (o) dt

(1.3)

To To
- f [y(t)? dt + J |z(£)* dt.
to to
The goal of y is to maximize P(y, z), whereas z tries to minimize it. The following
assumptions are made regarding the payoff:
(P) p(t)e C>Y(R') and %(t)e C>™(R').
Conditions (D) and (P) imply P(y, z) is well-defined for each pair (y = y(t),
z = z(t)).

* Received by the editors December 21, 1971.

+ Department of Business Administration, University of Illinois, Urbana, Hlinois 61801. This
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The differential game associated with (1.1), (1.2) and (1.3) is denoted by
G(0,0). If (D) and (P) hold, then it is known [2] that G(0, 0) has value, which is
denoted by V(0, 0).

Let p(m, M) denote the Euclidean distance of a point me R? to a subset M
of R?. Let ¢ and & be positive real numbers, and introduce the following payoff
functional :

1 To To
(1.4) P, :(y,2) =Py, z) — Ej p*()(t), Y)dt + g p2(2(t), Z) dt.
to to

Consider the differential game associated with (1.1), (1.2) and (1.4), where the
players are no longer restricted to compact control sets but may choose any square-
integrable functions as admissible controls. This game is denoted G(e, £). Let
V(e, &) denote the upper 5-value of G(e, &) as defined in [2]. In § 2 it is proven that
Ve, &) = V9(0,0) as ¢ - 0, & — 0, at a rate uniform in §, where V°(0,0) is the
upper d-value of G(0,0). Thus Vg, &) provides an estimate of V(0,0) for small
g, £ and 6. This approximation result extends to differential games with more
general payoffs than (1.3), as is indicated.

In § 3 we take Y and Z to be unit balls. Instead of (1.4) we use the following
payoff in the approximating game:

To To
(15) P = Pr.a) = [ e+ [ o,

to to
where k is a positive integer. The differential game associated with (1.1), (1.2) and
(1.5), where the players are free to choose any square-integrable control functions,
is denoted by G,. The upper d-value of G, is denoted by V2. We prove that
V2 — V%0,0) as k — oo at a rate uniform in §, by extending the result of § 2.

In § 4 we prove that G, has a unique open-loop solution for each k. In§5 a

computational procedure is given for estimating the value of G,, which in turn is
an estimate of V(0, 0), for large k.

2. The general approximation theorem. We shall require the following lemma.

LEMMA 2.1. Let (D) and (P) hold. Then there is a positive constant n such that
Ty — to < n implies all of the following :

() SUP,er2.5¢0.10) P(ys 2) exists for each ze L>ty, Ty);
(i) inf,ep2,00,.10) P, 2) exists for each y e L*%(t,, Tp);
(iii) there exists an N > 0 such that P(y,z) < N for every y e L*(t,, T,) and
measurable z valued almost everywhere in Z
(iv) P(y,z) > —N for every ze L*%t,, T,) and measurable y valued almost
everywhere in Y.

The proof of Lemma 2.1 is a computation which makes use of the form of
the solutions to (1.1), (1.2) (see [1] and [2]), and repeated applications of Holder’s
inequality.

In [2] Friedman defines the concept of a 5-game both for the case of compact
control sets, and also for square-integrable function space control sets. Here
0 = (Ty — ty)/n, where n is a positive integer. Due to Lemma 2.1, an important
property of d-games of the former type generalizes to the latter; namely,

() 3 dy s )
2.1) Ve, &) = 1;16fsll_10p P, {A;, T°) = SlElop T,;fPs‘é(Aé’ ).



22 RONALD J. STERN

Here A; denotes a lower §-strategy for the player z, and ' denotes an upper
d-strategy for y, as defined in [2]. The outcome of a pair (A, I'?) is denoted (), z,),
and the resultant path is denoted x°.
Consider the following payoft:
To

1
(2) P2 = PO22) = [ 02000, Y.
to
G(g, 0) denotes the differential game associated with (1.1), (1.2) and (2.2). An
admissible control for y is as in G(g, £), but z remains restricted to Z as in G(0, 0).
A result similar to (2.1) also holds for G(g, 0).
Lemma 2.1 and (2.1) yield the following fact.

LEMMA 2.2. Let T, — ty, < n and assume (D) and (P) hold. Then for every
e>0,& > 0 and each 6 we have

(2.3) ~N < Ve, &) < V¥%e,0) < N,

where V°(e, 0) denotes the upper 5-value of G(e,0) and N is as in Lemma 2.1.
We now shall define certain classes of d-strategies. Let R be a nonnegative
real number.

C2(R) is the class of upper d-strategies I'* for y such that if A, is any lower
d-strategy for z then the y-outcome of the pair (A;, I'?) satisfies

f“ﬁﬂmnmék

[
Note that the y-outcomes of members of Cﬁ(O) are measurable functions valued
almost everywhere in Y.
Analogously to C)(R), we define Cj(R) as the class of lower d-strategies A, for
z such that if I’ is any upper é-strategy for y then the z-outcome of (A;, I'%) satisfies

JTG p*(zi(1), Z)dt < R.

to
We shall require the following two lemmas.

LEMMA 2.3. Let Ty, — ty <y and assume (D) and (P) hold. Then for each ¢ > 0
and each 6 the following holds:

(2.4) Vo%e,0) = sup inf P, o(As, IY).

I2eC¢(2Ne) AseC3(0)
LEMMA 24. Let Ty — to < n and assume (D) and (P) hold. There exists a
positive constant M such that for each & > 0, &€ (0, 1] and each o the following holds

(2.9) inf _sup P, {A;,I’) = inf sup P, (A;, ).

As T9eC${2N¢) AseCE(Me) TOeCS(2Ne)
Proof of Lemma 2.3. Let y > 0 be given, and let I be such that
Vie,00< inf P, oAy, T2 + 7.

AseC3(0)

Lemma 2.1 implies that if y is sufficiently small the y-outcomes of (A;, ['%) satisfy

(2.6) f " p2(7(t), Y)dt < 2Ne.

0
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Now [ will be modified into a member of Cj(2Ne¢), which we shall denote by
[%. Let ze L*4(t,, T,). Denote the y-outcome of (z, ['%) as [(z). Suppose there is
a te(ty, Ty) such that

t
f p*([%(2), Y)dt = 2Ne.
to
Then define T(z) = [(z) for t, <t <1, and let [*z) be any point in Y for
t <t < T,. Upon varying z over the space L>%t,, Tp), we see that [ is indeed a
member of C5(2N8) Furthermore, the y-outcome of (A;, [') coincides with the
y-outcome of (A,, I'?) for each A, e C%0). This proves (2.4), since y was arbitrary.
Proof of Lemma 24. Let Q =sup{|yl:yeY}. All y-outcomes of pairs
(As, T°) where I'? € CJ(2Ne) satisfy

(2.7) fT0|y"(t)|2dt < 2N + QAT — to) + 202N)"A(Tyy — to)'/.

o

Similarly to Lemma 2.1 we have a W > 0 such that

(2.8) —~W< inf  P(y,z) forevery yeL>%t,,Ty)

zeL2:9(t9,To)

such that (2.7) holds. B

Given y > 0 sufficiently small there exists A; such that
(2.9) sup P, (A;,T?) <inf sup P, (A;, %) +7y<N.

I'%eC$(2N¢) As T9eC$(2Ng)

The remainder of the proof resembles the proof of Lemma 2.3. We can take
M = 3N + W.

From Lemma 2.4 and (2.1) we obtain the following inequality :
(2.10) inf sup  Po(8,,T%) < Ve, )

AseCE(ME) T%eCY(2N¢)

provided T, — t, < 1. (Note that the z-outcomes here are not necessarily valued
in Z almost everywhere. Nevertheless, P, , by its definition implies that z receives
no penalty for leaving Z.)

We can now prove the following lemma.

LEMMA 2.5. Let Ty, — to, < n and assume (D) and (P) hold. Then there is a
positive constant F such that for each 6 = (T, — ty)/n, ¢€(0, 1], £€(0, 1],

(2.11) Ve, &) = Ve, 0) — FE'2.
Proof. By Lemma 2.3 and (2.10) it follows that it suffices to prove
(2.12) inf sup P, o(A;, T%) = sup inf P, o(As, T%) — FEV2.
AseCE(ME) I'eCY(2Ne) T%eC$(2Ne) AseC3(0)

Let p be any point in R?. Let Z(p) denote the subset of Z such that

pp, Z) = p(p, Z(p))-
We now shall define a lexicographic ordering on R%. We say

(a17a27""aq) « (ul’uZ’ T uq)

if either @i, < u,, or &, = uy, -+, 0_; = u;,_, gy < u, for some s =2,---,q.
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Via this ordering it follows that there is a unique point p € Z(p) such that p <« w
for all we Z(p). Thus we have defined a single-valued map ““"” from R? onto Z,
taking p into p.

A slight modification in the proof of Fillipov’s lemma [2] yields the following
result.

LEMMA 2.6. Let z(t) be any measurable function on [t,, T,] valued in R4. Then
2(t) is also measurable.

We are now in the position to define a certain mapping L from the space of
lower o-strategies for z onto C30). Let y; = (y1, V2, - » Y») be any member of

L*%(t,, T,),and let A; be any lower d-strategy for z. L(A,;) = A, is defined as follows :

A(51 =2,, where z; =A;,,
AB,Z(Zlﬁyl) =2, where z, = A;,(z;,)1),
Aa,j(fuJ/hfz’J’Zs T, 2j—1aJ’j-1) = 2ja
where z; = As (2, V1,25, V2, - s Zi_1,Yj-1)» 2 <j £ n,and
Aa = (Aa,la&ma ’Aé,n)‘

Let A; be any lower d-strategy for z, and y any control for player y. Denote
the z-outcome of (A;, y) by z;, and denote the z-outcome of (A;, y) by Ay(y). By the
way in which A; is defined we have that

2= Aa(J/)o
Let y > 0 be given. There exists A, e C3M¢) such that
(2.13) sup PoA,., T < inf  sup  P,o(A,. )+ 9,
I4eC¢(2N¢) AseCE(ME) TOeC$(2Ne)

and there exists [ € C3(2Ne) such that
(2.14) inf P (A;, )= sup inf P, o(As, I?) — .

As€C3(0) I'%eCY(2Ne) AseC3(0)

In view of (2.12)—«(2.14) and the arbitrariness of y, the proof of Lemma 2.5
will be completed if we can show that

(2.15) P,oRs, T%R,) = P, oA, T9) — FE2.

Here A,, = L(A ), and F“(A,,) denotes the y- -outcome of the pair (A,,, ).
Let us denote the outcome of (A;, F“(Aa)) by (25, J5), and the outcome of
(A,,, F %) by (zé, vs). The corresponding trajectories for these pairs will be denoted.

by %% and X? respectively. Thus (2.15) will hold if a constant F can be found such
that

2.16) (T — BTN < Feb2,
To To
e | [ - sorac- [ oo - i(t)lzdt‘ < Fei?
and
To To
2.18) (RO |%5(t)|2dtj§ Feve,
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Let X(e, &) denote the space of trajectories generated by pairs (A;, [°) as A,
varies in Cj(M¢&) and I’ varies in C)(2N¢). If ¢ and ¢ are both in (0, 1], then one can
show that X(e, &) has a uniform bound in the sense of C*™[t,, T,]. Relations (2.16)
and (2.17) follow from this fact and from the following:

To To
@19) [ iz~ ohde = [ ptafo. 2)de < (MEAT, - 1),
to to
Relation (2.18) follows from (2.19) alone. This completes the proof.
LemMA 2.7. Let T, — t, = n and assume (D) and (P) hold. Then there is a
constant H such that for each 6 = (T, — t,)/n and ¢ € (0, 1] we have

(2.20) |V¥e, 0) — V%0, 0) < He'/2.

Proof. The proof is quite similar to the proof of Lemma 2.5. Details will not
be given. Here one verifies that

(2.21) sup inf  P(A;,T°) < inf sup P(A,, ) + He'l?
I4eC$(2Ne) AseC3(0) AseC3(0) T4eC$(0)
in a fashion similar to the proof of (2.12).
We can now state the following general approximation theorem.
THEOREM 2.1. Let Ty — to < n and assume (D) and (P) hold. Then there is a

positive constant D such that for each 6 and each ¢€(0, 1], &€ (0, 1] the following
holds

(2.22) Ve, &) — V(0,0) < D' + E1V2 + §).

Proof. From Friedman’s proof of existence of value for games like G(0, 0) it
follows that for a positive constant C we have |V%(0,0) — V(0,0)] < C§. Lemmas
2.5 and 2.7 then give (2.22).

Remark 1. In G(g, &) replace p by any function ¢ which is 0 on the control sets
Y and Z but which dominates c¢p everywhere, ¢ > 0. It follows that Theorem 2.1
generalizes to this case provided that g is measurable.

Remark 2. Consider the payoff

To
(2.23) P(y, z) = g(x(Tp)) + h(t,x,y,z)dt,

to

where h is continuous on [t,, T,] X R™ x Y x Z and g is continuous on R™. The
general approximation theorem can be extended to the case where the payoff for
G(0, 0) is given by (2.23) and the dynamics are given by (1.1), (1.2) provided the
following assumptions hold:
(i) g is uniformly Lipschitz continuous on compact subsets of R™;
(i) for any compact subset X of R™ the function h is uniformly Lipschitz
continuous in x on [ty, To] x X x R* x RY;
(iii) for any compact subset X of R™ the function h is uniformly Lipschitz
continuous in y(z) on [ty, To] X X x R®* x Z ([ty, To] x X x Y x R9);
(iv) foreach ye L**(t,, Ty)and ze L*(t,, T,) the numbers inf . .a(0. 7o) P(V, 2)
and sup,c;2.s, 1, P> 2) are finite.
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3. Polynomial penalty functions. In this section we shall specialize the control
sets Y and Z, and use an approximating game different from G(e, &), namely G,,
which was introduced in § 1.

The control sets for G(0, 0) are now given by

Y={yeR:y =1}, Z={zeRi|z £ 1}.

THEOREM 3.1. Let Ty — to < n and let (D) and (P) hold. Then there is a positive
constant D such that for each é and each positive integer k the following holds:

(.1 [V~ V(0,0) <D(1 — k™42 4+ k=172 1 9),
Proof. Define the following sets:
Y, = {yeR:|y <k 12k}, Z, = {zeRi:|z < k™),

Let G,(0,0) denote the differential game associated with (1.1)(1.3), where y
and z choose controls valued almost everywhere in Y, and Z, respectively.
V%0, 0) and V(0, 0) denote the upper d-value and value of G,(0, 0) respectively.

Now define the following functions:

0 if |yl < k71,
duly) = 2k .

[yl otherwise,

0 if |z < k12K,

Yil(z) = {

|z|2*  otherwise.

Define the following payoff functional :

To To
(3.2) Py 2) = PG 2) — j swde + [ vyt

t
The differential game associated with (1.1), (1.2), (3.2) where both players choose
their controls from square-integrable function spaces is denoted by G(¢,, ¥,). Its
upper J-value is denoted by V%(¢,, ¥,). Even though the integrand of (3.2) is not
continuous in the controls, a result similar to (2.1) holds for this game also, since
all the results on §-games in [2] extend to this case.

Define another payoff:

To
(3.3) Pyeoly,2) = Py, z) = | ¢ (y(1) dt.

to
The differential game associated with (1.1), (1.2), (3.3) where y chooses square-
integrable controls but z chooses controls valued almost everywhere in Z, is
denoted by G(¢,, 0). Its upper 5-value is denoted V%(¢,, 0). A result analogous to
(2.1) holds also for this game. Similar to Lemma 2.2 we have, for each positive
integer k, the following:

(3.4) —N < VA¢p, ¥) < VA, 0) < N.

Theorem 3.1 will be proven upon verification of the following three in-
equalities

(3.5) V(s> Y1) — Vi(0,0) < D(k™ ' + 8) for some D >0,
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66) Wity ~ Vi s 01,

(3.7) [V2(0,0) — V%0,0) < S(1 — k~'?% for some S > 0.

Relation (3.5) follows from the fact that k'/?p(y, ;) < ¢u(y) and k'/?p(z, Z,)
< Y(2) for all ye R®, ze R? and Remark 1 of § 2.

Relation (3.6) follows easily from the fact that for each ye L*%(t,, T,) and
ze L*(t,, T,) we have |P, , (y,2) — Py, 2)| < AT, — to)/k.

We prove (3.7) as follows: To each pair of controls (y(t), z(t)) in G°®0,0) we
uniquely correspond a pair of controls for GJ(0, 0), namely, (k™ 1/2*y(t), k™~ 1/?*z(t)).
A constant S can be computed such that |P(y,z) — P(k~1/2ky, k= 1/2kp)
< S(1 — k™ Y/2%), Using arguments in [2] (where continuity of the value for games
of fixed duration is proven) we have that (3.7) holds. This completes the proof of
Theorem 3.1.

4. Open-loop solution of G,. We shall require the following theorem, adapted
from [2].
THEOREM 4.1. Suppose y, € [*%(ty, Ty) and z, € L*4(ty, T) satisfy

(4.1) Py, 2 = P, Z) = Pl 2)
for any ye L*%(t,, T) and z € L>%(t,, T,). Then G, has value V, and
(4.2) Ve = P> Z))-

The pair (¥, z,) is referred to as an open-loop solution of G,.

In [2] a variational method is given for computing the (unique) open-loop
solution to G,. We now shall extend the method to G, k a positive integer.

A sufficient condition for (¥, Z,) to be an open-loop solution of G, is that the
following four conditions hold:

d
4.3) %Pk(ﬁk + 9w, Z)l,=o =0 forall weL>%t,, Ty),

d
4.9 d—yPk(yk, Zy + )= =0 forall veL>¥t,, T),

(4.5) PJj,,z) isaconvex functional on L*%t,, T;) which is bounded below,

(4.6) PJy,2) isaconcave functionalon L2%¢t,, T,) which isbounded above.
The fact that (4.3)-(4.6) constitute a set of sufficient conditions is due to
well-known theorems on global optima.
Conditions (4.3) and (4.4) yield the following system of integral equations:
25(8) + 2K 70172 Pult) = aB*(6)SH(Ty, )% To)
(47) To
+ [ 0B Os e s - s@1de,
t

@s) 27,(t) + 2k|Z(0)|2* 22, (t) = — aCX(1)SH(Ty, t)x(Tp)

To
- f p(OC*)S*(t, 1)[X,(v) — X(v)] dr,
where X,(¢) is the solution to (1.1)-(1.2).



28 RONALD J. STERN

We now define a certain map of R® into itself:
(4.9) Wy) = 2y + 2ky1* 2.
A map of R? into itself is similarly given by
4.10) Z(z) = 2z + 2k|z|** 2z,

Notice that the maps given by (4.9) and (4.10) have continuous inverses. The
inverse of %, is given by

_ w
24 2k

Y H(w)

where r,(|w|) is the unique real root of the polynomial 2kx?*~1 + 2x — |w| = 0.
Similarly, the inverse of & is given by

v

R S T T

Using the fact that %, and Z, have inverses, we can rewrite the system
(4.7)-(4.8) as follows:

(4.11) #3(0), Z,2(0) = TG, Z(Z),

where T, is a mapping of C%[t,, To] x C®4[t,, Tp] into itself. From this point on
we shall denote this space simply by C%* x C%4.
THEOREM 4.2. Let (D) and (P) hold. If T, — t, is sufficiently small, then for each

positive integer k there exists a unique pair (Jy, z;) such that conditions (4.3)—(4.6)
hold.

Proof. From the solution of G, found in [2] we have that if T, — ¢, is suffi-
ciently small, say T, — t, < #, the following holds for each positive integer k:

ITZ(y2), Zidz5)) = TdWidy1), Ziz))llcos x coa

= %H(Yz, z3) — V15 Z21)llcos x co.a

for every (y,, z,) and (y;,z;) in C®* x C°4.
We claim that if T, — t, < 7}, then each T, in (4.11) is a contraction. To this
end it suffices to prove that

@.12)

@.13) 125 22) = (V1> 21)llcosxcoa
. = 1(#y2), Ziz2)) — @y 1) Ziz ) coss x coa

for every (v,, z,) and (y;, z;) in C%* x C®4, and every positive integer k. Relation
(4.13) follows from the definitions of the maps %, and %, and the following
geometry : If v, and v, are members of the Euclidean space R” such that |v,| = |v,],
and ¢, € R, ¢, € R! are such that ¢, > ¢; = 1, then [v, — v| < |cv, — cqv4].

Thus, if T, — t, < 7], each T, has a unique fixed point (#,(¥,), Z:(Z.)), the
pair (y,, z,) satisfying (4.3), (4.4).
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From the solution of G in [2], we have # > 0 such that if T, — t, < #, then
the following inequalities hold:
d? . 2
d—sz(y, z+ yl,_o 20 foreveryz,vin L*%t,, T,) and
(4.14)
ye L(to, To),
d2 : 2,5
—d~y~2P(y +yw,2),—-0 =0 forevery y,win L*%t,, T;) and
(4.15)
ze L*(ty, Tp).

Thus P(j,, z) is convex over L>%(t,, T,) and P(y, ) is concave over L>%t,, Tp). It
easily follows that P(¥,, z) and P(y, z,) are respectively convex and concave over
these spaces for each positive integer k when Ty, — ¢, < 7.

The boundedness requirements in (4.5) and (4.6) follow from Lemma 3.1.
Upon taking T, — t, < min {7, 4} the proof is completed.

Remark. In [4] it is proven that when Y and Z are compact convex sets (as
they are in §4), then G(0,0) has an open-loop solution (¥, z). It is not known,
however, how to compute P(y,z) = V(0,0). In the next section a computational
procedure is given for estimating V/(0, 0).

5. Computational procedure. Letting 6 — 0 in (3.1) we have
(5.1) Ve = V(0,0) < D(1 — k™12% + k™12

when T, — t, < 5, where 5 is as in Lemma 2.1. The right side of (5.1) tends to 0
as k — oo. Thus, upon determining D we can pick k sufficiently large to suit the
tolerance we have set for our estimate of V(0,0).

Let (yo, zo) be any element of C°* x C%. Consider the following sequence
of successive approximations:

(52 (@0, 2z) = T, 1), Zilz,- 1) = Q0" 1, SE" 1),
n=1,2, .

Assume Ty — t, < min {n, 77, 7}. Then (#(y,), Zi(z,) converges in C*>* x C*? to
(%G, Z:(2)), and Py, z,) = V) by Theorem 4.1. Note that the maps Q and S
which are defined by the equality on the right in (5.2) are independent of k.

Notice that in (5.2) the inverses %, ! and %, ! are employed to generate the
successive terms. Unfortunately, these maps do not have explicit representations,
due to the fact that the root function r,, introduced in the previous section, does
not have an explicit form for k > 2. Our computational procedure circumvents
this problem.

Let y > 0 be given. Then there is an n, such that n = n, implies

(53) 1), Z(z0)) = (DY), L@ cossxcoa = 7
In particular, n, can be taken to be any n such that
(5.4) @ M(@lyo)s Zizo)) — (Qo)s SEo))l cosx co.a < 7,

due to (4.12), (4.13), and the fact that T, is a contraction mapping.
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Also notice that for each n = 0 we have
55) 1 (V)s Zi(z,)) = (Q(¥o)s Szl cous x coa

= 2{(Flyo)s Zi20)) — (Qo)> S(Zo)ll corsx co.a-

Let B denote the closed ball of radius [[(Q(yo), S(zo))llco.sxcona
+ 2[(#(yo)s Zil(20)) — (Q(Yo), S(zo)llcoisxcoa in the space C** x C™% In view
of (5.5), the sequence (5.2) remains in Bforalln =0,1,2, --- .

We now shall give a computational procedure for estimating the terms of
the sequence (5.2), up to stage n,.

Let ¢ > 0 be given. We shall find a pair of functions, (§,, Z,), such that

(5.6) 115 21) = 15 2)llcos xcoa < €.
Let f§ be a positive integer. Define

(To_l;i), i=0,1,---,p.

tp=1ty+j
At each t; compute the values r,(Q(yo(t;)) and r(|S(zo(£))l). Let q4(t) be a poly-
nomial which agrees with r,(|Q(y,(t))|) at each t;. Similarly, let s,(t) be a polynomial
which agrees with r,(|S(z,(t;))|) at each t;. (See [3] for a method of accomplishing
this.) Since the derivative of r, is bounded on [0, o) by %, the polynomials g,(t)
and s,(t) approximate r,(Q(yo(®))) and r,(S(zo(®))) uniformly on [t,, Tp] to an
arbitrary tolerance, depending on how large f is chosen to be.

Now define
Lo OQ(yo(1)
(57) yl(t) - 2 + 2k[q1(t)]2k_2
and
(5.8) 2.(0) S(zo(0))

T2+ 2k[s, (0177

Thus, given the pair (y,(t), zo(t)), f may be chosen to be sufficiently large so
as to guarantee (5.6).
Now define a pair (j, 2,) by the relation

(5.9 (#(72), Zid23)) = (Q(2), S(22)).
In the same way that we constructed (y,, Z;), we construct (¥,, Z,) such that
(5.10) (V25 22) — (V25 22)lIcous xco.a = €.

Let B be a compact subset of C%* x C°4such that B < B. If ¢ is sufficiently
small, then both (§,, 25) and (J,, Z,) are in B. Let Oy(-) denote the modulus of
continuity of %, on B, and let Op( - ) be the modulus of continuity of Z;, on B. Let
Ox(-) = O5(+) + Op(-). Then (5.10) implies

(5.11) H24(32), Zu22)) = (Z(72), ZuZ))ll cos xcoa S Ole).-
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In view of the fact that the maps Q and S are Lipschitz continuous on C°*
and C°1 respectively, we have a positive constant C such that
(5.12) I #2)s Zid22) — (Z52), ZilZ2))l|cosx o0 < Ople) + Ce

due to (5.6), (5.9) and (5.11).

We continue in this way step by step up to stage n,. If ¢ is sufficiently small
(which means f is sufficiently large at each stage), then (%(7,), Z«(2,)) € B for each
nsn,.

Define the following function:

g(a) = Co + COx0).
We then have
(5-13) 1@yn,)s Zidz0)) — (@Fn)s ZiZu ) cous x coa

where the function on the right is the (n, — 2)-fold composition of g with itself,
evaluated at ¢. It is clear that g™ ~2)(e) - 0 as ¢ — 0.
Thus, (5.1) and (5.13) yield

|Pk(@k(j}'n7)’ gk(zny)) - V(O’ 0)'
< DU~ KP4+ K7 oyl + g 70),

where wg is the modulus of continuity of P, on B.

Remark 1. The method presented in §§4 and 5 extends to more general
convex control sets Y and Z than the unit balls. For example, the procedure will
generalize directly if

s q
Yz{yeRs:Z|yi|4§1}, Z={zeR":Z|zil4§1}.
= ,

i= i=1

< g™ ),

(5.14)

In this case one chooses polynomial penalty terms in G, which are of degree 4k.
Remark 2. Suppose that we defined the payoff in G, as follows:

T T

(5.15) P2 = P29 - | U1 gy

to

o
f0f D adr |

to

An approximation result similar to Theorem 4.2 may be proven for this case.
Upon generalizing the computational method of § 5, one encounters a variant of
the difficulty presented by the fact that r, has no explicit form; that is, the inverse
of the function d(x) = 2x + 2k x €“**~1 when x € R has no explicit form.

Acknowledgment. The author is indebted to Prof. A. Friedman for his many
useful suggestions, including that this area of study be undertaken.
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UNCONSTRAINED CONTROL PROBLEMS WITH QUADRATIC COST*
RICHARD DATKOt

Abstract. This paper considers a class of control problems where the cost is quadratic, the dynamics
are linear and the controls are unbounded. The optimal control is obtained by computing the Fréchet
derivative of the cost and setting it equal to the zero vector. In the case of linear autonomous differential-
difference equations conditions are found for optimization of the cost over an infinite interval. These
lead to feedback controls which stabilize the system.

Introduction. In§ 1 and § 2 of this paper we show that a class of linear optimal
control problems with quadratic cost functionals can be treated by a reasonably
simple and straightforward procedure which reduces the problem to the solution
of a Fredholm integral equation. The type of problem studied here was first
considered by Kalman [13] for finite-dimensional systems and an excellent
treatment of it can be found in the book of Lee and Markus [17]. Extensions of
Kalman’s work either to a Hilbert space setting or involving linear differential-
difference equations can be found in [6], [7], [16], [18], [19] and [20].

The basic idea in this paper is to treat the problem as a variational one and to
compute the Fréchet derivative of the quadratic cost functional in a Hilbert
space. It is shown that the optimal control is unique and can be obtained by setting
the Fréchet derivative equal to the zero vector. The optimal control can then be
described as either a linear feedback or as a time-dependent function of the initial
point in the phase space. From either viewpoint this leads to the solution of a
Fredholm integral equation. Kushner and Barnea [16] have considered a problem
similar to ours for differential-difference equations and have reduced it to solving
a system of partial differential equations. We believe that our approach is more
satisfactory for two reasons: first, we can deal with a more general class of prob-
lems and second, the solution of many systems of linear partial differential
equations are obtained by solving integral equations.

Using results from § 2 we are able, in the case of linear autonomous differential-
difference equations with quadratic cost functionals, to consider optimal control
over an infinite interval. We show for these problems that if we can optimize them
over the positive half-line, then the optimal control is a linear feedback control
which gives rise to an asymptotically stable linear differential-difference equation.
This result extends the work of Krasovskii [14] and Ross and Fliigge-Lotz [22]
since in both these papers the admissible controls are assumed to satisfy conditions
which we show must hold a posteriori. In [14] and [22] it is assumed that the
admissible controls are feedback controls which stabilize the given system.

Section 4 is essentially an appendix to § 3. Here we obtain a necessary and
sufficient condition for the problemin § 3 to be optimized over the positive half-line.

Since § 1 is an extension of the work in [7] to a more general setting and the
proofs of the results in this section are essentially the same as in that paper, they
will thus only be sketched. The proofs of the results in the remaining sections will
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1 Department of Mathematics, Georgetown University, Washington, D.C. 20007. This work was
supported in part by the National Science Foundation under Grant GP 32325.
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be given in more detail; however, in some instances routine but technically
complicated proofs will be omitted.

Delfour and Mitter [24] have recently obtained results similar to those of § 3
for linear autonomous hereditary differential equations in a Hilbert space setting.

1. We first introduce some preliminary notation.

1. X will denote a Banach space over the real numbers and X* its topological
dual. The norms on both spaces will be denoted by | -| and the continuous linear
functionals by the notation {x*, x>, where x*€ X and x € X.

2. H will denote a real Hilbert space with inner product (-, -)and norm || - ||.

3. Let [0, T]= I be a finite closed interval. Then L,(I, H) will denote the
equivalence classes of measurable mappings from I into H which are square
integrable. The norm in L,(I, H) is given by [ull = ([} |lu(+)|* dt)*/?. It is shown
in [10] that L,(I, H) with the inner product (u, v) = [T (u(t)v(1)) dt is a Hilbert space.

4. Let X, and X, be any two real Banach spaces. The Banach space of con-
tinuous linear mappings from X, into X, will be denoted by L(X,, X,). In the
special case where X, is the real line, the notation X¥ = L(X, R) will be used.

The following operators will be used to define the control problem given by
(1.1) and (1.2) below.

S. (a) S(t, s) will denote a family of mappings in L(X, X) which are strongly
continuous in the triangle A = {(t, x):0 < s < t < T}. The adjoint system S*(t, s)
will also be assumed to be strongly continuous on A.

(b) The mapping B:I — L(H, X) will be assumed to be strongly measurable
as well as the adjoint mapping B*:I — L(X*, H).

(c) The mapping W:1 — L(X, X*) will be assumed to be strongly continuous.
In addition W will be assumed to be nonnegative and symmetric on [ in the sense
that for all pairs x, y in X and tin I, {W(t)x, x> = 0 and <W(t)y, x> = {W(t)x, y).

(d) The mapping U :I — L(H, H) will be assumed strongly continuous and
symmetric. Moreover, there exist two positive constants m; and m, such that for
allue H and t in I, m||u||* £ (U(t)u, u) £ m,||lul|®. The last condition ensures the
existence of U~ !(t) as a strongly continuous mapping from I into L(H, H).

Statement of the problem. Let x, in X be given. The problem is to minimize
the functional defined on L,(I, H) by the equation

Cu, xo) = JT CW()x(t, u, xq), x(t, u, xo)) dt
0

(1.1) .
+ [ W, uwya,
0
where
(1.2) x(t, u, xo) = S(t, 0)xy + Jq S(t, s)B(s)u(s) ds.
0

DerFINITION 1.1, If the infimum of the functional C(-, x,) exists, it will be
denoted by m(x,). A u in L,(I, H) for which the infimum is attained will be denoted
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by u™ and the corresponding solution of (1.2) by x™. The mappings u™ and x™ will
be called, respectively, the optimal control and optimal trajectory for C(-, x,).

LeMMA 1.1. For each x, in X the infimum m(x,) of the problem (1.1}1.2) is
finite.

Proof. Observe that C(u, x,) = 0 for all ue L,(I, H). Let u(t) = 0 on I. Then
since W(¢) is strongly continuous, 0 =< m(x,) < C(0, x,) < + oo, which proves the
lemma.

LEMMA 1.2. There exists a unique u™ in Ly(I, H) such that m(x,) = C(u™, x,).

Proof. The proof is entirely similar to the proof of existence and uniqueness
given in Theorem 1 in [7] and is therefore omitted.

THEOREM 1.1. The optimal control for the problem (1.1)-(1.2) is given by the
equation

(1.3) u™(t) = — U~ Y(t)B*(1) IT S*(s, YW(s)x™(s) ds.

Proof. Let ue Ly(I, H) be fixed. The Fréchet derivative of C(u, x,) can be
computed as in [7, (10)] to be

(1.4) C'(u, xo)(t) = Z[B*(t)jT S*(s, yWI(O)x(s, u, xo) ds + U(t)u(t):l.

Since u™ is the unique minimal point of the functional C(-, x,), it follows that
C'(u™, x,)(t) = 0 a.e. on I (see, for example, [4] or [8]). But U~ () exists for all
t € I. Hence (1.3) follows from (1.4).

The following corollaries are consequences of Theorem 1.1. Their proofs are
omitted since they are similar to some numbered corollaries in [7,§ 1].

COROLLARY 1.1. The second Fréchet derivative of the functional C( -, x,) exists
and is a positive definite bilinear functional in L,(I, H).

COROLLARY 1.2. There exists only one point in L,(I, H) such that C'(u, xy) = 0.
Hence the integral equation (1.4) and the optimal control have unique solutions.

COROLLARY 1.3. Let a and b be scalars. If u™ and v™ are optimal controls for the
functionals C(-, xo) and C(-, x,) respectively, then au™ + bv™ is the optimal control
for the functional C( -, axy + bxy).

We define the mapping (¢, x) > K(t)x from I x X into X* given by the
equation

(1.5) K(t)x, = JT S*(s, YW(s)x™(s, u™, xq) ds.

THEOREM 1.2. The mapping from 1 x X into X* defined by (1.5) is for each
fixed t in I a linear mapping from X into X* and K(0) is symmetric in the sense that
{(K@O)x, y> = <KO)y, x> for all x,y in X. Moreover, for each x, in X,
CK(0)xo, Xo) = m(x,).

Proof. The linearity of K(t)x is a consequence of Corollary 1.3. To prove the
rest of the theorem, let x; and x, be fixed in X and let u(t) and v(t) be the optimal
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controls for C( -, x;) and C(-, x,) respectively. By (1.5) and (1.2),
T
CKO)xy, x50 = f CS*(s, 0)W(s)x™(s, u, X1), X5 ds
0

= fT SW(S)X™(s, u, X1), S(s, 0)x, ) ds
(1.6) ’

= fT <WA(s)X™(s, u, x1), X™(s, v, X,)> ds
0

- f ! f <WA(s)x(s, u, x1), S(s, o) B(eyo(ar)) decds.
0 Jo

We apply Fubini’s theorem to the multiple integral in (1.6), interchange the order
of integration and use (1.3) to obtain

JT r {W(s)x™(s, u, x,), S(s, ) B(a)v(ax) ) doe ds
0 Jo

Il

(1.7) J;T do JT {B*(a)S*(s, a)x™(s, u, x,), v()) ds

T
- [ v, o)y da.
0
Substitution of (1.7) into (1.6) leads to the equation
CRO1 %2> = [ WG, ), X765, ) ds
0

(1.8) + J ! (U(s)u(s), v(s)) ds
0

= (K(0)x2, x; ).

The last statement of the theorem is a consequence of equation (1.8) when
X, = X,. This completes the proof of the theorem.

Remark 1.1. The mapping x, — {K(0)x,, x,> of Theorem 1.2 induces an
inner product on X.

Utilizing the form of the optimal control described by (1.3) the optimal
trajectory for the problem (1.1)—«(1.2) has the form

x™(t, u™, xo) = S(t, 0)x,
- f ' f ' [S(t, 5)B(s)U ~ 1(s)B*(5)S*(cx, s)W()x™(ct, u™, x,)] dot ds

0vs

— (&, 0)x,

(1.9) - J: f [S(t, 5)B(s)U ~1(s)B*(s)S*(ct, s)W(o)x™(ct, u™, x)] dov ds

— Jt JJ [S(t, )B(s)U ~ (s)B*(s)S*(at, s)W () x™(ct, u™, x,,)] dot ds.
0Vvs
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Applying Fubini’s theorem to both of the multiple integrals in (1.9) we obtain
xX™M(t, U™, x) = S(¢, 0)x,

(1.10) - J(: do J: [S(t, s)B(s)U ~ }(s)B*(5)S*(ct, s)W (et)x™(ct, u™, x,)] ds

— J1T do f(: [S(t, $)B(s)U ~ !(s)B*(5)S*(at, s)W (o) x™(ax, u™, Xo)] ds.
Let
- L S(t, )BE)U {(BH(5)S* (o, W@ ds il 0Sa <,
(L11) O, 0) =
- J; S(t, )B(s)U ™~ '(s)B*(5)S*(a, )W(w)ds if t<a< T

Using (1.11) we can state the following theorem.

THEOREM 1.3. The optimal trajectory for the problem (1.1}~(1.2) is the unique
solution of the Fredholm integral equation

T
(1.12) x™(t, xo) = S(t,0)xq + f o(t, o)x™(a, xo) dot,
0

where Q(t, o) is given by (1.11).

2. In this section we shall consider an analogue for functional differential
equations of the control problem posed in § 1. Asin § 1, we shall first introduce some
conventions.

1. We shall use vector matrix notation. All vectors and matrices are real.
Vectors will be denoted by lower-case letters and matrices by upper-case letters.
The transpose of a vector will not be distinguished when it is clear what is meant
from the context. In this regard xy will denote the usual inner product of two vectors
of the same dimension. The transpose of a matrix A will be denoted by A*. Thus
if Ais an n x n matrix and x and y are n-vectors, xAy = yA*x. In general, unless
otherwise specified, the notation will conform to that used in [2] or [11].

2. A(t, s) will denote an n x n matrix with entries g, (t, s) such that:

(i) A(t, s) is Lebesgue measurable in (¢, s) and for fixed ¢ is of bounded varia-
tion in .
(ii) There is a constant t > 0 such that A(t,s) = A(t, —t) if s < —7 and
A(t,s) = 0if s = 0.
(iii) There exists a Lebesgue integrable function m(t) defined on the finite
interval [0, T] such that |a;j(t, s)] < m(t) for all s and the variation with
respect to s satisfies the inequality

\3 a;(t, s) < m(t)

forall i, jand t.

3. B(t) will denote an n x m matrix whose entries are uniformly bounded
and measurable on [0, T].



UNCONSTRAINED CONTROL PROBLEMS 37

4. Ly(R*, R™) will denote the equivalence classes of all measurable square
integrable mappings from [0, co) into R™. This is a Hilbert space with inner product
(v, u) = [ 3 v()u(t) dt.

S. Wy(t, s) will denote a symmetric n x n matrix which is measurable and
uniformly bounded on [0, T] x [—7, 0] and such that xW(t, s)x = 0 for all x in
R" and (t,s). W{(t), 1 £i < k, will denote n x n positive semidefinite matrices
which are measurable and bounded in [0, T7].

6. U(t) will denote an m x m matrix which is symmetric and measurable and
such that for all ue R™ and t € [0, T] the inequality m uu < uU(t)u < m,uu holds,
where m; and m, are positive constants.

7. BV[—r, 0] will denote the Banach space of all mappings ¢:[—7,0] - R"
which are of bounded variation, and C[—1, 0] will denote the Banach space of
continuous mappings from [—7, 0] into R". The norm on C[—1, 0] will be given

by|¢| = Sup—t§s§0(2?=1(¢i(s))2)1/2'

Statement of the problem. Let ¢ € BV[—1, 0] be given. The problem is to
minimize the functional C(-, ¢) defined on L,(R™, R™) by the equation

T k
Clu, @) = | Y [x(t — ©)WiDx(t — 7))

0 i=1

(2.1 .
+ f x(t + s)Wy(t, s)x(t + s)ds + u(t)U(t)u(t)] dt,

where 0 <1, <1, < --- <1, <1, and x(¢) satisfies the differential-difference
equation

(2.2) x(t) = JO x(t + s)d A(t, s) + u(t)B(t)
with
(2.3) x(t) = ¢(t) on [—r1,0].

It has been shown in [1] and [2] that given u € L,(R™, R™) and ¢ € BV[—1, 0]
there exists a unique absolutely continuous vector function x(¢) which satisfies

(2.3) on [—1,0] and (2.2) a.e. on [0, T']. Moreover, x(t) has the following analytic
representation for t > 0:

t

x(t) = $(0)S(t, 0) + j u(e)B(o)S(t, o) dot

0

+ Jiqb(s) dy [J: Ala, s — a)S(t, o) dcle ,

where S(t, o) is a unique #n X n matrix which is measurable in (¢, «) and of bounded
variation in « for ¢ fixed, and conversely. S(¢, o) also satisfies the relation (see, for

(2.4)
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example, [2])
St t)y=1 (the identity matrix),

S(to)y=0 if o>t
(2.5)

S(t, o) + Jt AB, o — P)SEt, p)dp =1, ae[0,1].

Remark 2.1. Although we consider the control problem in this section to be
over the interval [0, T'], this is not restrictive. The main reason for not considering
a more general interval of the type [¢,, T] is to keep notational complexity to a
minimum. However, all results obtained in §2 apply equally well to the same
problem considered over intervals of the form [t,, T]. This fact will be needed in § 3.

DEeFINITION 2.1. If the infimum of the functional C(-, ¢) exists, it will be
denoted by m(¢). A u in L,(I) for which the infimum is attained will be denoted
by u™ and the corresponding solution of (2.2) by x™. The functions ™ and x™ will
be called, respectively, the optimal control and optimal trajectory for C(-, ¢).

The following lemma is similar to Lemma 1.1, and therefore its proof is
omitted.

LemMA 2.1. For each ¢ € BV[—1,0] the infimum of the problem (2.1)+2.2) is
finite.

LEMMA 2.2. For each ¢ € BV[—1,0] and ue L,(R", R™) the Fréchet derivative
with respect to u exists and is given a.e. on [0 T) by the equation

C'(u, d)(t) = 2[ (HU(t) + { Y x(oz — 1) W()S*(o — 1;, t)do
(2.6)
+ f f x(o + s)Wp(ar, $)S*(o0 + s, t) ds da} B*(t)].

Proof. The existence of the Fréchet derivative is a consequence of the fact that
C(-, ¢) is a quadratic functional on L,(R*, R™). Using the fact that S(t,«) = 0
if o > 0, it is easy to compute for each he L,(R", R™) the identity

(C'(u, @), h) [ f J T)Wit)h(a)B(e)S(t — t;, o) da dt
2.7 + f f f x(t + s)Wy(t, s)h(e)B(e)S(t + s, o) do ds dt
0 -t YO0
+ f ' h(®)U(t)u(r) dt].
0

Applying Fubini’s theorem to the multiple integrals in (2.6) we obtain

(Cw, ), h) = 2[ i JT JT Xt — T)WOSHt — 7, )B*)h(x) dt da
(2.8) + j f f x(t + s)Wy(t, s)S*(t + s, o) B*(a)h(x) ds dt do

T
+ f u(o)U(a)h(er) da] .

0
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Since (2.8) holds for all he L,(I) it follows that C'(u, o) must be given by (2.6).
This completes the proof.

THEOREM 2.1. The optimal control for the problem described by equations
(2.1)2.3) is given by

u™(t) = ——[ i ! X" — )W )S*( — 714, t) da
i=1Jt

(2.9) T 0
+ f f X" + s)Wo(at, $)S*( + s, 1) ds da] B*) U™ (p).

Proof. The optimal control satisfies the condition C'(u, ¢)(t) = 0 a.e. on
[0, T]. Thus (2.9) is an immediate consequence of (2.6).

The following corollaries are stated without proof since the proofs are
similar to those given in [7,§ 1].

COROLLARY 2.1. The second Fréchet derivative of C( -, ¢) exists and is a positive
definite bilinear functional in L,(R™, R™).

COROLLARY 2.2. There exists only one point in L,(R™, R™) such that C'(u, ¢) = 0.
Hence (2.9) has a unique solution.

COROLLARY 2.3. Let a and b be scalars. If u™ and v™ are optimal controls for
C(-,¢) and C(-,y) respectively, then au™ + bv™ is the optimal control for
C(-,a¢ + by).

COROLLARY 2.4. The solution of the control problem (2.1)~2.3) is given by the
linear integral equation

t k T
() = p(O)S(t,0) — f [ s — Wi s — w2

0

+ fT fo X" + s)Wo(B, s)S*(B + s, a) ds dB]B*(oc)U‘ Yo)B()S(t, o) dox

+ f é(s) ds[ fo Ao, s — a)S(t, ) da].

DEFINITION 2.2. Let ¢, and ¢, in BV[ —1, 0] be given. Let the pairs (x,(t), u,(?)),
(x,(t), u,(t)) be the optimal control and optimal trajectory for the functionals
C(-, ¢,)and C(-, ¢,) respectively. Define the expression

T &k
Oy, ¢2) = J; [;1 x4(t — T)We)x,(t — 7))

(2.10) o
+ f X1(t + s)Wy(t, s)x,(t + s)ds + ul(t)U(t)uz(t)] dt.

Notice that Q(¢y, ¢,) = Q(¢,, ¢y) and Q(dy, ¢y) = m(¢,).
DEFINITION 2.3. Let ¢ be in BV[—1, 0]. Let x™ denote the optimal trajectory
for C(-, ¢). For each t € [0, T] define the column vector

T

Loy = .Zkil S(o = 7, OWo)x™( — 7;) da

(2.11) r o
+ f f [S(ex + s, )Wy(at, $)x™(a + 5)] ds da.
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Remark 2.2. Notice that (t,¢) - L(t)¢ is a continuous mapping from
[0, T] x BV[—r1,0]into the space of continuous functions defined on R". Moreover,
because of Corollary 2.3, it is linear on BV[—1, 0] and for ¢ fixed L(t)¢ is a linear
mapping from BV[—1,0] - R".

Consider the bilinear form on BV[—r1, 0] given by

0 T
Q1D €y = WOLOW + [ ), | Ales = AL

THEOREM 2.2. The bilinear form defined by (2.12) is symmetric and equal to the
form Q of Definition 2.2. That is, for all ¢ and \y in BV[—1, 0],

K ¥) = Y o) = Q. ¥) and K¢, d) = m(¢).

Proof. Let ¢ and ¢, in BV[—1, 0] be given and let the pairs (x,(t), u{t)) denote
the optimal trajectories and optimal controls for the functionals C(-, ¢,), i = 1, 2.
Using (2.11) we can write

k T
SO0, = T | 6,000 = 5 W), = )
(2.13) =l

T pO
+ f f d,(0)S(a + s, 0)Wy(ax, s)x, (o + 5)ds dot.
0 -1

Observe that by (2.4), (2.5) and the fact that — 7 < s £ 0,

R e | " 12(0)B()S(a — 7. 0)do

(2.14) . ]
- [ esord, | ag.o = ps — . prp
and
¢,(0)S(x + s5,0) = x,(o0 + 5) — Jw u,(0)B(0)S(a + s, 0)do
(2.15) 0

0 T
- | 61014, | .o~ pSta +5.prap.
Substitution of (2.14) and (2.15) into (2.13) yields

ko pT
0200 LO0)p, = Y. | xa(x — T)Wio)xy (o — ;) dox
i=1Jo
+ fT jo [x,(0 + S)Wo(ar, s)x,(o0 + s)] dsda
- Z f f [u,(0)B(c)S(ax — t;, 6)Wi()x (¢ — 7;)] do da

(2.16) :i f [ J $,(0)d, J A(B, o — P)S(a — 7;, B) dﬁ]

1

- Wile)xy (o — 7;) dor (cont.)
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_ j‘T J-o f [u,(c)B(0)S(ec + s, 6)Wy(at, s)x (ot + )] da ds so
0 J—-1J0

_ f j [ J_Otgbz(a)da f AB,o = PS(a + 5. B) dﬁ]

- Wy(o, s)x (ot + s)dsdo.

If we examine the multiple integrals in (2.16) which contain Stieltjes integrals and
apply the unsymmetric Fubini’s theorem (see, for example, [3] or [2]), Fubini’s
theorem, the fact that S(e, f) = 0 if § > « and equation (2.11), we can express the
integrals as follows:

k T 0 T
> [f $2(0) daf A, o — P)Sla — 7, p) dl{l Wi)x (o — ) dox
i=1J0 -1 0

. Lr Ji Uid)z(g)da Lt AB, o — P)S(at + s, ﬁ)dﬁ]

- Wy(at, s)x (o + s)dsdo
k 0 T T
e =3 [ oo, [] 6.0~ bt = < oz — <) duap
i=1v-—1 0ovp
0 t pT pO
+ quz(a)d,, LL J:tA(ﬁ,a — P)S(a + s, B)
- Wola, 9)x,(o + s)dsdadp

_ f ,(0)d, L AB, o — BB, dp.

We substitute the right side of (2.17) into (2.16) and apply Fubini’s theorem in a
judicious manner to obtain

k T
$,(0)L(0)p, = Z Xy(00 — ) Wlo)xy (o — 1) dot
i=140

+ JJ JO x,(o + S)Wo(a, s)x (o + s)dsdo
T k T
(2.18) — f [Z u,(0)B(0)S(oc — t;, o)Wie)x (o — ;) dot
o LiT1Je

- fT fo u,(0)B(0)S(ax + s, o)Wy(a, s)x (o + s)ds doc] ds

0 T
~ [ s [ 4.0 - prss,ap |
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But because of (2.9),

j[z u5(0)B(@)S(x — 1, )W), (o — 7)o

+ J I u,(0)B(6)S(at + s, 0)Wo(at, $)x (et + S)ds doc] do

(2.19) = —u,(o)U(0)u,(0).
If we substitute (2.19) into (2.18) and apply (2.10) we obtain

220 GOL08, = 0ds.b2) — [ da0)d, | (B 7 ~ HLEY, dp.

which proves the theorem.

Example. The following example, a system considered by Kushner and
Barnea [16], will perhaps motivate the reason for selecting the bilinear form
defined by (2.12).

Consider the problem

(2.21) x(¢) = A,(O)x(t) + A,(t)x(t — 1) + fo C(t, s)x(t + s)ds + D(t)u(t),
(2.22) Cu, ¢p) = fT X(OW()x(t) + u(t)U(t)u(t)] dt.
0

Here A(t), i = 1,2, and C(t, s) are continuous n X n matrices, x(t) is an n-vector,
D(t) a continuous n x m matrix, u(t) a measurable m-vector whose norm is square
integrable, W(t) a continuous n X n positive semidefinite matrix, U(t) a con-
tinuous m x m positive definite matrix and ¢ is fixed in BV[—1,0]. Using
Theorem 2.1, we compute the optimal control to be

(2.23) u(t) = — U~ Y(¢)BX(¢) fT S*(ot, )W (o) x(et) dox
and
(2.24) L(t)p = y(t) = J(T S*(oe, )W (a)x(o) dox.

Observing that S*(a, t) satisfies the differential equation (see, for example, [11])

%[S*(oc, )] = —A¥)S*(a, t) — A%t + 7)S*(a, t + 7)

(2.25) .
- f C*(t — s, 8)8*(o, t — s)ds,
we find that
d
S w08 =0 W) — AT0K0) ~ A3+ Oyte + )
(2.26)

- fo C*(t — s, 9)y(t — s)ds
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Thus L(t)¢ can be looked upon as a solution of a differential lead equation, and
the optimal control and optimal trajectory are then obtained by looking at a
particular solution of the coupled system (2.21) and (2.26). This is the procedure
used by Nosov [20].

Define the system
(2.27) () = — AF(t)z(t) — A%(t + 1)z(t + 1) — fo C*(t — s, 8)z(t — s)ds

and let x(¢) be a solution of (2.21) with u(t) = 0. The “inner product” of any solu-
tion of (2.27) with x(t) is defined to be

(2(t), X(0)) = 2(0)x(r) + f
(2.28) -

+ f_tfﬂz(s)c(s’a — 8)x(at) ds do.

z(a + 1)A(a + 1)x() dot

It is shown in [2] or [11] that {z(t), x(t)) is constant for all t. Equations (2.26) and
(2.28) are the motivation for defining the bilinear form on BV[—1, 0] given by
the equation

0
Kb, ¥y = {LO), Y(0)> = Y(0)L(0)¢ + f Lo + t)pAy(e + (o) dor
(2.29) o

+ Ji J:H L(s)pC(s, o0 — shy(x) ds da.

Using the fact that S(a, s) = 0 if « < s, it is not difficult to prove directly that

P, ¥y = Ky, ¢ and that ¢, ¢y = m(¢). However, these are also consequences
of Theorem 2.2.

3. In this section we shall apply the results of § 2 to an autonomous control
problem involving differential-difference equations. Our main result in this
section is to prove that for certain linear autonomous systems with gquadratic
cost functionals the optimal control is a feedback control which gives rise to an
asymptotically stable linear differential-difference equation. It will become
apparent that the results of this section remain valid for more complex linear
systems. The reason for restricting the problem is to limit notational difficulties.

We shall first introduce some additional notation.

1. All vectors considered in this section will be column vectors. The inner
product of two column vectors x and y will henceforth be denoted by x - y.

2. Let t, = 0; by the notation ¢,,(-) we shall mean a continuous mapping
from [—1, 0] into R” which is given by the expression ¢, (s), to — T < 5 < to.

We shall first consider the control problem given by the equations:

(3.1 X (t) = Agx,(t) + Ayx(t — 1) + Bu(t)
fort = to and ue L,(R*, R™),

(32) Xt) = ¢ (1) if o —T =t =t
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and cost functional

(3.3) Clu, ¢y, to, T) = JT [Wx,(t) - x,(t) + Uu(t) - u(t)] dt,

to =T < 0.

Here we assume A, and A, are n x nconstant real matrices, Bisann x m constant
real matrix, W is a positive definite real n x n matrix and U is a positive definite
real m x m matrix.

DEFINITION 3.1. We define
(34) m(¢t09 Lo, T) = inf C(u’ ¢t0’ Lo, T)’

ueLy(R*,R™)

and denote by

(3.5 X"t to, T, ¢yo)
and
(3.6) u(t,to, T, dyy)s

respectively, the optimal control and optimal trajectory for the problem (3.1)—3.3).
In addition the notation
(3.7) X;"( 5o, T, ¢t0)’ o =s= T,

will designate the point in C[—1, 0] given by (3.5) fors — 1 <t < s.

Observe that, since (3.1) is autonomous in the variables involving x, the
matrix S(t — a), o < t, of equation (2.5) can be written as in the form S(t — a)
(see, for example, [12, p. 84]). Thus for each ¢,, € C[— 1, 0] and triple of nonnegative
real numbers (t,, t, T) with t, < t < T, we define

T

(3.8) L(t, to, Ty, = f S*o — OWx™(a, to, T, ;) do.

t

Applying Theorem 2.1 we see that
(39) um(t’ tO’ T’ ¢t0) =-U" IB*L(t’ th T)d)to'

(Theorem 2.1 is phrased in terms of row vectors, but by transposing (2.9) and
using (3.8) we obtain (3.9).) In Remark 2.2 it was observed that L(t,t,, T) is a
linear mapping from BV [ —1, 0] into R". In the present case it is clear that L(t, t,, T)
is a linear mapping from C[—1, 0] into R".

LemMA 3.1. If {¢}} = C[—1,0] tends in norm to ¢, € C[—1,0], then there
exists a subsequence {q} of the natural numbers such that for each te€[t,, T] the
subsequence {x]"(-, ty, T, $)} tends in normto X'+, ty, T, ¢,,) and the subsequence
{um(-,to, T, pL)} tends in Ly(R*, R™) tou™(-, to, T, ¢,,).

Proof. There exist positive constants M, and o such that |¢}| < M, foralln
and |S(t) < M,e* for all te R*. Thus if we set u = 0 in (2.4) and substitute the
corresponding solutions {x,}, with x,(t) = ¢} (t) on [t, — 1,t0], into the cost
functional (3.3) we see that for some positive constant M,, m(¢f., to, T) < M, | % |1*
for all n. Since U is positive definite, the form of the cost functional (3.3) implies
that the optimal controls {u™(-, t,, T, $})} are uniformly bounded in L,(R*, R™).
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However, L,(R*, R™) is a Hilbert space and hence reflexive. Consequently there
exists a subsequence {q} of the natural numbers such that {u™(-,t,, T, ¢&)}
converges weakly to some point u, in Ly(R*, R™). Thus for each te[t,, T) the
subsequence {x"(t, t,, T, ¢{)} converges pointwise to x,(t, to, T, ¢,)). Due to the
assumption that both W and U are positive definite matrices we can infer that
Clug, ¢y to, T) < liminf m(pd, ty, T). By an argument similar to the proof of
(c)in Theorem 4 in [7, p. 357], it can be shown that C(u,, ¢,,, to, T) = m(p,,, to, T).
But then it easily follows that
T

T
lim Uu"'(t,to,T,zp?o)-u'"(t,to,T,d):‘o)dt:f Uuy(t) - ug(t) dt.
to

4= 0 Jyg
Again, since U is positive definite this implies that
llm ‘u( T tO’ T$ (b;lo)‘ = ‘uO‘ .
q— ©

In a Hilbert space weak convergence and convergence of the norms implies
strong convergence (see, for example, [21]). Hence {u(-,t,, T, $%)} converges in
norm to ug.

Lastly, observe that the operator [; S(t — s)Bu(s)ds is a continuous linear
mapping from L,(R*, R™) into C[—1,0]. Thus it follows that {x}'(-,to, T, ¢%)}
converges strongly to x}(-, to, T, ¢,,) in C[—1,0].

Some properties of the mapping L(¢, o, T).

PrOPERTY 1. L(¢, ty, T) is continuous.

Proof. The proof is an immediate consequence of Lemma 3.1 and the closed
graph theorem.

PROPERTY 2. For ¢,, fixed in C[—1,0] the function L(t, to, T),, is continuous
in the variables (t, T).

Proof. The proof is by contradiction, but uses standard arguments and is
therefore omitted.

PROPERTY 3. For each ¢,, € C[—1,0] the identity

L(t’ tO’ T)¢to = L(ta ta T)x:”( ) tO’ T’ (bto)
holds.

Proof. By the uniqueness property of Corollary 2.2 it follows that if
x{'(, to, T, ¢,,) is optimal over the interval [¢,, T], then

X;”(-,t, Tvx:"('ﬂto’ Tad)to)) = x;"('»th T’¢t0)
is optimal over the interval [t, T]. Substitution of these mappings into (3.8)

establishes the identity.
PROPERTY 4. If'tq > 0 and ¢, (t, + s) = Y(s) for se [—1, 0], then

Lt + to, to, T + to)p,, = L(t,0, T and m(p,,.to, T + to) = m(y,0,T).

Proof. This property is a consequence of the fact that (3.1) is autonomous,
W and U are independent of t and the definition of L(t, t,, T).

Necessary and sufficient conditions under which the following hypothesis is
valid will be given in § 4.

Hyrotaesis H. For all t, = 0 and for each ¢,,e C[—17, 0] it will be assumed
that limy_, , m(,,, to, T) < 0.
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DEFINITION 3.2. Let t, < T and ¢! and ¢* be in C[—1,0]. Let the pairs
(x!, x?)and (u', u?) denote the respective optimal trajectories and optimal controls
for the control problem (3.1)~(3.3) with initial values ¢' and ¢ over the interval
[to, T]. We define the bilinear form Q(t,, T) on C[—7,0] x C[—1,0] by the
expression

(3.10) Oty T)(", ¢*) = fT [Wx'(t)- x*(t) + Uu'() - u?(r)] dt.

Notice that for each ¢,, e C[—7,0],

(311) Q(th T)(¢109 d)tn) = m(t07 T, d)to)'

LEMMA 3.2. Let 0 £ty < T. Let R(ty, T) be the bilinear form defined on
C[—1,0] x C[—1,0] by the expression

R(th T)(¢zoa l//to) = L(th to, T)d)to(to) : l//to(to)
(3.12)

to
+ f AFL(s + 1, to, Ty, - Wios) ds.

to—

Then R(t,, T) is symmetric and equal to the form Q(t,, T) defined by Definition 3.2.
Proof. This lemma is a special case of Theorem 2.2 in which column vectors
replace row vectors.
The following lemma will be used in the sequel. It is given in an abstract
setting since it is of interest in itself and extends a result which is well known for
Hilbert spaces (see, for example, [21]).

LEMMA 3.3. Let {R(t)}, te R", be a family of continuous symmetric bilinear
forms defined on a real Banach space X such that for each x in X,

0 < R(O)(x,x) = R(O)(x,x) if t=1
(3.13) and

lim R(f)(x, x) < co.

t— o0

To each R(t) let there correspond the continuous linear mapping g(t) from X —» X*
which is given by the relation

(3.14) Cglt)x, y> = {glt)y, x) = R(t)(x, )

(see, for example, [8, p. 104]). Then there exists a continuous linear mapping
g:X — X* such that for all x,y in X,

(3.15) gx,yp =gy, x) = }Lm R(t)(x, y)
and such that for all xe X,
(3.16) lim |g(t)x — gx| = 0.

t— 00

Proof. We shall first show that |R(t) is uniformly bounded on R*. To this
end define for each te R* the seminorm

D()(x) = [R(t)(x, x)]'2.
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By the principle of uniform boundedness (see, for example, [23, p. 68]) it follows
that limj,_,o ®(t)(x) = 0 uniformly on R*. Hence given ¢ > 0, there exists d(¢) > 0
such that for all te R*,

R(t)(x,x) < ¢ if |x] < d(e).
This means
(3.17) R(t)(x, x) £ My|x?

for all te R*, where M, = ¢/6%. This proves uniform boundedness since R(t) is
symmetric.
Since for all x, y in X and te R,

IKg(0)y, x> = ZR@®(x + y,x + y) — R@®)(x — y,x — y),
it follows for |x| = |y| = 1 that
(3.18) gO)y, x) < EMyllx +)1* + [x — yI*] < 2M,,.

This proves that |g(t)] < 2M, forallte R*.

Because R(t) is symmetric monotone increasing and uniformly bounded on
R* it follows that there exists a bilinear form R defined on X and a continuous
mapping g:X — X* such that for each pair x, y in X,

lim R(t)(x,y) = lim {g(t)y, x) = R(x, )
(3.19) oo t— o0

=gy, x) ={gx, y>.

Because of (3.18), |g| < 2M,. Moreover, {g — g(t)x, x> = 0 for all te R*. Thus
we can apply the Cauchy-Schwarz inequality to obtain

[Kg — gy, x>1* = [(g — g(0)x, y>]?
(3.20) = (g — g®)y, y><(g — g®)x, x>
< 2M (g — g0y, yoIx>.

Since lim,_ , <(g — g®)y,y> =0 for all ye X, (3.20) shows that g(t)y — gy
strongly in X*. This completes the proof of the lemma.

THEOREM 3.1. Assume Hypothesis H holds: then there exist a continuous
bilinear form Q on C[—1, 0] and a continuous linear mapping

q:C[—1,0] - BV[—1,0]
such that for ¢, , ¥, in C[—1,0],
Bim Qlto, TYWigs i) = OlWiys 1)

= <q¢)t0’ l//zo> = <ql//,0, ¢to>‘

(3.21)
Moreover, for each ¢,, € C[—1, 0],
(3:22) lim Lito, to, Ty, = lim [(q:,)(0) = (4,)(5)].

Proof. The first conclusion of the theorem is a special case of Lemma 3.3
in which R(t) is replaced by Q(¢,, t) and it is observed that the topological dual of
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C[ — 1, 0]isisometric to the subspace of BV [ — 1, 0] which consists of those mappings
¢ of bounded variation from [ —1,0] — R" for which ¢(—1) = 0 (see, for example,
[9]). The fact that both Q and g are independent of ¢,, is a consequence of Property 4.

To prove the second conclusion of the theorem, observe that by Lemma 3.2
for (to, T) fixed and ¢,,, ¥,, in C[—7, 0],

Olte. T) ey ) = Lltoy to. TV - Y (to) + f AL+ Tt Ty - Yuo) do.

to—t
The above representation of Q(t,, T) gives rise to a linear mapping
q(to, T):C[—7,0] - BV[—1,0]

given by the equations

tot+s
(dlto. T)r,)(s) = f AL + 1o tg. Tyt —7 S5 <0,
to—1t
(3.23)
(@(to: THi)(O) = Lito. to. T, + f ASL(o + <. tg, T)h, do.
to—t
Thus

lim [(q(to, T)p,)(0) = (4(to. i) (5)] = Lito, Lo, T)eby,-

From (3.16) of Lemma 3.3 it follows that for each ¢,, € C[—t, 0],

(3.24) Tlgrgo q(to, )iy = q¢by,

in the normed topology of BV[—1, 0], which implies that
lim Lito. o, Ty, = lim [(4,)(0) — (a6, )],

and establishes (3.22).

DEerINITION 3.3. We shall denote by L the mapping from C[—1,0] - R"
given by (3.22).

COROLLARY. L is a continuous linear mapping from C[—1,0] —» R".

Proof. The proof is an immediate consequence of Theorem 3.1 since
q:C[—1,0] > BV[—r1,0] is continuous.

We now want to consider the problem posed by (3.1}~(3.3) when T = 0.
To this end we shall allow T in (3.3) to be infinity if for each ¢,,€ C[—1, 0] the
cost functional in (3.3) can be made finite over R* for some choice of u e L,(R*, R™).
If this is the case we shall denote the cost by C(u, ¢,,, to, ).

THEOREM 3.2. Assume Hypothesis H holds and let L be as in Definition 3.3

and Q be defined by (3.21). Consider the linear differential-difference equation given
by

() = Agx(t) + A,x(t — ) — BU 'B*Lx,,
(3.25)

x(t) = ¢,o(0), to —T<t<ty,
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and let x(t, ¢,,) denote the solution of (3.25) and x(¢,,) the corresponding point in
C[—1,0]. Then for any sequence of points {T,} = R* such that lim,_,, T, = o
the following holds:
(i) lim,, , X"(, ¢y o, T)) = Xiyo) for each t € [t,, c0),

(11) lirnn—+oo m(‘ﬁto, th T;;) = Q(¢toa d)to) and

(iii) the point ue L,(R*, R™) given by u(t) = — U~ 'B*Lx(t, ¢,,) optimizes the
cost functional C(-, ¢,,, ty, ©).

Proof of (i). Notice that by using the equation for the optimal control, (3.9),
and the Property 3 we can form for any n and t = t, the expression

xm(ta ¢to’ tOﬂ ’I:I) - X(I, d)to)

(3.26) = - f S(t — s)BU™'B*[L(s, to, T,), — Lx(;,)] ds

0

T Jl S(t — s)BU ' B*[L(s, s, T)xY(+, to, Ty, $1p) — Lx(,,)] ds.

o

Hence,

Ixm(ta d)to, Lo, T;n) - X(t, ¢to)l

327) = Ul S(t = ) BUT'B*L(s, s, T)[X{( -, to, Tr, o) — X(Py,)] ds

+

f 'St — BUB*[L — L, . T)Ix(b,,) ds .

Let

(3.28) r(t) = f M "\ BUB¥|[L — Lis, s, T)]xJ(¢,)]l ds.

There exist constants M5 and « > 0 such that
(3.29) [S(t — s)BU " 'B*L(s, s, T,)| £ Mse*" ™9,
Hence using (3.27), (3.28) and (3.29) we can make the estimate

|xm(t9 qst()’ tO’ T;,) - X(t, ¢to)|

(3.30) ,

= nlt) + M sf IXI( o tos T hig) — X )™ dis.
to

Observe that for ¢ fixed the left-hand side of (3.30) also majorizes the expression
Ixm(t + a, ¢toa to> T;;) - x(t + a, ¢to)|

aslongasto <t—t<t+ a=<t Thus

lx;n( T (b,o, to, 7:,) - xt(¢tn)l
(3.31)

t
=r() + MSJ X7, tos Ty, i) — Xo(e) €2 ds.
to
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Using Theorem 3.1 and the Lebesgue dominated convergence theorem we can
show that r,(t) - 0 as n — oo. Thus by Gronwall’s inequality (see, for example,
[S, p- 37, Prob. 1]) it follows that lim,_  x{(-, ¢,,, to, T;) = x,(¢,,) for each
tety, o0).

Proof of (ii). This is a consequence of Theorem 3.1 and the fact that

O(to, 7:1)(¢t0’ ¢to) = m(‘ﬁtm to> T;n)
Proof of (iii). Let

(3.32) X,(t) = X(t, Py, Lo, Th),

(3.33) u(t) = — U™ 'B*Lx(¢,,)

and

(3.34) u(t) = —U'B*L(t, t, T)X{ -, brs to, T,)-

Since |L(t,t, T,)| < M, for all n, L(t,t, T,)¢ — L(t, t, ) for all ¢ € C[—1,0] and
by part (i) above x( -, ¢,,, to, T,) = x,(¢h,,) as n —> oo, we can show that

lim L(t, t, T)X( - » Pro to, Tp) = Lx().

n— oo

Hence using the notation in (3.32)—(3.34) it is easy to prove that for each t € [t,, o0),

lim t [Wx,(s) - x,(5) + Uuy(s) - u,(s)] ds

n=o0 Jyg

(3.35)
- f [Wx(5, hig) - X(5. bue) + Un(s) - u(s)] ds.

From this it follows, since Hypothesis H holds, that

(3.36)  lim m(yy.t, ) 2 lim W (s, i) (5, ) + Uuts)- ()] ds.

n— oo © Jigo

Suppose strict inequality holds in (3.36). Then for some 7,

Tx

MPrgs Lo, T) > | [WX(S, ¢ro) - X(s, i) + Unls) - u(s)] ds,

to

which is impossible. Hence equality holds in (3.36).

On the other hand, suppose that the optimal cost is attained by # # u and
C(@, Py, to» ©) < Qs Pyo)- Then for some n it must follow that C(@, ¢, to, T})
< C(id, ¢y, to, ©) < m(@,,, ty, T,) which is also impossible. Thus the optimal
control is given by (3.33) and the optimal cost is Q(¢,,, ¢.,)-

COROLLARY 1. If Hypothesis H is satisfied, then there exist positive constants f§
and M g such that solutions of (3.25) satisfy the inequality

(3.37) IX(dro) < Mge P71, |, t = t,

that is, (3.25) is exponentially stable.
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Proof. We complexify the spaces C[—1,0], R" and R™ in the usual way and
observe that because of Theorem 3.2,

r) Wxl(t, ¢,,) - X(t, ¢,,)dt < o©

for all ¢,, € C[—1, 0]. Hence (3.25) is asymptotically stable (see, for example, [12]
or [15]). But this implies that all the eigenvalues associated with the semigroup
generated by (3.25)lie in the right half-plane Re Z < 0. This is sufficient to guarantee
the conclusion of the corollary (see, for example, [12]).

4. In this section we give a necessary and sufficient condition for Hypothesis H
to be valid.

First observe that if the uncontrolled system
4.1 X(t) = Aox(t) + Ay x(t — 1)

is asymptotically stable in the sense that all solutions tend to the origin as t tends
to infinity, then Hypothesis H is valid. This is because asymptotic stability for
(4.1) implies exponential decay (see, for example, [12]). It is known (again see
[12]) that solutions of (4.1) with values in the complex version of C[ — 1, 0] generate
a semigroup of operators, T(t), which has an infinitesimal generator 4, and A
can have at most a finite number of eigenvalues lying in any right half-plane.
Moreover, the complex version of C[ —1t, 0] can be decomposed into a direct sum
of two closed subspaces P and Q, with P finite-dimensional, which enjoy the
properties that T(t)P = P, T(t)Q < Q, AP < P, the spectrum of A4 restricted to P
lies in the half-plane Re Z = 0 and T (t), is exponentially stable. Hale [12] has
also shown that on P solutions of (4.1) are determined by an ordinary differential
equation of the form

(4.2) y(t) = Fy(),

and that the projections of solutions of (3.1)~3.2) on P are described by solutions
of an ordinary differential equation of the form

(4.3) () = Fy(t) + Bu(r),

where B is a linear mapping from the complex m-space into a finite-dimensional
complex linear space which has the dimensions of P (see, for example, [12, p. 122]).
Thus we can state the following theorem.

THEOREM 4.1. A necessary and sufficient condition for Hypothesis H to hold is
that the system (4.3) be completely controllable.

Proof. Assume that (4.3) is completely controllable; then given any
¢ € C[—1,0] let ¢, denote its projection on P. There exist ue L,(R*, R") and
T > 0 such that u(t) = 0 on [T, o0) and the solution x,( -, ¢) of (3.1) has its pro-
jection, x5( -, ¢), on P reach the origin of P, O, in time T. But then since u(t) = 0
on [T, o), the solution of (3.1) on [T, c0) is really a solution of (4.1) which lies
in Q. However, all solutions of (4.1) with values in Q are exponentially stable.

On the other hand, if (4.3) is not completely controllable, then because (4.2)
has its entire spectrum in Re Z > 0 there exists ¢ € P such that all solutions of
(3.1)~3.2) with ¢ as initial value are uniformly bounded away from O, (see, for



52 RICHARD DATKO

example, [17]). Hence Hypothesis H cannot hold since

f Wt @) xt, ) dt
0

diverges for all ue L,(R*, R™).
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